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Panoptic segmentation plays a crucial role in enabling robots to comprehend

their surroundings, providing fine-grained scene understanding information for

robots’ intelligent tasks. Although existing methods have made some progress,

they are prone to fail in areas with weak textures, small objects, etc. Inspired

by biological vision research, we propose a cascaded contour-enhanced

panoptic segmentation network called CCPSNet, attempting to enhance the

discriminability of instances through structural knowledge. To acquire the scene

structure, a cascade contour detection stream is designed, which extracts

comprehensive scene contours using channel regulation structural perception

module and coarse-to-fine cascade strategy. Furthermore, the contour-

guided multi-scale feature enhancement stream is developed to boost the

discrimination ability for small objects and weak textures. The stream integrates

contour information and multi-scale context features through structural-aware

feature modulation module and inverse aggregation technique. Experimental

results show that ourmethod improves accuracy on theCityscapes (61.2 PQ) and

COCO (43.5 PQ) datasets while also demonstrating robustness in challenging

simulated real-world complex scenarios faced by robots, such as dirty cameras

and rainy conditions. The proposed network promises to help the robot perceive

the real scene. In future work, an unsupervised training strategy for the network

could be explored to reduce the training cost.

KEYWORDS

robot vision, panoptic segmentation, panoptic contour detection, structure perception,

cascade, feature enhancement, visual pathway

1 Introduction

In recent years, camera-based perception systems have been widely used in various

kinds of robots, which brings the need for image-based scene understanding algorithms.

For robots, it is not only necessary to recognize the semantic information in the scene,

but also to distinguish different instances, which is of great significance for robots to

navigate, interact and execute tasks in complex environments. Specifically, robots need the

help of computer vision techniques to identify obstacles in the scene, identify users, find

targets, etc.

In order to meet this demand, semantic segmentation (Zhang et al., 2022; Ye et al.,

2023; Zhang et al., 2023) and object detection (Liu and Stathaki, 2018; He et al., 2017)

tasks have been proposed in the field of computer vision, which are used to identify

the semantic information of the pixels in the scene and distinguish the information

of different instances in the image respectively. Until Kirillov et al. (2019a) proposed

the panoptic segmentation task, which unifies the above two tasks. This new task is
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dedicated to identifying each pixel’s semantic and instance ID in

the input image. This task has gained significant attention in the

field of scene understanding due to its precise definition. It is

a valuable tool for autonomous driving and industrial robotics

applications. There are currently three categories of deep learning-

based panoptic segmentation methods based on the instance mask

generation approach: top-down (Mask R-CNN based), bottom-

up (DeepLab based), and transformer-based (DETR based). These

methods have shown promising progress on the datasets. However,

misclassification of textureless regions and missing detection of

small targets remain to be solved. For example, the white truck was

wrongly identified as a building because it lacks texture and has the

same color as the building behind it. Additionally, the person in

the distance was not detected by the current algorithm due to their

small size, as shown in Figure 1.

The lack of contour perception may cause the problems

above, according to the perceptual theory of biological vision.

Research (Zhou et al., 2000) indicated that contour detection

plays a crucial role in processing scene data in a monkey’s visual

cortex. The studies suggest that about 18% of the cells in area

V1 and over 50% in V2 and V4 on the cerebral cortex are

dedicated to processing contour-related information. It is well

verified by the previous semantic segmentation that introduced

edge detection as an auxiliary task. Gated-SCNN (Takikawa et al.,

2019), DecoupleSegNets (Li et al., 2020), and RPCNet (Zhen

et al., 2020) demonstrated the importance of contours in scene

recognition by introducing semantic edges to improve semantic

segmentation performance. In the panoptic segmentation task,

some previous studies (Xu et al., 2021; Chang et al., 2023) have

explored contour detection as a separate component in their work.

CAPSNet (Xu et al., 2021) was the first work that introduced a

contour branch to guide feature extraction and explicit contour

supervision on the result of panoptic segmentation to improve

the network’s understanding of the structure. However, this

method did not incorporate contour information into the panoptic

segmentation process. SE-PSNet (Chang et al., 2023) adopted

a similar structure and used contour as auxiliary information

to enhance instance segmentation, but did not contribute to

semantic segmentation.

