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Edge-guided feature fusion
network for RGB-T salient object
detection

Yuanlin Chen, Zengbao Sun, Cheng Yan and Ming Zhao*

Department of Information Engineering, Shanghai Maritime University, Shanghai, China

Introduction:RGB-T Salient Object Detection (SOD) aims to accurately segment

salient regions in both visible light and thermal infrared images. However,

many existing methods overlook the critical complementarity between these

modalities, which can enhance detection accuracy.

Methods: We propose the Edge-Guided Feature Fusion Network (EGFF-Net),

which consists of cross-modal feature extraction, edge-guided feature fusion,

and salience map prediction. Firstly, the cross-modal feature extraction module

captures and aggregates united and intersecting information in each local region

of RGB and thermal images. Then, the edge-guided feature fusion module

enhances the edge features of salient regions, considering that edge information

is very helpful in refining significant area details. Moreover, a layer-by-layer

decoding structure integrates multi-level features and generates the prediction

of salience maps.

Results: We conduct extensive experiments on three benchmark datasets

and compare EGFF-Net with state-of-the-art methods. Our approach achieves

superior performance, demonstrating the e�ectiveness of the proposedmodules

in improving both detection accuracy and boundary refinement.

Discussion: The results highlight the importance of integrating cross-modal

information and edge-guided fusion in RGB-T SOD. Our method outperforms

existing techniques and provides a robust framework for future developments in

multi-modal saliency detection.

KEYWORDS

saliency detection, pixel features, dynamic compensation, edge information, feature

fusion

1 Introduction

Salient object detection (SOD) aims to find the most noticeable area or target in an

image, and has developed rapidly in recent years. In the context of the rapid development

of computer technology and deep learning, SOD techniques are widely used in various

fields, such as target tracking (Lee and Kim, 2018), video detection (Cong et al., 2019),

image fusion (Zhang and Zhang, 2018; Cheng et al., 2018), target segmentation (Li et al.,

2020, 2019), and so on.

SOD only using RGB images still suffer from performance degradation in the

challenging of cluttered backgrounds, poor illumination, or transparent objects. In recent

years, thermal cameras have been developed to capture infrared radiation from objects

with temperatures above the zero. Thermal infrared iamges can help to detect significant

objects. Even in complex conditions such as messy background of RGB image, weak

light or dark, the objects in thermal infrared images will be prominent. Thus, RGB-

Thermal SOD has become popular to overcome the above challenges by introducing the

complementary modality information. Traditional RGB-T SOD methods mainly use low-

level features and certain priors to detect targets, such as color contrast and background

priors. In recent years, many excellent SOD methods have been proposed. Compared

with single-channel RGB images, RGB-T images provide complementary saliency cues,
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which improve the performance of significance detection. For

example, Niu et al. (2020) introduced a dual-stream boundary-

aware network that integrates cross-modal feature sampling and

multi-scale saliency aggregation, while Zhang et al. (2019) proposed

an RGB-T salient object detection network based on multi-level

CNN feature fusion, utilizing joint attention and information

transfer units. Huang et al. (2020) designed a low-rank tensor

learning model to suppress redundant information and enhance

the correlation between similar image regions. Tang et al. (2019)

introduced a method based on a coordinated sorting algorithm for

RGB-T saliency detection, which employs a unified ranking model

to describe cross-modal consistency and reliability.

Existing RGB-T salient object detection (SOD) methods face

significant challenges due to the inherent differences between

RGB and thermal images. While RGB images excel at capturing

detailed textures under normal lighting conditions, thermal images

are more effective in highlighting salient regions in low-light or

cluttered environments. Despite the complementary nature of these

two modalities, many existing methods fail to fully leverage this

relationship. They often extract similar information from both RGB

and thermal images, underutilizing the unique contributions of

each modality. Furthermore, basic feature fusion strategies, such as

concatenation or simple convolutional operations, fail to capture

the deeper, more complex relationships between these modalities,

limiting the effectiveness of the fused features and reducing the

overall performance of salient object detection.

In addition to these challenges in feature fusion, many current

approaches neglect the critical role of edge information in refining

object boundaries. Accurate edge refinement is crucial for precise

saliency map prediction, but it is often underexploited in existing

methods. As a result, object boundaries tend to be poorly defined,

and the suppression of background noise across the two modalities

is inconsistent. This leads to irrelevant details being retained,

further diminishing the accuracy of saliency detection. Without

sufficient enhancement of salient regions or consistent background

suppression, these methods fail to make full use of the combined

strengths of RGB and thermal images.

To address these limitations, we propose an end-to-end edge-

guided feature fusion network (EGFF-Net) for RGB-T salient

object detection. Our approach is designed to fully exploit the

complementary information between RGB and thermal images

through a cross-modal feature extraction module (CMF), which

aggregates both shared and distinct features from each modality.

This module not only captures feature-wise information from each

local region but also ensures effective fusion of modality-specific

details, overcoming the shortcomings of existing simple fusion

strategies. By leveraging atrous spatial pyramid pooling (ASPP)

modules within the CMF, we also achieve a large receptive field and

high-resolution feature maps, which further improve the fusion of

complementary information.

Moreover, to enhance the precision of object boundaries, we

introduce an edge-guided feature fusion module. This module

incorporates multi-level features from RGB images to refine the

edges of salient regions. Specifically, we extract edge features from

the second layer of the RGB branch, which contains detailed

texture information, and combine them in a cascade with features

from deeper layers to guide the fusion process. This edge-guided

refinement ensures that the boundaries of salient objects are more

accurately captured, addressing the limitations of previousmethods

that overlook edge information. Additionally, our approach

enhances the overall saliency representation, resulting in more

effective suppression of irrelevant background details and more

accurate detection of salient regions under various conditions.

