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Object detection is a critical component in the development of autonomous

driving technology and has demonstrated significant growth potential. To

address the limitations of current techniques, this paper presents an improved

object detection method for autonomous driving based on a detection

transformer (DETR). First, we introduce a multi-scale feature and location

information extraction method, which solves the inadequacy of the model

for multi-scale object localization and detection. In addition, we developed

a transformer encoder based on the group axial attention mechanism. This

allows for e�cient attention range control in the horizontal and vertical

directions while reducing computation, ultimately enhancing the inference

speed. Furthermore, we propose a novel dynamic hyperparameter tuning

training method based on Pareto e�ciency, which coordinates the training state

of the loss functions through dynamic weights, overcoming issues associated

with manually setting fixed weights and enhancing model convergence speed

and accuracy. Experimental results demonstrate that the proposed method

surpasses others, with improvements of 3.3%, 4.5%, and 3% in average precision

on the COCO, PASCAL VOC, and KITTI datasets, respectively, and an 84%

increase in FPS.

KEYWORDS
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tuning

1 Introduction

Autonomous driving technology utilizes a combination of sensor technology, artificial

intelligence, big data analysis and processing, and computer vision to enable computers

to safely drive vehicles with partial or unmanned intervention. Object detection plays

a crucial role in recognizing targets during autonomous driving and assists the central

control system in providing necessary driving commands.

In autonomous driving scenarios, objects such as vehicles, pedestrians, and traffic signs

are distributed across multiple scales depending on their distance. Distant pedestrians

and traffic signs often appear as small targets, while nearby vehicles dominate the frame

as large targets. Object size and appearance vary significantly due to differences in

distance and angle. Multi-scale feature extraction addresses this challenge by capturing

multi-level features simultaneously, enhancing the robustness of detecting objects across

various scales (Lin et al., 2017). Additionally, complex backgrounds such as buildings

and trees often interfere with object detection, while the dynamic nature of targets’

such as moving pedestrians and vehicles’ further complicates the task. Transformer-based
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architectures excel in modeling global contextual relationships,

enabling them to adapt effectively to dynamic target variations,

particularly in scenarios involving occlusions. Attention

mechanisms offer a practical solution for resource-constrained

embedded devices by efficiently allocating computational

resources. By focusing computational power on key object

regions, attention mechanisms significantly enhance real-

time performance. Moreover, autonomous driving requires

addressing multiple optimization objectives, such as the

simultaneous classification and localization of objects. Adjusting

and designing loss function weights can further optimize the

model’s multi-objective learning capabilities (Ou et al., 2023).

The integration of these technologies—multi-scale feature

extraction, attention mechanisms, and optimized loss functions—

provides greater accuracy, robustness, and efficiency for object

detection in autonomous driving. These advancements establish a

foundation for developing intelligent autonomous driving systems

capable of reliable performance in complex real-world scenarios.

Object detection involves both traditional and deep-learning-

based methods. Traditional methods typically include generating

candidate frames, extracting features, and performing classification

(Dalal and Triggs, 2005). Non-maximum suppression (NMS)

(Neubeck and Van Gool, 2006) is then used to remove redundant

candidate boxes. However, traditional methods rely heavily on

manual design and feature selection, exhibit low efficiency and

poor robustness, and are not capable of handling real-time

autonomous driving. Deep learning architectures have emerged as

two-stage and one-stage methods. Two-stage methods are based on

convolutional neural networks for classification, of which Fast R-

CNN is representative, with a high detection accuracy; however,

it is still unable to eliminate the NMS process and cannot realize

end-to-end detection (Ren et al., 2015). One-stage methods are

based on convolutional neural networks for regression and perform

better in terms of inference speed. Redmon et al. (2016) first

proposed YOLO, and this series of algorithms (Ge et al., 2021;

Li et al., 2023; Yung et al., 2022) occupies a dominant position

among one-stage algorithms, with a wide range of industrial

applications.

Transformer-based object detection methods have

demonstrated significant application potential in autonomous

driving technology. As the demands for adaptability to complex

scenarios, real-time performance, and multimodal data processing

in autonomous driving continue to increase, transformers, with

their exceptional global modeling capabilities and end-to-end

optimization framework, have become a key driving force in

advancing perception technology for autonomous driving. In

autonomous driving scenarios, challenges such as occlusion,

lighting variations, and complex backgrounds are common. The

global self-attention mechanism of transformers can accurately

capture the global contextual information of the input data, thereby

effectively separating objects from the background.