In this study, we introduce the Cascade Contour-enhanced

Panoptic Segmentation Network (CCPSNet), a novel approach

designed to fully embrace structural knowledge to improve the

detection of small targets and the semantic recognition of weak

texture areas. Our method employs a cascading strategy to

adaptively refine multi-scale structural contour details, thereby

facilitating more precise detection of contours in areas lacking

texture or containing small objects. Furthermore, we present

a contour-guided multi-scale feature enhancement stream that

integrates panoptic contours and multi-scale features to refine

segmentation features and calibrates the perceptual field using

structural-aware feature modulation module(SFMM), thereby

enhancing segmentation accuracy. The key contributions of our

work are as follows:

• We propose a cascade contour-enhanced panoptic

segmentation network, which effectively delves into the

comprehensive structural knowledge using panoptic contour

detection and corresponding features, thereby improving the

robot vision’s perception ability in challenging complex areas.

• We develop a cascaded contour detection stream for the

panoptic segmentation network, which aims to extract scene

structural information by a feature channel regulation module

and cascade strategy.

• We design a contour-guided multi-scale feature enhancement

stream that incorporates contour information and contextual

features to enhance the feature learning of areas with small

objects and weak textures.

• Extensive experiments on the Cityscapes and COCO datasets

substantiate the robustness and superiority of our proposed

network compared to existing methods.

2 Related work

In this section, we review the progress of research on deep

learning-based panoptic segmentation algorithms and contour

detection in deep learning.

2.1 Deep learning-based panoptic
segmentation

2.1.1 Top-down
Due to the exceptional performance of Mask R-CNN

(He et al., 2017) on the instance segmentation task, this

type of approach combines semantic segmentation branches

with instance segmentation outcomes to generate panoptic

segmentation results. The Panoptic-FPN was proposed by Kirillov,

which utilized semantic segmentation with a shared Feature

Pyramid Network backbone. Since then, many studies (Chen

Y. et al., 2020; Li et al., 2019; Liu et al., 2019; Xiong

et al., 2019) have expanded upon this approach. UPSNet

(Xiong et al., 2019) introduced a parameter-free panoptic head

that predicts the final panoptic segmentation via pixel-wise

classification, the number of classes per image of which could

vary. BANet (Chen Y. et al., 2020) exploits the complementary

relationship between semantics and instances to design Semantic-

to-Instance module and Instance-to-semantic module to improve

the performance. EfficientPS (Mohan andValada, 2021) is currently

the most effective technique in top-down methods. It involves

creating a new backbone network and implementing a 2-way

FPN while maintaining the core structure of the Mask R-

CNN component.

Based on the above studies, CAPSNet (Xu et al., 2021)

pioneered the idea of enhancing the network’s ability to perceive

structures by introducing panoptic contour-aware branches. Then

SE-PSNet (Chang et al., 2023) introduced the contour-based

enhancement features into different predicted heads. While

the previous methods use contour perception to aid in the

understanding of structural information within an image, the

design of this approach is relatively simple and may struggle with

small targets. To address this issue, we introduce a new cascaded

panoptic contour detection head to improve detail awareness

and a contour attention feature enhancement module to enhance
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FIGURE 1

Visualization examples of misclassification and missing detection. Left: input image; middle: UPSNet results, misclassification of the track and

missing detection of the human; right: our results.

feature expression. These improvements should enhance the overall

performance of the system.

2.1.2 Bottom-up
In contrast to the above approaches that use instance

partitioning as the core of the network, many studies (Chen

et al., 2017; Yang et al., 2019; Cheng et al., 2020; Gao et al.,

2019; Wang H. et al., 2020; Sun et al., 2023) that focus more

on semantic segmentation and cluster the results to generate

instance segmentation results. They adopt models such as DeepLab

(Chen et al., 2017), a semantic segmentation model that uses an

encoder-decoder architecture with an atrous convolution structure

as the backbone to generate semantic segmentation results while

generating instance segmentation results through a bottom-up

approach. Panoptic-DeepLab (Cheng et al., 2020) adopts the dual-

ASPP and dual-decoder structures specific to semantic and instance

segmentation, respectively. Deeper-Lab (Yang et al., 2019) uses

bounding box and center point to generate the instance mask and

SSAP (Gao et al., 2019) proposes a pixel-pair affinity pyramid to

predict the instance by computing the probability that two pixels

belong to the same instance.