By integrating multi-level edge features and applying a layer-

by-layer decoding structure, our method ensures both effective

feature fusion and precise saliency map prediction. The edge-

guided fusion strategy, in combination with the CMF module,

directly addresses the challenges of incomplete feature fusion and

poor edge refinement, ultimately leading to improved performance

in RGB-T SOD tasks. The main contributions of this work are as

follows:

1. We proposed the structure of double-branch edge feature nested

network for RGB-T SOD, which consists cross-modal feature

extraction with the encoding format, salience map prediction

and a layer-by-layer decoding format for the prediction of

saliency targets.

2. We proposed the cross-modal feature extraction module (CMF)

to extract and aggregate united features and intersecting

information between two modalities. Two atrous spatial

pyramid pooling modules (ASPPs) (Chen et al., 2017) are

embedded into CMF module for obtaining large receptive

field as well as high resolutions. Three branches, i.e., RGB-T

branch, T-RGB branch, and mixed branch are designed when

aggregating the transmembrane state features, so as to better

retain the effective information of different modes and realize

the mutual compensation between the two modalities.

3. We proposed an edge-guided feature fusionmodule that enables

the refinement of salient target boundaries by edge information,

as well as enhancing the overall salient target region and

suppressing redundant information. The secondary feature

extraction for edge features is designed on the cascaded feature

map using a specific convolution block to obtain edge feature

maps of the RGB images as the mult-level refinements of salient

target boundaries.

2 Related works

2.1 RGB-T salient object detection

RGB-T Salient Object Detection (SOD) has attracted increasing

attention due to the complementary nature of visible light

and thermal infrared images. Tu et al. (2020) introduced

a collaborative graph learning algorithm for RGB-T saliency

detection, along with the VT1000 dataset containing 1000

RGB-T image pairs. Li et al. (2021) proposed a Hierarchical

Alternate Interactions Network (HAINet) for RGB-D SOD,

which could be adapted for RGB-T tasks by focusing on

cross-modal interaction. Tu et al. (2021) proposed a dual-

decoder framework that models interactions across multi-level

features, modalities, and global contexts to exploit modality

complementarity. However, its reliance on pre-defined interaction

mechanisms limits its adaptability to dynamically changing
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conditions and subtle modality variations. Liu et al. (2022)

introduced SwinNet, which employs Swin Transformers for

hierarchical feature fusion and attention mechanisms to bridge

the gap between modalities. To address image misalignment,

Tu et al. (2022) presented DCNet, incorporating spatial and

feature-wise transformations for modality alignment and a bi-

directional decoder for hierarchical feature enhancement. While

promising, DCNet’s complex alignment strategy and decoding

structure hinder its efficiency in real-time applications. Pang et al.

(2023) introduced CAVER, a view-mixed transformer emphasizing

global information alignment, and Zhou et al. (2023) presented

WaveNet, a wavelet-based MLP employing a transformer teacher

for cross-modality feature fusion. These methods demonstrated

the potential of global alignment mechanisms but often struggled

with fine-grained local details. More recently, He and Shi (2024)

proposed a SAM-based RGB-T SOD framework incorporating

modules such as High-Resolution Transformer Pixel Extraction

to refine detection. However, its reliance on pre-trained models

and complex feature extraction pipelines may limit adaptability in

diverse scenarios.

Despite these advancements, RGB-T SOD remains challenging

due to the inherent differences in RGB and thermal modalities,

particularly in suppressing complex backgrounds and enhancing

salient object boundaries. While Tu et al. (2021) proposed a

dual-decoder framework to exploit modality complementarity,

its reliance on pre-defined interaction mechanisms limits its

adaptability to dynamic conditions. Liu et al. (2022) introduced

SwinNet, which employs Swin Transformers for hierarchical

feature fusion and attention mechanisms to bridge the gap between

modalities. While its transformer-based architecture effectively

captures long-range dependencies, its fusion strategy relies heavily

on spatial alignment and channel re-calibration, which may fail to

fully exploit complementary information from RGB and thermal

modalities. Methods like CAVER (Pang et al., 2023), which

emphasize global feature alignment, struggle with capturing fine-

grained local details, particularly in the presence of background

clutter. Similarly, WaveNet (Zhou et al., 2023) utilizes wavelet-

based MLPs for cross-modality feature fusion, but its reliance on

wavelet transforms for global feature aggregation may limit its

ability to refine object boundaries and capture local texture details

effectively. Tu et al. (2022) proposed DCNet to address image

misalignment, but its complex alignment strategy and decoding

structure hinder efficiency in real-time applications.

EGFF-Net overcomes these limitations through two key

innovations: the Cross-Modal Feature (CMF) module and the Edge

Embedding Decoder (EED) module. The CMF module improves

modality fusion by dynamically aggregating complementary

features from both RGB and thermal images, using multiple

branches (RGB-T, T-RGB, and mixed) to ensure better retention

of cross-modal information and mutual compensation between

the modalities. The EED module, on the other hand, enhances

boundary refinement by incorporating multi-level edge features

from the RGB modality, which directly improves the accuracy of

object boundaries, especially in cluttered environments or when

thermal signals are weak. Together, these modules address the

challenges of incomplete feature fusion and insufficient boundary

refinement, ensuring robust saliency detection even in scenarios

with complex backgrounds or misaligned images.