The architecture of the transformer, which is extensively

used in natural language processing (NLP), has recently attracted

interest in the field of computer vision (Vaswani et al., 2017).

Carion et al. (2020) introduced the detection transformer (DETR),

which reframes object detection as an ensemble prediction task,

eliminating the need for NMS operations. This approach enables

end-to-end object detection with enhanced global modeling

capabilities, outperforming Fast R-CNN. In autonomous driving,

objects are often occluded by buildings or other objects, DETR

can infer the targets in occluded areas using global contextual

information. Subsequently, Zhu et al. (2020) proposed Deformable

DETR, which incorporates a deformable attention module to

focus attention selectively on specific sampling points within

the feature map, which reduces the computational overhead and

accelerates training.Wang et al. (2022) presented the anchorDETR,

integrating an anchor point mechanism into query vectors to

address the issue of poor interpretability. DINO-DETR leverages a

comparative training denoising method and hybrid query selection

strategy for anchor point initialization (Zhang et al., 2022). Zong

et al. (2023) introduced the H-DETR algorithm, which employs a

hybrid matching approach during the Hungarian matching phase

and incorporates one-to-many matching branches, offering a novel

avenue for enhancement. BEVFormer (Li et al., 2024) achieves

a more precise bird’s-eye-view (BEV) environment modeling in

complex scenarios, providing robust support for path planning

and decision-making in autonomous driving systems. Mushtaq

et al. (2024) proposed PLC-Fusion, which leverages transformer

architectures to extract features from both images and point clouds,

significantly enhancing the accuracy and efficiency of multimodal

object detection.

Despite the diverse improvement perspectives provided by

previous studies, in the field of autonomous driving, DETR-like

detectors still suffer from the following problems:

The limited capability to detect objects across different scales,

as well as lack of precision in determining the exact positions of

objects, results in suboptimal detection accuracy in autonomous

driving situations.

The performance of the model is hindered by the

attention mechanism layer within the encoder, particularly

when dealing with higher-resolution images. This results in

a considerable increase in computational cost and memory

complexity, which, in turn, affects both model accuracy and

inference speed.

During the training phase, the hyperparameters, including the

weight of each loss function, are manually set. However, this

manual approach incurs a high cost for tuning the parameters and

overlooks the dynamic balancing issue between the loss functions.

Consequently, the model experiences slow convergence and lacks

convergence accuracy.

Therefore, we propose an improved autonomous driving

object detection method based on DETR, which contains three

improvements:

• We propose a multi-scale feature and location information

extraction method. A network that incorporates multi-scale

residual partition units with a coordinate attention module was

designed to improve the multi-scale detection and position sensing

capabilities.

• We designed a transformer encoder based on an efficient

attention mechanism. A grouped attention mechanism layer is

deployed in the encoder, which computes the attention region in

parallel in the horizontal and vertical groups, fully learns the image

features from different directions, and maintains a balance between

local and global information by controlling the range of attention
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computation. This effectively reduces the computational overhead

and improves average precision (AP) and inference speed.

•We propose a novel dynamic hyperparameter tuning method

based on Pareto efficiency, which involves automatically updating

the weights of various loss functions during the training process,

ensuring continuous coordination of their training states. The aim

of this approach was to accelerate the convergence process and

improve the accuracy of the final convergence of the detector.

1.1 Feature extraction in object detection

The feature extraction network utilizes multi-layered

techniques to capture semantic information from images,

focusing on two main approaches: convolutional neural network-

based feature extraction network and transformer-based feature

extraction network. Obtaining diverse object characteristics,

particularly multi-scale features, not only speed up the convergence

of the model but also greatly enhances the detection capability. ViT

(Dosovitskiy et al., 2020), as a pioneering work to implement the

transformer architecture in computer vision, has a larger receptive

field and modeling capability than convolutional neural networks.

When ViT is used as a feature extractor, it imposes a significant

burden on model training. If multi-scale feature extraction

is performed in such a case, this obviously expands on such

drawbacks. DN-Deformable-DETR employs the Swin Transformer

(Li et al., 2022), which has less computational overhead but still

fails to capture multi-scale features at the corresponding stages.

In contrast, convolutional neural networks progressively

deepen the extraction of features through convolution operators.