2.1.3 Transformer based
The DEtection TRansformer (DETR) has been proposed by

Carion et al. (2020) as a successful application of the Transformer

method, commonly used in NLP, for image detection tasks. Many

networks (Wang et al., 2021; Yu et al., 2022a,b) have subsequently

emerged that employ the self-attention module. Max-DeepLab

(Wang et al., 2021) introduces mask transformer to predict class-

labeledmasks directly, while training with panoptic quality inspired

loss via bipartite matching to improve Axial-DeepLab (Wang H.

et al., 2020)’s performance on highly deformable objects, or nearby

objects with close centers. Building on this work, CMT-DeepLab

(Yu et al., 2022a) composes the process of assigning pixels to the

clusters by feature affinity and updating the cluster centers and

pixel features as Clustering Mask Transformer. kMaX-DeepLab

(Yu et al., 2022b) draws on the k-means clustering algorithm

and redesigns the cross-attention mechanism by introducing

the relationship between pixels and object queries. The above

model greatly simplifies the process of panoptic segmentation

and has more powerful feature learning capability to improve the

performance effectively. However, they require huge computility

is unsatisfactory.

2.2 Contour detection in deep learning

The edge detection task is a fundamental task in computer

vision, and this task has also seen new advances through deep

learning this year. Among them, HED (Xie and Tu, 2015)

improves the performance by using a pattern of fusion of multiple

layers. Meanwhile, edges also play an important role in the

segmentation task. Nvidia (Takikawa et al., 2019) proposed to

assist segmentation through contours. CAPSNet (Xu et al., 2021) is

the first model that proposes to introduce panoptic segmentation

contours into the panoptic task. SE-PSNet (Chang et al., 2023)

assists panoptic segmentation according to semantic contours and

instance contours, respectively.

All of the above methods use contouring as an auxiliary

task, and for the first time, our model incorporates panoptic

segmentation contouring results into the prediction process.

2.3 Attention model in deep learning

Many previous works have demonstrated the outstanding

performance of attention mechanisms on various tasks such

as object detection (Alazeb et al., 2024), autonomous driving

(Yang et al., 2023), saliency prediction (Min et al., 2020), and

fixation prediction (Min et al., 2016). Min et al. (2016) utilizes

canonical correlation analysis to identify the most relevant audio

features. It construct visual attention models through spatial
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attention and temporal attention to predict fixation points. The

moving sound target is located using cross-modal kernel canonical

correlation analysis. Min et al. (2020) introduces a two-stage

adaptive audiovisual saliency fusion method to complete the

saliency prediction. Axial-DeepLab (Wang H. et al., 2020) is a fully

attentional network with novel position-sensitive axial-attention

layers that combine self-attention for non-local interactions

with positional sensitivity. The deletion of the object detection

branch leads to those methods being more efficient rather than

more effective.

In this paper, we use the attention mechanism to enhance

structure perception. The expression of the contour on the feature

channel is guided by the attention in the cascaded contour detection

stream, and the panoptic contour is used as the input to generate

spatial attention to assist the final panoptic segmentation in the

contour-guided multi-scale feature enhancement stream.

3 Methodology

In this section, we provide a detailed overview of our proposed

network, illustrated in Figure 2. The network follows a top-down,

which employs a shared ResNet backbone with a Feature Pyramid

Network (FPN). Our network has four major components: (1)

Cascade contour detection stream. (2) Contour-guided multi-scale

feature enhancement stream to enhance feature expression on

the backbone. (3) The instance segmentation head provides the

instance segmentation predictions. (4) The semantic segmentation

head predicts semantic results. This section provides the details

of those.