3 Methodology

The proposed network mainly includes cross-modal feature

extraction, edge-guided feature fusion, salience map prediction and

hybird loss function. As shown in Figure 1, our network is a double-

input end-to-end network structure, which is fed with RGB-T

images. In order to better extract the features of differentmodes and

realize the information complementarity between the feature maps

of the transmembrane state, we propose the cross-modal feature

extraction method, which can effectively integrate information

between different modes. Considering that edge information is very

helpful in refining the edge details of significant areas, edge-guided

feature fusion module is explored to enhance the edge features

of salient region. The cascaded decoders are used to integrate the

multi-level features to generate prediction map.

3.1 Cross-modal feature extraction

The proposed network is based on the encoding-decoding

architecture. The double-branch VGG-16 is adopted as the

backbone, which only retains the previous convolution layer, and

removes the last pooling layer and all full connection layers. As

shown in Figure 1, the RGB-T images are fed into two branches for

feature extraction. R-CBi and T-CBi (i ∈ {1, 2, 3, 4, 5}) are used to

extract RGB and thermal features, respectively. The dual encoder

outputs the i-th layer features of the RGB and thermal encoder,

which denotes as Fri and Fti (i ∈ {1, 2, 3, 4, 5}), respectively.

In order to better fuse the information of different modes,

we propose the cross model fusion module (CMF) as shown

in Figure 2. Firstly, ASPPs are embedded into CMF module

for obtaining large receptive field and high resolution at the

same time. frgb and ft are feature maps of ASPPs performing,

respectively. Three branches, i.e., RGB-T branch, T-RGB branch,

and mixed branch are designed in CMF module when aggregating

the transmembrane state features, so as to better retain the

effective information of different modes and realize the mutual

compensation between the two modes.

We perform ft through a spatial attention mechanism (SA),

and then through the Sigmoid function (S) in RGB-T branch. The

spatial proportion of the thermal feature map fst is obtained, and

the pixel values range from 0 to 1. The original feature map frgb
multiplies with the attention feature maps fst to obtain the auxiliary

feature map fmrgb, which enhances the salient region of the RGB

feature maps. This operation can be formally represented as:

SA(f ) = σ (conv(cat(GMPs(f ),AVGs(f )))) (1)

fst = σ (SA(ft)) (2)

fmrgb = frgb ⊗ fst (3)

where GMPs(·) represents the maximum pooling of spatial

attention mechanisms, AVGs(·) represents the average pooling of

spatial attention mechanisms, conv(·) for convolutional operation,
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FIGURE 1

The framework of the proposed EGFF-Net. CMF and EED stand for Cross Model Fusion Module (CMF) and Edge Embedding Module (EED),

respectively.

σ (·) for Sigmoid function, SA(·) represents spatial attention

mechanisms, ⊗ respresents matrix multiplication. T-RGB branch

has the symmetrical structure with RGB-T branch. The thermal

feature maps ft is multiplied by the RGB feature maps fsrgb, which

has been performed through the attention mechanism and Sigmoid

function. The auxiliary feature map fmt is obtained as follows:

fsrgb = σ (SA(frgb)) (4)

fmt = ft ⊗ fsrgb (5)

In the mix branch, RGB feature maps frgb and thermal infrared

feature maps ft are concatenated to extract the mixed feature fmix of

transmembrane states as follows:

fmix = conv(cat(frgb, ft)) (6)

In the RGB-T branch, thermal features (ft) are processed

through a spatial attention (SA) mechanism, which emphasizes

salient regions by generating spatial attention weights (fst) that

highlight significant areas in the thermal feature map. These

attention weights are then applied to the RGB feature map

(frgb) to produce an enhanced RGB feature map (fmrgb) where

regions alignedwith thermal saliency are emphasized. This selective

enhancement effectively suppresses irrelevant details in RGB

features that are not supported by thermal information. The RGB-

T branch thus leverages thermal cues to refine RGB feature maps,

enhancing their focus on salient regions.

The T-RGB branch complements the RGB-T branch by

following a symmetric design. Here, RGB features (frgb) are

processed through the same spatial attention mechanism,

producing spatial attention weights (fsrgb) that highlight significant

areas. These weights are then applied to the thermal feature

map (ft), producing an enhanced thermal feature map (fmt).

This operation ensures that salient regions in thermal images are

reinforced using RGB information, particularly in scenarios where

thermal signals are weak or ambiguous. The T-RGB branch thus

strengthens thermal features by leveraging complementary cues

from RGB images.

While the RGB-T and T-RGB branches focus on modality-

specific refinement, the mixed branch addresses cross-modal

feature integration at a more global level. In this branch, RGB

(frgb) and thermal (ft) features are concatenated to form a unified

feature representation (fmix). This concatenated feature map is

processed through convolutional layers to learn mixed modality

representations that capture high-level interactions between RGB

and thermal modalities. The mixed branch ensures that the

complementary information across both modalities is preserved

and exploited to its full potential.