This inherent property of extracting multi-scale features is

advantageous for solving multi-scale feature problems. VGGNet

uses stacked convolutional layers to solve multi-scale problems

(Simonyan and Zisserman, 2014); however, the number of model

parameters is large and inefficient. Lin et al. (2017) successfully

deployed an FPN structure for object detection tasks; however,

this approach seriously affects the inference speed and is even

more inapplicable to the higher computational complexity of

DETR-like models. DINO-DETR (Zhang et al., 2022) deploys

convolution in the encoding and decoding phases; however, this

increases the design difficulty of the model and significantly

increases the amount of computation, which is not conducive to

the development of a lightweight model. Recently, more efficient

multi-scale feature extraction networks have emerged (Huang et al.,

2017; Yu et al., 2018; Gao et al., 2019; Hou et al., 2021). Based

on the characteristics of the object detection model, applying these

networks in the backbone is a practical choice. In addition, current

methods lack the ability to sense target location information (Hou

et al., 2021), which is critical for improving the precision of

object detection tasks. Building on previous research, our proposed

network architecture focuses on extracting multi-scale features and

precise location information to improve accuracy.

1.2 Transformer encoder

The transformer encoder is an essential part of the detector,

and experiments have demonstrated that the encoder contributes

approximately 11% to the AP but accounts for approximately

85% of the model’s computational effort (Lin et al., 2022). The

attention layer is the core of the encoder. It is more difficult

for inefficient encoders to cope with autonomous driving object

detection scenarios, which directly affects the inference speed.

DETR was the first to use the ViT module as an encoder,

incorporating the transformer into the object detection framework

by employing a multi-head attention (MSA) mechanism in the

attention layer. MSA is a form of self-attention mechanism that

converts a feature vector into a sequence, enabling the model

to detect relationships between various components of the entire

input through the representation of all possible interactions

between elements within a sequence. In DETR, the global attention

mechanism is computationally intensive, which leads to difficulties

in model training. The Swin Transformer employs the idea of local

attention, which limits attention computation to a fixed window

and reduces the computational overhead (Liu Z. et al., 2021). On

this basis, Shuffle Transformer further enhances the information

exchange between windows over long distances by spatial shuffling

(Huang et al., 2021), and CS Transformer employs “cross-shaped

window attention” to improve computational efficiency (Dong

et al., 2022).MobileVit employs a hybrid architecture that combines

VIT and CNN for initial deployment on mobile devices (Mehta

and Rastegari, 2021). ElasticViT first trains a high-quality VIT

super-network and subsequently determines the best sub-network

to be deployed to further reduce latency (Tang et al., 2023). In

summary, this study focused on designing an efficient attention

layer for encoders.

1.3 Optimization of model training
parameters

During the training phase of an end-to-end network, multiple

loss functions that handle both regression and classification tasks

are commonly employed. However, it is often overlooked that

these loss functions can interact with one another, significantly

affecting model performance based on their relative weightings.

Kendall et al. (2018) introduced a method of uncertainty to

weigh losses by employing a Bayesian framework that emphasizes

prediction uncertainty to automatically set weights for these loss

functions. Mahapatra and Rajan (2020) enhanced the gradient-

based multi-objective optimization algorithm by considering the

loss function as multiple targets, assigning upper bounds to

them, and successfully applying this optimization across different

deep learning tasks. Lin et al. (2019) developed an algorithmic

framework to ensure Pareto efficiency, thereby guaranteeing

compliance with the Pareto condition and successful application of

the optimization algorithm. Liu X. et al. (2021) introduced a novel

gradient optimization algorithm using Stein variational gradient

descent (SVGD) to analyze the Pareto frontier, which effectively

solves high-dimensional problems and yields more uniformly

distributed and diversified solutions on the Pareto front, thus

optimizing the model. Lin et al. (2021) also proposed a random

weighting approach, which includes both random loss and random

gradient weighting and demonstrated improved generalization in

experimental settings. These contributions present optimization

strategies for model parameters from two major perspectives:
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the dynamic weighting of loss functions and gradients. However,

these approaches are broad, and there has been limited research

specifically targeting object detection models. Building on these

advancements, this study focused on an algorithm designed to

adjust the weights of the loss functions.

2 Improved object detection method
for autonomous driving based on
DETR

The method is composed of three parts, with the framework

illustrated in Figure 1, including the multi-scale feature and

location information extraction method, Transformer encoder

based on the group axial attention mechanism, and dynamic

hyperparameter tuning training method based on Pareto efficiency.