3.1 Cascade contour detection stream

Inspired by Gated-SCNN (Takikawa et al., 2019) and RPCNet

(Zhen et al., 2020) that introduce the edge detection to aid in

semantic segmentation, contours are critical clues in segmentation

task. In order to outline every object or background in

the scene, panoptic segmentation contour is an amalgamation

of semantic segmentation contour and instance segmentation

contour. Particularly, for an image I, it’s panoptic segmentation

contour label CI = Cs ∪ Ct . Here, Cs is the semantic contour

for stuff categories and Ct is the instance contour for things

label. In terms of the truth result of the panoptic segmentation

ground truth P, specifically for a pixel Pp, whenever any of the

8 pixels surrounding this pixel point has a different semantic or

instance ID with it, we consider it to be a panoptic contour pixel.

Since the results are colored by category and instance, different

categories or different objects id in the same category will be colored

differently. Thus Laplace convolution can be used to obtain a

panoptic segmentation contour.

CPp = 1 ∀Pp ∈ P, s.t. lapulation(Pp) 6= 0. (1)

In order to get the contour, we design a cascade contour

detection stream. The structure is shown in Figure 3. We introduce

the featuresP2 − P5 obtained from FPN into the channel regulation

structural perception module (CRSPM) to obtain the contour

features of the corresponding layers. To begin with, we apply

a 3 × 3 convolution to convert the features into contour

features. Subsequently, considering the variability of the activation

patterns of different convolution kernels, we generate weights

on channels to regulate feature volume, which aims to enhance

structural information and suppress negative impact information.

This module is primarily built through global average pooling

and fully connected layers, which can be represented by the

following formula:

P = f (Pi)⊗ g(GAP(f (Pi))) (2)

In which, f () represents the two 3 × 3 convolution layers,

GAP() represents the global average pooling, and g() is the 1 × 1

convolution. By this way, we retain the ability to perceive the

texture while picking out the channels that are responsive to the

contours. In order to maintain the overall information on the

large scale and avoid the misclassification caused by the texture

difference inside the structure, the large-scale and small-scale

features are fused by concatenate operation. From P5 to P2, we

apply coarse-to-fine cascade aggregation to get the contour feature

and predict the panoptic segmentation contour.

Due to the distribution imbalance of the number of contour and

non-contour pixels, we adopt the class-balancing cross-entropy loss

function Lc following the HED (Xie and Tu, 2015) as the contour

loss. Equation 1 provides its formalization. In which α is the class-

balancing weight on a per-pixel term basis. C denotes the ground

truth of panoptic contour, and Ĉ denotes the predicted panoptic

contour. C− denotes the contour ground truth label sets.

Lc = −αClog(sigmoid(Ĉ))− (1− α)(1− C)log(1− sigmoid(Ĉ));

α =
C−

C

(3)

3.2 Contour-guided multi-scale feature
enhancement stream

In the process of extracting features from the backbone, a lot

of detailed information is lost due to multiple down-sampling and

pooling operations, which leads to the mission detection of small

objects. To address this issue, we proposed structural-aware feature

modulation module (SFMM) and inverse aggregation operation,

which augments the features by taking the panoptic contours

to generate attention at the spatial scale and fuses with features

of different scales. This module helps incorporate structured

information into features at all scales to aid in learning small object

features. Its structure is shown in Figure 4. Here, we give a detailed

formulation for this process.

Given an input feature map Pi ∈ R
N×Wi×Hi from the i-th

scale FPN branch. The contour was resized to same scale with this

feature map Ci ∈ R
1×Wi×Hi . The attention can be formulated

as follows:

Atti = sigmoid(σ (fi1 (Ci,wi1 )⊗ fi2 (Ci,wi2 ))) (4)

where fij (·, ·) denotes an atrous convolution function,⊗ represents

element-wise multiplication, σ means a 1 × 1 convolution,
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FIGURE 2

Illustration of the proposed CCPSNet.

FIGURE 3

The structure of cascade contour detection stream.

and sigmoid indicates the Sigmoid activation function, Atti ∈

R
1×Wi×Hi is the attention generate from the contour. In this

process, the atrous convolutions f are employed to mine

spatial information from contour. During the experiments,

in our experience, the kernel sizes of both fi1 and fi2 are

set to 15, with a dilation rate of 3, and they do not

share weights.