The channel attention mechanism is applied to obtain the

weights of each channel from feature maps, and then these weights

are multiplied with the corresponding feature maps. Finally, the
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FIGURE 2

Detail illustration of proposed Cross Model Fusion Module (CMF).

feature maps of the three branches are concatenated, and the

aggregated feature F
rgbt
i (i ∈ {1, 2, 3, 4, 5}) is extracted as follows:

CA(f ) = σ (FCβ (FCα(GMPc(f )))⊕ FCβ (FCα(AVGc(f )))) (7)

fcargb = CA(fmrgb)⊙ fmrgb (8)

fcat = CA(fmt)⊙ fmt (9)

fcamix = CA(fmix)⊙ fmix (10)

Frgbt = conv(cat(fcargb, fcat , fcamix)) (11)

where GMPc(·) represents maximum pooling of channel attention

mechanisms, AVGc(·) represents the average pooling of channel

attention mechanisms, FCα(·) represents the fully connected

layer of the Relu activation function, FCβ (·) represents the

fully connected layer of the Sigmoid activation function, CA(·)

represents channel attention mechanisms, fcargb, fcat , fcamix

represent the performing of fmrgb, fmt , fmix after the channel

attention, respectively, ⊙ represents elemental multiplication, ⊕

represents elemental summation.

3.2 Edge-guided feature fusion

Considering that edge information is very helpful in refining

the edge details of significant areas, edge-guided feature fusion

module is explored to enhance the edge features of salient region.

For the reasons that RGB images containmore detailed textures, we

choose the second layer feature maps of RGB combined with the

fourth and fifth layer feature maps in a cascade way to extract edge

information as a guide for feature fusion. The secondary feature

extraction as shown in Figure 1 is performed on the cascaded

feature map using a specific convolution block to obtain edge

feature maps Fe of the RGB images. The representation can be

expressed as:

Fe = convedg(cat(F
r
2, up(F

r
3), up(F

r
5))) (12)

where Fri represents the feature maps of the i-th layer, up(·)

represents upsampling, and convedg(·) represents edge feature

extraction convolution.

Edge embedding module (EED) is designed to embed the edge

feature Fe with the aggregated feature Frgbt , as shown in Figure 3.

The aggregated feature Frgbt and edge feature Fe are each subjected

to one feature extraction via a convolution layer. Then, we cascade

the salient region feature maps frgbt with the edge feature maps fe.

In order to better capture the contextual information and obtain

a larger perceptual field, ASPP module is employed to extract

features from the cascaded feature maps. The feature map fe−rgbt is

obtained as the edge-to-significance region guide. These operations

are expressed as the following:

frgbt = conv(Frgbt), fe = conv(Fe) (13)

fe−rgbt = ASPP(cat(frgbt , fe)) (14)

Theoretically, the feature maps of salient region focus on the

salient target, while the feature maps of edges pay more attentions

on the texture of edges. In order to enhance the features of salient

targets, both of the salient region feature map frgbt and the edge

feature map fe are performed through a channel spatial attention

mechanism and Sigmoid function, respectively.

fsrgbt = σ (SA(frgbt)), fsrgbt ∈ [0, 1] (15)
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FIGURE 3

Detail illustration of proposed Edge Embedding module (EED).

fse = σ (SA(fe)), fse ∈ [0, 1] (16)

Then, we perform an addition operation on fsrgbt and fse, and

multiply the result with the map of salient region features to

strengthen the saliency region as well as reduce the background

interference. The feature map of the enhanced salient region fargbt
is obtained as follows:

fargbt = frbgt ⊙ ((fsrgbt + fse)/2) (17)

Finally, the two branch feature maps fargbt and fe−rgbt are

concatenated, and be further put through a convolution block,

respectively. The final edge-guided feature map Fergbt is formulated

as follows:

Fergbt = conv(cat(conv(fargbt), conv(fe−rgbt))) (18)

3.3 Salience map prediction and hybird
loss function

As shown in Figure 1, the layer-by-layer decoding structure is

designed for the prediction of salient maps. We cascade the output

Fdei (i ∈ {1, 2, 3, 4, 5}) of each decoding block with the output F
ergbt
i

(i ∈ {1, 2, 3, 4, 5}) of the edge-guided feature fusion module of the

upper layer, and then fed them into the upper decoding block as

follows:

Fde5 = convde(F
ergbt
5 ) (19)

Fdei = convde(cat(F
de
i+1, F

ergbt
i )), i ∈ {1, 2, 3, 4} (20)

where convde(·) represents the decoding block. The decoding

block consists of three normal convolution blocks as well as a

deconvolution block, which ensures the feature maps fed into the

decoding block with the same dimensions.

The total lossLtotal consists of significance lossLde and the edge

loss Ledg . Both of them includes hybird BCE loss and IOU loss as

follows:

Ltotal =

5∑

i=1

(Lde(i))+ Ledg (21)

Lde = LBCE + LIOU (22)

Ledg = LBCE + LIOU (23)

LBCE =−
1

H ×W

H∑

x=1

W∑

y=1

[Gxy log(up(Sxy))+

(1− Gxy) log(1− up(Sxy))]

(24)

LIOU = 1−

∑H
x=1

∑W
y=1 up(Sxy)Gxy

∑H
x=1

∑W
y=1 up(Sxy)+ Gxy − up(Sxy)Gxy

(25)

where H and W denote the height and width of the

original image, respectively. Gxy represents the pixel value

of the ground-truth, and Sxy represents the probability
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value of the predicted regions. up(·) represents the

bilinear upsampling.