To perform object detection for autonomous vehicle driving, the

backbone network captures features from the image intended for

detection and subsequently passes the feature map to the encoder.

Following the encoding process of the feature map, vectors K

and V are generated by the encoder and fed into the decoder

in conjunction with the query vector Q. Finally, following the

dynamic hyperparameter tuning training method based on Pareto

efficiency, the prediction head captures the output of the decoder

and ultimately derives the desired target information.

2.1 Multi-scale feature and location
information extraction method

Object detection is a crucial task that relies on both multi-

scale features and precise location information of the target. Our

research introduces a multi-scale feature and location information

extraction method designed to acquire detailed features at multiple

scales and enhance the target location information by improving

the backbone network structure, as illustrated in Figure 2. The

initial step involves passing the image input through a detection

network consisting of four stages. Each stage comprises two types

of modules: one for extracting multi-scale features and one for

coordinating attention. At the beginning of each stage, the feature

map is input into the multi-scale feature extraction module. This

process integrates various residual units into the convolutional

structure to extract features of different scales from the image.

Subsequently, the feature map proceeds to the coordinate attention

module, which captures the positional details from the extracted

multi-scale features, further enhancing the detection capability.

2.1.1 Multi-scale feature extraction module
The input feature map X ∈ RH×W×C is partitioned into

n groups after 1 × 1 convolution, and each group of data is

represented byXi , where i ∈ {1, 2, ...n}, and the number of channels

shrinks n minus a multiple into the residual unit branch, as shown

in Figure 2. In each branch, except for X1, each group of data

undergoes a 3 × 3 convolution operation, denoted as Ki, and the

output is denoted as Yi. Yi is derived from the i-th group of data

and the output Yi−1 of group i− 1 after. Yi is defined as follows:

Yi =











Xi i = 1;

Ki (Xi) i = 2;

Ki (Xi + Yi−1) 2 < i ≤ n.

(1)

where the previously processed features Yi−1 are included in the

convolution operation Yi−1 of the i-th group when i > 2.

Segmentation is processed in a multi-scale manner, and each time

the segmented feature Xi undergoes a 1× 1 convolution, it expands

the receptive field of Xi. The outputs of all the different scales Yi,

which are spliced in the channel dimension, are subjected to a 1×1

convolution operation to obtain a fused image, Z, which facilitates

the extraction of the previous procedure, as shown in Equation 2:

Z = Conv(Concat(Y1, ...,Yn)) (2)

where Y1 is directly output without convolution, which serves

to reuse the features. The methods described above enable the

extraction of characteristics at a more precise level of granularity,

featuring varied receptive fields and multiple scales. The above

process achieves the progressive fusion of multi-scale features,

where each set of convolutions relies on the output of the

previous set. This step-by-step stacking mechanism captures

features at different scales. The outputs of the s groups are

aggregated through concatenation, forming a more powerful

representation. Mathematically, this feature extraction process

is similar to recursive convolution, ensuring that features are

adequately expressed across different scales.

2.1.2 Coordinate attention module
The module for coordinates exploits the location information

in feature maps across channels, which not only aids in model

recognition and localization of specific areas but also improves

the detection of distant relationships in visual tasks. Figure 2

illustrates the use of an attention module that employs a network

with branches to compute attention weights. These weights are

subsequently multiplied with the initial feature map to generate

the ultimate output. To process feature map X ∈ RH×W×C,

adaptive mean pooling is conducted in the height and width

directions. Combining features across spatial dimensions, these two

operations produce a collection of direction-sensitive feature maps

with dimensions C×H × 1 and C× 1×W, respectively. Through

these transformations, remote relationships are captured along one

spatial dimension while maintaining precise position information

along the other, as demonstrated in Equations 3, 4:

zhc (h) =
1

W

∑

0≤i≤W

Xc(h, i) (3)

zwc (w) =
1

H

∑

0≤i≤H

Xc(j,w) (4)

where zhc (h) and zwc (w) denote the outputs of the C-th channel for

height h and width w, respectively. After the above operations, the

position information is encoded, and the feature map is generated.
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FIGURE 1

Overview the proposed method.

FIGURE 2

Multi-scale feature and location information extraction method.