To emphasize the feature of object, we formulate the attention

weighted map Att′i as 1 − Atti. Then the enhanced feature map

P′i ∈ R
N×Wi×Hi can be presented as:

P′i = Pi ⊗ Att′i ⊕ Pi (5)

where⊕means element-wise sum.

Inspired by Tan et al. (2020), an inverse aggregation method

is designed to utilize features in low levels assistant for large

instance identification. We designed the structure to allow low-

level features to provide detailed information for nearby high-level

features, which implemented by resizing the low-level feature map

P′i−1 ∈ R
N×Wi−1×Hi−1 to the same scale as near high-level feature

map P′i ∈ R
N×Wi×Hi and employing the element-wise sum. The i-

th feature P′′i ∈ R
N×Wi×Hi for segmentation and detection can be

generated as:

P′′i = P′i ⊕ δ(P′i−1) (6)

where δ means down-sampling. It is worth noting that since P′′2 has

no lower-level features, in practice P′′2 and P′2 are the same. At this

point, enhancement of features based on contours is complete.
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FIGURE 4

The structure of contour-guided multi-scale feature enhancement stream.

3.3 Instance segmentation head

Following the Mask R-CNN (He et al., 2017), our instance

segmentation head produces bounding box regression,

classification, and segmentation mask from P′′2 − P′′5 . The

purpose of this head is to provide pixel-level annotations for each

instance. The loss function Lins is defined as follows:

Lins = Lcls + Lbbox + Lmask (7)

where Lcls is the is the classification loss, Lbbox is the object

bounding-box regression loss, and Lmask is the average binary

cross-entropy loss for mask prediction.

3.4 Semantic segmentation head

For semantic segmentation head, we stack two 3×3 deformable

convolution layers following SFMM features. Similar to PSPNet

(Zhao et al., 2017), we first scale the features of different sizes to

the same scale to achieve fusion of different granularity. Then, the

semantic presentations are obtained by concatenating these scaled

features. For this head, we choose the standard cross entropy in

semantic segmentation as the loss function, denoted as Lseg .

During training, the total loss Ltotal is formulated as:

Ltotal = LC + Lins + Lseg (8)

4 Experiments

In this section, our CCPSNet is evaluated on Cityscapes (Cordts

et al., 2016) and Microsoft COCO (Lin et al., 2014) datasets. We

present the experimental results on these datasets and compare

with them the state-of-the-art models based on Mask R-CNN. The

ablation studies and robustness analysis are presented at last.

4.1 Datasets and metrics

4.1.1 Cityscapes
This dataset focuses on understanding urban streets scenes. It

is composed of 2,975 training images, 500 validation images, and

1,525 test images. All these 5,000 images are with fine annotations.

There are another 20,000 images with coarse annotations, which

are not utilized in our experiment. This dataset has a total of 19

categories, of which 8 are things and the remaining 11 are stuff.

In this dataset, we use 4 RTX 2080Ti GPUs to train our model, and

trained in a batch size of 1 per GPU, learning rate of 0.02 and weight

decay of 1e−4 for 48,000 steps in total and decay the learning rate

by a factor of 0.1 at step 36,000.

4.1.2 COCO
This dataset contains a large number of natural images,

comprising both indoor and outdoor scenes. The distribution
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between images is also inconsistent, making it challenging for

algorithms to learn good results. It contains 140,000 images with

115,000 training images, 5,000 validation images, 20,000 test-dev

images, and 20,000 test images. There are 80 thing categories and

53 stuff categories. We only rely on the train set with no extra data,

presenting the results on the validation set for comparison. In this

dataset, we use 8 RTX 2080Ti GPUs to train our model, and trained

in a batch size of 1 per GPU, learning rate of 0.01 and weight decay

of 1e−4 for 48,000 steps in total and decay the learning rate by a

factor of 0.1 at step 240,000 and 32,000.