4 Experiments

4.1 Implementation details

For a fairer comparison, we use the same datasets, the same

hardware equipment and parameters with seven state-of-the-art

methods, including MIDDNet (Tu et al., 2021), HAINet (Li et al.,

2021), SwinNet (Liu et al., 2022), DCLNet (Tu et al., 2022),

GCLNet (Tu et al., 2020), CAVERNet (Pang et al., 2023), WaveNet

(Zhou et al., 2023). We conduct all experiments using the PyTorch

framework, and the experiments were performed on a device

equipped with an NVIDIA GeForce RTX 2080Ti GPU and 16-

GB RAM. All images are resized to 224 × 224 pixels. We use an

adaptive momentum estimation algorithm (ADAM) optimizer to

optimize our model with a batch size of 2 for 150 epochs to train the

network. The initial learning rate is set as 1× 10−3, and is reduced

by a tenth every 30 epoches.

4.2 Datasets and evaluation measures

To better evaluate the proposed scheme, we conducted RGB-

T significant target detection experiments on VT5000, VT1000,

VT821 datasets, respectively. VT5000 consists of 5,000 images. Two

thousand and five hundred images are selected as the training

set, and the other 2,500 images as well as VT1000 and VT821

as the test set for the experiments. Three evaluation metrics are

used to evaluate the results of all experiments, including precision-

recall (PR) curve, max F-measure(Fβ ) (Achanta et al., 2009), mean

absolute error (MAE) (Perazzi et al., 2012).

4.3 Results and analysis

Quantitative evaluation: In order to present our experimental

results more intuitively, we performed a quantitative analysis of the

experimental data. As shown in Figure 4, the precision-recall curves

provide amore intuitive and comprehensive comparisonwith other

methods. It can be seen that the results of our proposed method P-

R curve are better than several other methods. The max F-measure

and mean absolute error are depicted in Table 1. The MAE value of

the proposedmethod is smaller than the other sevenmodels, except

on the VT821 dataset, where it is slightly higher than GCLNet. As

observed in Table 1, although our method outperforms state-of-

the-art (SOTA) models on the VT5000 and VT1000 datasets, its

performance on VT821 is slightly lower compared to GCLNet. We

attribute this to GCLNet’s collaborative graph learning algorithm,

which leverages hierarchical deep features and superpixel-based

graph nodes to jointly learn graph affinity and node saliency. This

approach suits the VT821 dataset, which comprises more complex

scenes with finer local structures. In contrast, our model focuses

FIGURE 4

PR curves of di�erent saliency detectors on (A) VT5000, (B) VT1000,

and (C) VT821 datasets.
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TABLE 1 Quantitative comparison of di�erent models for RGB-T on three datasets.

Methods VT5000 VT1000 VT821

MAE max Fβ MAE max Fβ MAE max Fβ

Ours 0.0590 0.8973 0.0325 0.9024 0.0427 0.8645

MIDDNet 0.0658 0.8599 0.0381 0.8952 0.0686 0.8237

HAINet 0.0871 0.7017 0.0509 0.8291 0.0668 0.7896

SwinNet 0.0795 0.8006 0.0656 0.8381 0.0664 0.8152

DCLNet 0.0556 0.8637 0.0329 0.9017 0.0564 0.8008

GCLNet 0.0786 0.7786 0.0437 0.8577 0.0345 0.8670

WaveNet 0.0662 0.8319 0.0491 0.8749 0.0566 0.8504

CAVERNet 0.0781 0.7847 0.0510 0.8672 0.0671 0.8351

more on multimodal fusion and edge refinement on a broader

scale, making it more effective on larger datasets like VT5000

and VT1000.

Qualitative evaluation: We visualize the saliency maps of

the proposed methods and other seven typical models to

qualitatively evaluate the performance in three challenging

situations, including normal images, complex background images,

and dim background images. As shown in Figure 5, the proposed

method was able to capture salient areas accurately in these

challenging situations.

From the quantitative and qualitative results, we conclude

that the proposed method achieves excellent SOD performance.

Although our method’s MAE on the VT821 dataset is slightly

higher than that of GCLNet, it achieves the best performance across

all other metrics and datasets, including VT5000 and VT1000,

where it surpasses the state-of-the-art models.

4.4 Ablation study

We conducted ablation experiments to verify the necessity of

each component of the proposed EGFF-Net. The experiments were

performed on three datasets to analyze the contribution of different

modules. All the models were experimented again with the same

training and test sets, and the results obtained are presented in

Table 2.

• Backbone+CMF_Sub1: Concatenates the features from both

RGB and thermal images in the CMF submodule, studying

the effect of feature concatenation without the compensatory

mechanism.

• Backbone + CMF_Sub2: Integrates the CMF submodule

where the thermal infrared image compensates for the RGB

image, focusing on how thermal information enhances RGB

saliency while suppressing background information.

• Backbone + CMF_Sub3: Integrates the CMF submodule

where the RGB image compensates for the thermal infrared

image, aiming to explore how RGB information enhances

thermal infrared saliency while suppressing background

information.

• Backbone + CMF - ASPP: Removes the Atrous Spatial

Pyramid Pooling (ASPP) module from the CMF to analyze its

role in enhancing multi-scale feature extraction at the input

stage.

• Backbone + CMF: Uses the complete CMF module,

combining the compensatory mechanisms between RGB and

thermal images, representing the full cross-modal fusion

model.

• Backbone + CMF + EED_Sub1: Retains the compensatory

effect of the fused features on the edge features, exploring how

the enhanced feature map helps refine the edges in salient

regions.

• Backbone + CMF + EED_Sub2: Retains the edge features’

compensatory effect on the fused features, studying how edge

information influences the overall saliency feature map.

• Backbone + CMF + EED: Implements the complete EGFF-

Net model, combining both the full CMF module and edge-

guided feature fusion (EED) module, representing the final

architecture used for RGB-T SOD.