First, the outputs of Equations 3, 4 are spliced and fed into a 1 × 1

convolution F1, as shown in Equation 5:

f = δ(F1[Z
h,Zw]) (5)

where [, ] denotes splicing by the spatial dimension, δ is the non-

linear activation function, f ∈ RC/r×(H+W) denote the feature

maps generated in the horizontal and vertical directions, f h ∈

RC/r×H and r denotes the reduction multiplier. Subsequently, f ∈

RC/r×(H+W) is divided into f h ∈ RC/r×H and f w ∈ RC/r×W by

spatial dimension, and f h and f w are adjusted into tensors with the

same number of channels using two 1 × 1 convolutions, as shown

in Equations 6, 7:

gh = σ (Fh(f
h)) (6)

gw = σ (Fw(f
w)) (7)

where σ is the sigmoid function, gh and gw are the attention

weights, and the output coordinate attention feature map is given

by

Yc(i, j) = Xc(i, j)× gh(i)× gw(j) (8)
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FIGURE 3

Structure of encoder.

2.2 Transformer encoder based on group
axial attention mechanism

Although global attention mechanisms are effective in

modeling long-range dependencies, they can result in high

computational costs in downstream tasks, such as object detection,

particularly with high-resolution images. Some approaches restrict

attention to a window, which can hinder the information exchange

between windows and limit the receptive field. Therefore, we

introduce a transformer encoder that utilizes a group axial

attention layer. Unlike in traditional transformer encoders, the

input features in the group axial attention layer are divided

into horizontal and vertical groups based on their dimensions.

Subsequently, self-attention is calculated separately within each

group before merging and mapping to the output. This approach

allows for the comprehensive learning of image features from

various orientations while maintaining a balance between local and

global information by controlling the attention range. As a result,

it effectively reduces computational costs and enhances inference

speed and accuracy.

2.2.1 Structure of the encoder
As illustrated in Figure 3, the encoder consists of six identical

layers for the input T ∈ RH×W×C, which is transformed into a

matrix T ∈ RN×C . Before entering the encoder, the structure is

represented by











Z′
L = TL−1 + GL (TL−1)

ZL = LN
(

Z′
L

)

+ FFN
(

Z′
L

)

, L = 1, 2, . . . , 6

Y = Z6

(9)

where LN(), FFN(), and GL() denote layer normalization,

feed-forward neural network, and group axial attention layer,

respectively TL−1 denotes the output of the layer L− 1 encoder; Z′
L

and ZL denote the results from the layer L encoding process; and

Y ∈ RN×C denotes the output of the layer 6 encoder, i.e., the final

encoding result for the feature map T ∈ RH×W×C.

2.2.2 Group axial attention layer
As shown in Figure 4, for the input feature vector X ∈

RH×W×C, H and W denote the height and width, respectively.

Liner1 maps the channel dimension C to dim, yielding X ∈

RH×W×dim, which serves as the input to group axial attention layer.

The hyperparameter K is set to the number of heads, and C is

divided into two parts, Xh ∈ RH×W×dim /2 and Xv ∈ RH×W×dim /2,

according to the dim, representing the horizontal and vertical

groups, respectively. In the horizontal group, the length of the

horizontal layer hi is set to s, and hi is
W
s . Similarly, the number of

vertical layers j is H
s . In each horizontal layer hi, hi ∈ Rs×W×dim /2

is serialized as a vector ηi ∈ RsW×dim /2, and K/2 heads are set

for the computation of the multi-head attention. The vertical group

divides the vertical layer vj by s and performs the same operation.

The horizontal and vertical groups are spliced, and dim is mapped

back to C by the Liner2. The group axial attention computation

process is shown in Equation 10:











































X = Liner1(X)

Xh,Xv = Spilt(X)

[h1, h2, ..., hi] = Spilt(Xh), [v1, v2, ..., vj] = Spilt(Xv)

H − Attention = Concat[MSA(h1)MSA(h2), ...,MSA(hi)]

V − Attention = Concat[MSA(v1)MSA(v2),..,MSA(vj)]

G− Attention = Concat [V − Attention,H − Attention]

X = Liner2 (G− Attention)

(10)

The group axial attention layer combines H − Attention and

V − Attention in the channel dimension to create group axial

attention. This layer maintains the feature map dimensions while

evenly distributing the heads into different attention groups.

This distribution helps capture various features and patterns in

image sequences, ultimately improving the model’s expressive

and generalization capabilities. In the horizontal and vertical

groups, the range of attention can be changed by adjusting s.

Experiments have shown that the best accuracy is achieved when

s = [1, 1, 2, 2, 6, 6].