4.1.3 Evaluation metrics
Following Kirillov et al. (2019b), the Panoptic Quality (PQ) is

adopted as evaluation metrics:

PQ =

∑

(p,g)∈TP IoU(p, g)

|TP|
︸ ︷︷ ︸

segmentation quality(SQ)

×
|TP|

|TP| + 1
2 |FP| +

1
2 |FN|

︸ ︷︷ ︸

recognition quality(RQ)

,

According to the formula, PQ is determined by multiplying

SQ and RQ, combining the evaluation of semantic segmentation

and instance segmentation. In the formula, IoU(p, g) means

the intersection-over-union between predicted object p and

ground truth g. TP (True Positives) represents matched pairs

of segments, and FP (False Positive) means unmatched pairs of

segments, and FN (False Negatives) means unmatched ground

truth segments. When the value of IoU is >0.5, it is considered

a positive match. Note that PQ, PQTh, and PQSt refer to

the PQ values averaged across all classes, thing classes and

stuff classes.

4.2 Comparsion to state-of-the-art

We compare our proposed network with other state-of-the-art

methods on Cityscapes (Cordts et al., 2016) val set and MS-COCO

(Lin et al., 2014).

4.2.1 Cityscapes
As shown in Table 1, the proposed CCPSNet of ResNet-50 is

used to realize 60.5% and CCPSNet of ResNet-101 is used to realize

61.2% which is improved compared with similar methods with

same backbone. Figure 5 presents some visual examples of our

algorithm on Cityscapes. The first row shows that the problem

of small target objects, such as cyclists, which is difficult to

distinguish due to lighting problems is alleviated by the feature

cascade fusion module proposed by CCPSNet. The second and

third rows show that when there is occlusion between different

objects, contour perception in CCPSNet can solve this problem

very well. The fourth row shows that through contour perception

and contour feature enhancement, CCPSNet can effectively detect

ambiguous scenes such as the left side of the vehicle painted with

TABLE 1 Comparsion with other methods on Cityscapes val sets.

Method PQ PQTh PQSt

Backbone: ResNet-50 (He et al., 2016)

EfficientPS (Mohan and Valada, 2021) 60.3 55.3 63.9

Panoptic-FPN (Kirillov et al., 2019a) 57.7 51.6 62.2

UPSNet (Xiong et al., 2019) 59.1 54.1 62.7

AUNet (Li et al., 2019) 56.4 52.7 59.0

CAPSNet (Xu et al., 2021) 60.0 55.7 63.1

YOSO (Hu et al., 2023) 59.7 51.0 66.1

LPSNet (Hong et al., 2021) 59.7 54.0 63.9

SE-PSNet (Chang et al., 2023) 60.0 55.9 62.9

CCPSNet (Ours) 60.5 56.9 63.1

Backbone: ResNet-101 (He et al., 2016)

EfficientPS (Mohan and Valada, 2021) 61.1 56.5 64.2

Panoptic-FPN (Kirillov et al., 2019a) 58.1 52.0 62.5

AUNet (Li et al., 2019) 59.0 54.8 62.1

AdaptIS (Sofiiuk et al., 2019) 60.6 57.5 62.6

CCPSNet (Ours) 61.2 57.1 64.1

The bold value means the best result in the column.

a face pattern and the right side of the street hanging a row

of clothes.

We evaluate the segmentation results on specific categories in

Cityscapes, where the object size is smaller than 32 pixels × 32

pixels. The results based on ResNet-50 are reported in Table 2. It

can be observed that our proposed algorithm indeed improves the

performance for small objects, thanks to contour-guided multi-

scale feature enhancement stream.

4.2.2 COCO
In addition to verification in outdoor driving scenarios, we

further demonstrated the universality of our method on the COCO

dataset, which includes various indoor and outdoor scenes. As

shown in Table 3, we compare with similar methods with same

backbone. The proposed CCPSNet achieves the PQ 43.2% and the

PQ 43.5% with backbone ResNet-101.

Figure 6 presents some visual examples of our algorithm on

MS-COCO. The first row presented is similar to the one in

CityScapes in its ability to detect extra-long targets such as trains,

and the distant train body is well preserved. The second row

is mainly for the detection of bus drivers, and the information

of the characters is better retained. The third row focuses on

the detection of small targets of bird flocks. Unlike UPSNet,

CCPSNet still retains the good individual characteristics of flying

birds for a large number of small targets and does not show

a large number of block-like structures, and there are relatively

independent characteristics among flying birds from the original

figure. The fourth row shows the structure of the flush toilet, which

is well preserved in CCPSNet, even if the structure of the drain is

clearly visible.