The results demonstrate that the proposed EGFF-Net with

all modules intact consistently outperforms its variants across

all datasets. Specifically, the complete EGFF-Net shows superior

performance in terms of both accuracy and precision, achieving

the lowest MAE across the majority of benchmarks. For instance,

removing the ASPP module resulted in noticeable degradation in

multi-scale feature extraction, leading to weaker performance on

complex scenes with varying object sizes. This highlights the crucial

role of ASPP in capturing diverse spatial features across different

scales, which is particularly beneficial for RGB-T data where salient

objects vary significantly in size and structure.

Further analysis reveals the indispensable contributions of

the CMF module, especially its three sub-branches (CMF_Sub1,

CMF_Sub2, and CMF_Sub3). CMF_Sub1, while providing a

baseline fusion by simply concatenating RGB and thermal features,

lacks the compensatory mechanisms necessary for addressing

modality-specific challenges, limiting its ability to suppress

irrelevant background information. In contrast, CMF_Sub2

effectively enhances saliency by utilizing thermal information to

compensate for RGB deficiencies, particularly in low-light or high-

noise conditions. Similarly, CMF_Sub3 improves saliency detection
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FIGURE 5

Visual comparisons of the proposed EGFF-Net and other state-of-the-art methods.

TABLE 2 Results of ablation studies.

Methods VT5000 VT1000 VT821

MAE max Fβ MAE max Fβ MAE max Fβ

Backbone+ CMF_Sub1 0.0824 0.7943 0.0631 0.8563 0.0753 0.8329

Backbone+ CMF_Sub2 0.0810 0.7978 0.0623 0.8567 0.0748 0.8333

Backbone+ CMF_Sub3 0.0812 0.7980 0.0623 0.8571 0.0745 0.8331

Backbone+ CMF - ASPP 0.0699 0.8559 0.0448 0.8787 0.0488 0.8488

Backbone+ CMF 0.0681 0.8621 0.0436 0.8802 0.0502 0.8512

Backbone+ CMF+ EED_Sub1 0.0662 0.8803 0.0421 0.8883 0.0493 0.8588

Backbone+ CMF+ EED_Sub2 0.0665 0.8807 0.0423 0.8897 0.0490 0.8585

Backbone+ CMF+ EED 0.0590 0.8973 0.0375 0.9024 0.0427 0.8645

TABLE 3 Comparison of network complexity for di�erent methods in RGB-T SOD.

Dataset MIDD HAI Swin DCL CAVER Wave Ours

FLOPs(G) 216.72 181.4 124.3 207.31 137.68 26.67 76.32

Params(M) 52.43 59.82 198.7 91.88 55.79 30.17 42.24

by refining thermal features through RGB guidance, which is

advantageous for objects with detailed textures and boundaries.

When integrated into the complete CMF module, these branches

collaboratively balance global and modality-specific information,

leading to significant improvements in both saliency prediction and

noise suppression.

The EED module further augments these gains by addressing

the limitations in boundary refinement. The submodules within
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EED, focusing on the mutual enhancement between edge and

fused features, play a vital role in resolving challenges associated

with complex object contours. The edge-to-feature compensation

ensures that the global saliency map incorporates precise boundary

details, while the feature-to-edge compensation reinforces edge

clarity using high-level saliency cues. Without EED, the model

struggles to maintain sharp object boundaries, which is particularly

detrimental for small or intricately shaped objects. The inclusion of

this module substantially strengthens the synergy between global

and local feature representations.

These results underscore the comprehensive contributions

of the CMF and EED modules to the performance of EGFF-

Net. The compensatory mechanisms in CMF enable effective

cross-modal fusion by leveraging the complementary strengths of

RGB and thermal images, while EED refines the salient regions

through precise boundary guidance. Together, these modules form

a cohesive framework that excels in both accuracy and robustness

across diverse RGB-T SOD scenarios.

4.5 Analysis for network complexity

To evaluate the computational efficiency and network

complexity of our proposed method, we compare it with several

state-of-the-art (SOTA) methods in terms of floating point

operations (FLOPs) and parameter count, as shown in Table 3.

FLOPs, measured in billions (G), quantify the computational effort

required for processing each input sample, while the parameter

count, measured in millions (M), indicates the model’s storage and

memory requirements.

Our EGFF-Net achieves significantly lower FLOPs than most

methods, including MIDD, HAI, and DCL, demonstrating its

computational efficiency. Compared to SwinNet, which leverages

transformer-based architectures for hierarchical feature fusion,

our method reduces computational cost by 38.6%, making it

more suitable for real-time applications. Similarly, compared to

CAVER, which emphasizes global feature alignment, our EGFF-

Net exhibits a 44.6% reduction in FLOPs. While WaveNet achieves

the lowest computational cost due to its lightweight wavelet-

based MLP architecture, it sacrifices boundary refinement and

modality fusion precision, resulting in suboptimal performance in

complex scenarios.

In terms of parameter count, EGFF-Net maintains a

competitive balance between model size and performance.

With only 42.24M parameters, our method achieves a smaller

network size than most SOTAmethods, such as SwinNet and DCL,

while still outperforming them in salient object detection tasks.

Although WaveNet employs an efficient wavelet-based MLP and

knowledge distillation to reduce computational complexity, its

simplified backbone and reliance on lightweight feature extraction

can lead to challenges in capturing intricate boundary details and

complex cross-modal interactions, particularly in cluttered or

highly dynamic scenes.