2.2.3 Analysis and variants
Our approach differs from traditional attention mechanisms in

that it captures extensive features and manages the attention scope

by separating horizontal and vertical layers. This method effectively

reduces the computational complexity.When computing the group

axial attention, the computational overhead of operations such as

division is negligible, whereas the computation of the two branches

is parallel. As shown in Figure 4, in each branch, features are

learned from the subspace divided between multi-layer blocks, and

mappings are added to the output to further enhance the encoder.

This section further explores the relationship between the

attention mechanism and computational complexity. Assuming

that the feature map size to be processed is H × W × C, the

computational complexity is given by Equation 11 when using

the multi-head attention mechanism (MSA). The attention range

is set to s. When group axial attention (GA), the computational

complexity is given by Equation 12. On this basis, Window G-

Attention (WGA) is designed, and only the operations of splitting

and merging windows are added, as shown in Figure 4, where the

size of the window is set as p× p, and calculation of the group axial
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FIGURE 4

Illustration of GA and WGA.

attention is performed in a fixed window, as shown in Equation 13:

�(MSA) = HWC ∗ (4C + 2HW) (11)

�(GA) = HWC ∗ (4C + sH + sW) (12)

�(WGA) = HWC ∗ (4C + 2sp) (13)

In practice, the computational volume increases sharply when

H andW increase. s is usually much smaller than H andW, which

requires less attention computation. In the calculation of WGA,

H = W is adjusted, and the operation of dividing the window is

performed first. The window size is p×p, which further reduces the

amount of computation and facilitates faster inference. The value

of s should be appropriately adjusted as the encoders continue to

stack. To reduce the limitation of window size on WGA, the value

of p should not be too small. The core principle of this approach is

to divide the input featuremap intomultiple windows and compute

local self-attention separately within the horizontal and vertical

directions. The results are then concatenated and fused through

linear projection to extract both local and global features. This

significantly reduces computational complexity, making it efficient

and suitable for high-resolution images.

2.3 Dynamic hyperparameter tuning
training method based on Pareto e�ciency

In the model training stage, different classes of loss functions

are typically utilized, including intersection over union (IoU),

classification, and localization losses, as illustrated in Figure 5. This

study employed the SIoU loss function to enhance the regression

efficiency by guiding the direction of the prediction box toward

the ground truth box (Rezatofighi et al., 2019). For classification

loss, the focal loss was employed, while Smooth-L1 loss was used

for localization loss. The weights of the loss functions are essential

for balancing the various components to improve the training

outcomes, particularly in object detection tasks. Traditionally,

manual methods are used to set fixed hyperparameters as weights

for weight assignment. Nevertheless, this strategy might disregard

the possibility that the complexity of training different loss

functions could vary over the course of training, potentially

restricting the learning capacity. To address this issue, a dynamic

hyperparameter tuning training method based on Pareto efficiency

is introduced in this section. This method treats loss functions as

multiple interacting objectives and continuously optimizes them by

dynamically weighting and coordinating these objectives, thereby

accelerating the convergence process and enhancing accuracy

at convergence.

2.3.1 Introduction to loss functions
2.3.1.1 SIoU loss

2.3.1.1.1 Angle cost

Angle loss plays a crucial role in expediting the convergence

process before the prediction box and ground truth box are

matched. This is achieved by initially regulating the angle factor

to align them on the same horizontal or vertical line. As shown in

Figure 6, the loss function minimizes ∂ when ∂ < π
4 . Otherwise, it

minimizes β = π
2 − ∂ . The angular loss is defined as

3 = 1− 2 ∗ sin2
(

arcsin(x)−
π

4

)

(14)

where x =
ch
σ

= sin(∂), σ =

√

(b
gt
cx − bcx )

2
+ (b

gt
cy − bcy )

2
, and

ch = max(b
gt
cy − bcy )−min(b

gt
cy − bcy ).
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FIGURE 5

Illustration of functions and algorithm.

FIGURE 6

Illustration of angle cost.

FIGURE 7

Illustration of distance cost.

2.3.1.1.2 Distance cost

As demonstrated in Figure 7, when the prediction box and

ground truth box are aligned either horizontally or vertically but

remain significantly apart, it is crucial to impose a constraint on

their separation distance. Building on the angle cost, the distance

cost is defined by Equations 15, 16:

1 =
∑

t=x,y

(

1− e−γ ρt
)

(15)

ρx =

(

b
gt
cx − bcx
cw

)2

, ρy =

(

b
gt
cy − bcy

ch

)2

, γ = 2− 3 (16)

where the width and height of the outer rectangle are represented

by cw and ch for the prediction box and ground truth box,

respectively. γ is utilized to regulate the impact of the angular loss

on the distance cost.