Frontiers inNeurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1489021
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Xu et al. 10.3389/fnbot.2024.1489021

FIGURE 5

Visual examples of panoptic segmentation on Cityscapes. From left to right are input images, predicted results from UPSNet, CAPSNet, CCPSNet

(ours), and ground truth.

TABLE 2 Accuracy of small object on CityScapes val set.

Method PQ SQ RQ

UPSNet (Xiong et al., 2019) 50.26 71.70 70.13

CAPSNet (Xu et al., 2021) 51.01 72.70 70.19

CCPSNet (Ours) 51.26 72.53 70.70

The bold value means the best result in the column.

4.3 Ablation studies

To demonstrate the effectiveness of each component in our

network, we conduct related ablation experiments. Table 4 shows

the quantitative ablative analysis, where empty cells mean the

corresponding components are not adopted.

In Table 4, the first row shows the results of the baseline without

any innovative design. The second row represents the experimental

results for the cascade contour stream without CRSPM we

designed. This outcome demonstrates that the introduction of

contours effectively enhances the scene perception capabilities,

particularly in terms of the overall evaluation metric PQ and

the object recognition metric RQ. Compared to the second row,

the third row exhibits the effectiveness of CRSPM. As can be

seen from the results, CRSPM further improves performance. We

believe that this performance enhancement is primarily due to

the following reasons. The inclusion of the contour detection

head can encourage base feature extractor to focus on learning

structual features, and channel regulation structural perception

module employ a GAP and 1 × 1 convolution to re-weight

the channels, selecting those sensitive to contour perception and

allowing them to cascade participate in the perception process.

We utilize the same global average pooling operation as in

Condori and Bruno (2021) to preserve the texture information.

This further indicates that introducing the contour recognition

TABLE 3 Comparsion with other methods on COCO val sets.

Method PQ PQTh PQSt

Backbone: ResNet-50 (He et al., 2016)

UPSNet (Xiong et al., 2019) 42.5 48.5 33.4

TASCNet (Li et al., 2018) 40.7 47.0 31.0

SpatialFlow (Chen Q. et al., 2020) 42.9 49.5 33.0

Panoptic FPN (Kirillov et al., 2019a) 39.0 45.9 28.7

OANet (Liu et al., 2019) 41.3 50.4 27.7

JSIS-Net (De Geus et al., 2018) 26.9 29.3 23.3

AUNet (Li et al., 2019) 39.6 49.1 25.2

AdaptIS (Sofiiuk et al., 2019) 35.9 40.3 29.3

CIAE (Gao et al., 2021) 40.2 45.3 32.3

SOLO V2 (Wang X. et al., 2020) 42.1 49.6 30.7

OCFusion (Lazarow et al., 2020) 41.3 49.4 29.0

LPSNet (Hong et al., 2021) 39.1 43.9 30.1

IDNet (Lin et al., 2023) 42.1 47.5 33.9

CCPSNet (Ours) 43.0 49.2 33.6

Backbone: ResNet-101 (He et al., 2016)

Panoptic-FPN (Kirillov et al., 2019a) 40.3 47.5 29.5

AdaptIS (Sofiiuk et al., 2019) 37.0 41.8 29.9

OCFusion (Lazarow et al., 2020) 43.0 51.1 30.7

SSAP (Gao et al., 2019) 36.9 40.1 32.0

CCPSNet (Ours) 43.5 49.9 33.8

The bold value means the best result in the column.

function of the visual cortex of the brain in the task of

scene recognition can effectively improve the performance of

performance performance of the network. The cascaded panoptic
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FIGURE 6

Visual examples of panoptic segmentation on COCO. From left to right are input images, predicted results from UPSNet, CCPSNet (ours), and ground

truth.

TABLE 4 Results of ablation experiments on CityScapes val set.