The combination of efficient computation and moderate

network size ensures that EGFF-Net strikes a compelling balance

between real-time performance and robust saliency detection.

This makes it well-suited for challenging scenarios with complex

backgrounds, weak thermal signals, or misaligned modalities,

highlighting its practicality and innovation in the RGB-T

SOD domain.

5 Conclusion

We proposed a complementary multimodal information fusion

technique for RGB-T salient object detection (SOD). Specifically,

our approach introduces a cross-modal feature extraction module,

which captures saliency information from both RGB and thermal

images, leveraging the complementary properties of the two

modalities. This module enhances the salient features of one

modality while suppressing background noise, resulting in more

robust saliency detection. Furthermore, our edge-guided feature

fusion module strengthens the edges of salient regions by

utilizing edge information, ensuring sharper object boundaries and

improving the overall saliency map.

Our method offers several key advantages compared to prior

approaches. First, the cross-modal fusion in our model is more

effective than basic concatenation methods typically used in other

works, as it extracts both shared and unique information from the

RGB and thermalmodalities. This enhanced fusion allows for better

saliency detection, especially in challenging environments such

as cluttered backgrounds or low-light conditions. Additionally,

by introducing an edge-guided fusion module, we are able to

refine object boundaries, an aspect often overlooked by other

models, which leads to more accurate localization of salient objects.

Furthermore, our approach is particularly effective at suppressing

background noise across modalities, contributing to clearer and

more distinct saliency maps.

Despite these strengths, our method has certain limitations.

First, the computational complexity of our approach is relatively

high due to the added modules for edge-guided fusion and cross-

modal interaction, which could hinder its deployment in real-

time or resource-constrained applications. Second, while our edge-

guided fusion module enhances object boundaries, its effectiveness

may diminish in scenarios with highly ambiguous edges or

extreme occlusion. Additionally, our current method is designed

for image-level RGB-T SOD and has not yet been extended to

video-based scenarios, which present additional challenges such as

temporal consistency.

Future work could focus on addressing these limitations.

Optimizing the computational efficiency of our model, for instance,

by leveraging lightweight architectures or hardware-aware design,

could make it more suitable for real-time applications. Exploring

advanced adaptive fusionmechanisms that dynamically weigh RGB

and thermal contributions based on scene complexity could further

improve detection accuracy. Moreover, expanding the method to

handle video-based RGB-T SOD or other multimodal domains,

such as medical imaging or autonomous driving, could unlock

new opportunities for multimodal information fusion techniques.

Finally, conducting ablation studies on different edge-guided

strategies and incorporating temporal dynamics into the model

could provide deeper insights into its potential and limitations.

In summary, our experiments on public datasets demonstrate

that EGFF-Net achieves state-of-the-art performance in RGB-

T SOD, particularly excelling in suppressing background
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noise and refining object boundaries. By addressing the

aforementioned challenges, EGFF-Net can be further developed

into a more versatile and efficient solution for multimodal salient

object detection.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: https://github.com/mmic-lcl/Datasets-

and-benchmark-code.

Author contributions

YC: Writing – original draft. ZS: Writing – review & editing.

CY: Writing – review & editing. MZ: Writing – review & editing.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article.

This research was supported in part by the Natural Science

Foundation of China under Grant 62271302 and in part by the

Shanghai Municipal Natural Science Foundation under Grant

20ZR1423500.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Achanta, R., Hemami, S., Estrada, F., and Susstrunk, S. (2009). “Frequency-tuned
salient region detection,” in 2009 IEEE Conference on Computer Vision and Pattern
Recognition (Miami, FL: IEEE), 1597–1604. doi: 10.1109/CVPR.2009.5206596

Chen, L.-C., Papandreou, G., Schroff, F., and Adam, H. (2017). Rethinking
atrous convolution for semantic image segmentation. arXiv [preprint].
doi: 10.48550/arXiv.1706.05587

Cheng, B., Jin, L., and Li, G. (2018). General fusion method for infrared and
visual images via latent low-rank representation and local non-subsampled shearlet
transform. Infrared Phys. Technol. 92, 68–77. doi: 10.1016/j.infrared.2018.05.006

Cong, R., Lei, J., Fu, H., Porikli, F., Huang, Q., and Hou, C. (2019). Video saliency
detection via sparsity-based reconstruction and propagation. IEEE Transact. Image
Process. 28, 4819–4831. doi: 10.1109/TIP.2019.2910377

He, S., and Shi, L. (2024). “RGB-T salient object detection based on the
segment anything model,” in 2024 6th International Conference on Communications,
Information System and Computer Engineering (CISCE) (Guangzhou), 1105–1108.
doi: 10.1109/CISCE62493.2024.10653167

Huang, L., Song, K., Gong, A., Liu, C., and Yan, Y. (2020). RGB-T saliency detection
via low-rank tensor learning and unified collaborative ranking. IEEE Signal Process.
Lett. 27, 1585–1589. doi: 10.1109/LSP.2020.3020735

Lee, H., and Kim, D. (2018). “Salient region-based online object tracking,” in 2018
IEEEWinter Conference on Applications of Computer Vision (WACV) (Lake Tahoe, NV:
IEEE), 1170–1177. doi: 10.1109/WACV.2018.00133

Li, G., Liu, Z., Chen, M., Bai, Z., Lin, W., and Ling, H. (2021). Hierarchical alternate
interaction network for RGB-D salient object detection. IEEE Transact. Image Process.
30, 3528–3542. doi: 10.1109/TIP.2021.3062689