2.3.1.1.3 Shape cost

Shape loss describes the similarity between the shapes of the

prediction box and ground truth box, as defined in Equations 17,

18:

� =
∑

t=w,h

(

1− e−ωt
)θ

(17)

ωw =

∣

∣w− wgt
∣

∣

max
(

w,wgt
) ,ωh =

∣

∣h− hgt
∣

∣

max
(

h, hgt
) (18)

where (w, h) and (wgt , hgt) denote the width and height of the

ground truth box and prediction box, respectively. The value of θ

indicates the degree of shape control, where a smaller θ indicates a

higher degree of control; typically, θ ∈ [2, 6].

2.3.1.1.4 IoU cost

The IoU quantifies the extent of overlap between the predicted

bounding box and actual ground truth box. IoU loss is defined as

follows:

IoU =

∣

∣B ∩ BGT
∣

∣

∣

∣B ∪ BGT
∣

∣

(19)

where B ∩ BGT denotes the overlapping area of the prediction box

and ground truth box, and B ∪ BGT denotes the concurrent area of

the prediction box and ground truth box. SIoU loss is defined by

Equation 20:

Lsiou = 1− IoU +
1 + �

2
(20)

2.3.1.2 Focal loss

Focal loss aims to enhance the focus on challenging samples by

reducing the weight of easy-to-classify samples and amplifying the

weight of difficult-to-classify samples, as defined in Equations 21,

22:

pt

{

p, y = 1

1− p, others
(21)

Focalloss(pt) = −αt(1− pt)
γ log(pt) (22)

where p represents the probability of the model output, y denotes

the true label, and γ is the weight factor.
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2.3.1.3 Smooth-L1 loss

The Smooth-L1 loss function combines the advantages of the L1

and L2 losses, with a smooth and robust training process, defined as

LSmooth−L1

(

b
gt
i , b̂i

)

=







1
2

∑N
i=0

(

b
gt
i − b̂i

)2
, if

∣

∣

∣
b
gt
i − b̂i

∣

∣

∣
< 1

∑N
i=0

∣

∣

∣
b
gt
i − b̂i

∣

∣

∣
− 0.5, other

(23)

where b
gt
i denotes the position coordinates of the i-th ground

truth box, and b̂i denotes the position coordinates of the i-th

prediction box.

2.3.1.4 Overall loss function

In summary, the function is defined as

L = w1Lcls + w2Lsiou + w3LSmooth−L1 (24)

where Lcls denotes the category focal loss, Lsiou denotes SIoU loss,

LSmooth−L1 denotes Smooth-L1 loss, and w1, w2, w2 and are the

respective weight parameters.

2.3.2 Algorithm of dynamic hyperparameter
tuning training method based on Pareto
e�ciency
2.3.2.1 Pareto e�ciency and loss functions

Pareto efficiency is a concept in multi-objective optimization.

To minimize a set of objective functions f1, ..., fK in a given system,

Pareto efficiency is a state in which it is impossible to improve one

objective without hurting others.

Definition 1. To minimize objectives, denote the outcomes of two

solutions by si = [f i1, ..., f
i
K] and sj = [f

j
1, ..., f

j
K], where si dominates

if and only if f i1 ≤ f
j
1, f

i
2 ≤ f

j
2, ..., f

i
K ≤ f

j
K .

Definition 2. A solution si = [f i1, ..., f
i
K] is Pareto efficient if no

other solution sj = [f
j
1, ..., f

j
K] dominates si.

Our goal is to discover Pareto efficient solutions. It is important

to recognize that these solutions are not unique, leading to the

establishment of the Pareto frontier. In summary, the training of

object detection loss functions can be viewed as an optimization

task involving the minimization of multiple loss functions. As

illustrated in Figure 5, a set of weights, denoted as w, is determined

to enable Pareto efficiency to be achieved by the loss functions. By

iteratively solving for these weights w during the training process,

we can continually and effectively optimize the objectives.