Cascade contour detection
stream

Contour-guided multi-scale
feature enhancement stream

PQ PQth PQst SQ RQ

Cascade
structure

CRSPM SFMM Inverse
aggregation

59.1 54.1 62.7 80.1 72.4

X 59.6 54.9 63.0 80.0 73.2

X X 59.8 55.2 63.1 80.0 73.4

X X X 60.1 55.9 63.1 80.2 73.6

X X X X 60.5 56.9 63.1 80.3 74.1

The bold value means the best result in the column.

segmentation contour branch proposed by CCPSNet can perceive

the contour more finely.

To validate the effectiveness of contour-guided multi-scale

feature enhancement stream, we conducted experimental

verification of structural-aware feature modulation

module(SFMM) and inverse aggregation based on the third-

row model. It is worth noting that the introduction of

inverse aggregation improves PQ by 1%, indicating that

this design can indeed help improve instance detection.

It can be seen that the contour-guided multi-scale feature
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enhancement stream brings a 0.7% performance gain to the

overall network metrics, including a 1.7% performance gain

to the foreground panoptic segmentation PQth and a 0.3%

gain to the background panoptic segmentation SQ. This

is mainly due to the introduction of contour information

and the enhancement of the features with more detailed

information through bottom-up feature cascading, which also

helps semantic segmentation.

4.4 Robustness analysis

When a robot perceives its environment in the real world,

it encounters various types of distortion at each stage of visual

signal acquisition, compression and transmission. Additionally,

it may face challenges such as rainy days and camera dirt,

which can affect image quality and subsequently impact the

algorithm’s performance. Many studies (Zhai and Min, 2020;

Min et al., 2024) have shown that image quality is essential

for artificial intelligence, and low-quality input will impact the

algorithm’s performance. In this regard, we conduct experimental

analysis on the robustness of our method to the input image

quality. We applied image processing on the CityScapes dataset

to verify the robustness of our network. By calling the imgaug

(Jung et al., 2020) library functions, rain and noise were

incorporated into the images to simulate challenging conditions

such as rainy scenes and dirty cameras, which are commonly

encountered by robots during operation. We evaluated the

TABLE 5 Accuracy on noise CityScapes val set.

Sense Method PQ SQ RQ

Dirtiness UPSNet (Xiong et al.,

2019)

37.9 69.9 48.8

CCPSNet (Ours) 39.7 74.6 51.0

Rainy UPSNet (Xiong et al.,

2019)

49.5 76.9 62.5

CCPSNet (Ours) 50.4 78.1 62.9

The bold value means the best result in the column.

model trained on the original Cityscapes dataset directly on

new data without additional training to test the algorithm’s

robustness. The experimental results, presented in Table 5, compare

the performance of the proposed method and the UPSNet

in these scenarios. In the case of simulated rainy days and

dirty cameras, our algorithm achieved PQ scores of 50.4% and

39.7%, respectively. The results demonstrate varying degrees

of performance degradation compared to the original dataset,

but our proposed algorithm continues to outperform in these

complex scenarios. This is mainly caused by the different

impacts of noise on the image. As shown in Figure 7, it

can be seen that the rain image has little change compared

with the original image, but the simulated dirty image has a

large change. In the top row picture, it is evident that our

algorithm still has a strong ability to perceive contours in

complex scenes. In the bottom row picture, it is evident that the

introduction of contours has improved our performance in dealing

with large textureless areas. This demonstrates the promising

robustness of the proposed CCPSNet in challenging scenarios faced

by robots.

5 Conclusions

In this paper, we introduced a novel panoptic

segmentation algorithm that relies on panoptic segmentation

contour guidance. Our approach proposes a new cascade

contour detection stream that coarse-to-fine extracts scene

structural information. We also developed a contour-

guided multi-scale feature enhancement stream that fully

utilizes the extracted contours. In addition, our feature

inverse aggregation structure enables a bi-directional flow

of features to achieve perceptual enhancement of small

objects. Finally, the experimental results on Cityscapes

and COCO show that our algorithm is highly competitive

with similar algorithms. We verify the robustness of the

proposed algorithm in complex environments by simulating

rain and camera dirtiness with data augmentation. In

future work, we plan to extend this idea to unsupervised

segmentation tasks.

FIGURE 7

Visualization examples of panoptic segmentation on data augmentation Cityscapes. From left to right are input images, predicted results from

UPSNet, CCPSNet (ours), and ground truth.
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