Li, G., Liu, Z., Shi, R., Hu, Z., Wei, W., Wu, Y., et al. (2020). Personal fixations-
based object segmentation with object localization and boundary preservation. IEEE
Transact. Image Process. 30, 1461–1475. doi: 10.1109/TIP.2020.3044440

Li, G., Liu, Z., Shi, R., and Wei, W. (2019). Constrained fixation point
based segmentation via deep neural network. Neurocomputing 368, 180–187.
doi: 10.1016/j.neucom.2019.08.051

Liu, Z., Tan, Y., He, Q., and Xiao, Y. (2022). Swinnet: swin transformer drives edge-
aware RGB-D and RGB-T salient object detection. IEEE Transact. Circ. Syst. Video
Technol. 32, 4486–4497. doi: 10.1109/TCSVT.2021.3127149

Niu, Y., Long, G., Liu, W., Guo, W., and He, S. (2020). Boundary-
aware rgbd salient object detection with cross-modal feature sampling.
IEEE Transact. Image Process. 29, 9496–9507. doi: 10.1109/TIP.2020.30
28170

Pang, Y., Zhao, X., Zhang, L., and Lu, H. (2023). Caver: cross-
modal view-mixed transformer for bi-modal salient object detection.
IEEE Transact. Image Process. 32, 892–904. doi: 10.1109/TIP.2023.32
34702

Perazzi, F., Krähenbühl, P., Pritch, Y., and Hornung, A. (2012). “Saliency filters:
contrast based filtering for salient region detection,” in 2012 IEEE Conference
on Computer Vision and Pattern Recognition (Providence, RI: IEEE), 733–740.
doi: 10.1109/CVPR.2012.6247743

Tang, J., Fan, D., Wang, X., Tu, Z., and Li, C. (2019). Rgbt salient
object detection: benchmark and a novel cooperative ranking approach. IEEE
Transact. Circ. Syst. Video Technol. 30, 4421–4433. doi: 10.1109/TCSVT.2019.29
51621

Tu, Z., Li, Z., Li, C., Lang, Y., and Tang, J. (2021). Multi-interactive dual-decoder
for RGB-thermal salient object detection. IEEE Transact. Image Process. 30, 5678–5691.
doi: 10.1109/TIP.2021.3087412

Tu, Z., Li, Z., Li, C., and Tang, J. (2022). Weakly alignment-free RGBT salient object
detection with deep correlation network. IEEE Transact. Image Process. 31, 3752–3764.
doi: 10.1109/TIP.2022.3176540

Tu, Z., Xia, T., Li, C., Wang, X., Ma, Y., and Tang, J. (2020). RGB-T image saliency
detection via collaborative graph learning. IEEE Transact. Multim. 22, 160–173.
doi: 10.1109/TMM.2019.2924578

Zhang, L., and Zhang, J. (2018). A novel remote-sensing image fusion method
based on hybrid visual saliency analysis. Int. J. Remote Sens. 39, 7942–7964.
doi: 10.1080/01431161.2018.1479791

Zhang, Q., Huang, N., Yao, L., Zhang, D., Shan, C., and Han, J. (2019). Rgb-t salient
object detection via fusing multi-level cnn features. IEEE Transact. Image Process. 29,
3321–3335. doi: 10.1109/TIP.2019.2959253

Zhou, W., Sun, F., Jiang, Q., Cong, R., and Hwang, J.-N. (2023). Wavenet:
wavelet network with knowledge distillation for rgb-t salient object detection.
IEEE Transact. Image Process. 32, 3027–3039. doi: 10.1109/TIP.2023.32
75538

Frontiers inNeurorobotics 11 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1489658
https://github.com/mmic-lcl/Datasets-and-benchmark-code
https://github.com/mmic-lcl/Datasets-and-benchmark-code
https://doi.org/10.1109/CVPR.2009.5206596
https://doi.org/10.48550/arXiv.1706.05587
https://doi.org/10.1016/j.infrared.2018.05.006
https://doi.org/10.1109/TIP.2019.2910377
https://doi.org/10.1109/CISCE62493.2024.10653167
https://doi.org/10.1109/LSP.2020.3020735
https://doi.org/10.1109/WACV.2018.00133
https://doi.org/10.1109/TIP.2021.3062689
https://doi.org/10.1109/TIP.2020.3044440
https://doi.org/10.1016/j.neucom.2019.08.051
https://doi.org/10.1109/TCSVT.2021.3127149
https://doi.org/10.1109/TIP.2020.3028170
https://doi.org/10.1109/TIP.2023.3234702
https://doi.org/10.1109/CVPR.2012.6247743
https://doi.org/10.1109/TCSVT.2019.2951621
https://doi.org/10.1109/TIP.2021.3087412
https://doi.org/10.1109/TIP.2022.3176540
https://doi.org/10.1109/TMM.2019.2924578
https://doi.org/10.1080/01431161.2018.1479791
https://doi.org/10.1109/TIP.2019.2959253
https://doi.org/10.1109/TIP.2023.3275538
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

	Edge-guided feature fusion network for RGB-T salient object detection
	1 Introduction
	2 Related works
	2.1 RGB-T salient object detection

	3 Methodology
	3.1 Cross-modal feature extraction
	3.2 Edge-guided feature fusion
	3.3 Salience map prediction and hybird loss function

	4 Experiments
	4.1 Implementation details
	4.2 Datasets and evaluation measures
	4.3 Results and analysis
	4.4 Ablation study
	4.5 Analysis for network complexity

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