2.3.2.2 Conditions of the algorithm

It is assumed that there areK differentiable loss functionsLi(θ),

where θ denotes the model parameters in the object detection

model F(θ), ∀i ∈ {1, ...,K}. The K loss functions correspond to the

K objectives to be optimized, and multiple objectives are merged

into a single one by setting a scalarization weight for the objectives,

as shown in Equation 25:

L(θ) =

K
∑

i=1

ωiLi(θ) (25)

where
K
∑

i=1
ωi = 1, ωi ≥ 0 , ∀i ∈ {1, ...,K}. Boundary constraints of

ωi on ci are set as ωi ≥ ci,
K
∑

i=1
ci ≤ 1,ci ∈ [0, 1], ∀i ∈ {1, ...,K}.

To obtain Pareto efficient solutions, the aggregated objective

loss function must be minimized, and the model parameters should

satisfy the KKT (Chen, 2022) condition such that Equations 26, 27

are satisfied:

K
∑

i=1

ωi = 1, ∃ωi ≥ ci, i ∈ {1, ...,K} (26)

K
∑

i=1

ωi∇θLi(θ) = 0 (27)

where ∇θLi(θ) represents the gradient of Li. Considering the

specific problem to be solved, we transform the KKT condition is

as follows:

min .

∥

∥

∥

∥

∥

K
∑

i=1

ωi∇θLi (θ)

∥

∥

∥

∥

∥

2

2

s.t.

K
∑

i=1

ωi = 1,ωi ≥ ci, ∀i ∈ {1, . . . ,K}

(28)

A solution satisfying Equation 28 is a Pareto efficient solution.

It has been demonstrated that these solutions result in gradient

directions that minimize all loss functions (Sener and Koltun,

2018).

2.3.2.3 Framework of the algorithm

The framework begins with a uniform scalarization weight

and proceeds by alternately updating the weights and model

parameters. An optimizer is then utilized to ensure that the model

converges effectively. As shown in Table 1 and Algorithm 1, the key

part of the algorithm is to solve for conditionally generated weights

for Pareto efficiency.

According to Equation 28, the problem is transformed into a

quadratic programming algorithm by denoting ω̂i as ωi − ci, and

the Pareto efficiency condition becomes

min .

∥

∥

∥

∥

∥

K
∑

i=1

(ω̂i + ci)∇θLi (θ)

∥

∥

∥

∥

∥

2

2

s.t.

K
∑

i=1

ω̂i = 1−

K
∑

i=1

ci (29)

The Pareto efficiency condition is equivalent to Equation 29.

However, addressing the issue at hand is not straightforward,

given its quadratic programming structure. Initially, we opt to ease

these limitations by focusing solely on the equation restrictions.

Subsequently, we implement a projection technique that produces

effective outcomes from the viable set that encompassed all

restrictions. When all other constraints are omitted except for the

equational constraints, as shown in Equation 30, the solution is

given by Theorem 1.

min .

∥

∥

∥

∥

∥

K
∑

i=1

(ω̂i + ci)∇θLi (θ)

∥

∥

∥

∥

∥

2

2

s.t.

K
∑

i=1

ω̂i = 1−

K
∑

i=1

ci (30)

THEOREM 1. The solution to Equation 30 is ω̂∗ =
(

(

M⊤M
)−1

Mz̃
)

[1 :K] where G ∈ RK×m is the stacking matrix of

∇θLi(θ), e ∈ RK is the vector whose elements are all 1, C ∈ RK
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TABLE 1 Notations and description.

Notations Description

F (θ) The object detection model

θ The model parameters

Li (θ) The loss function of for i-th objective

ωi The weight of i-th objective for scalarization

ci The boundary constraint for i-th objective

∇θLi (θ) The gradient of lossLi (θ)with respect of θ

G The stacking matrix of ∇θLi (θ)

e The vector whose elements are all 1

Input: The loss functions of multiple objectives

correspondingly: Li (θ),∀i ∈ {1, · · · ,K}; the

scalarization of weights initialized uniformly:

ωi = 1
K
,∀i ∈ {1, · · · ,K}: The bounds for the

objectives:ci, ∀i ∈ {1, · · · ,K};

Output: The model parameters: θ;

1: Get the single aggregated objective functions:

L (θ) =
K
∑

i=1

ωiLi (θ);

2: for each batch do

3: Optimize L (θ) with the optimizer and update the

F (θ) parameters: θ;

4: The problem to be solved as Equation 30;

5: Use Theorem 1 to obtain solutions to

Equation 30;

6: The weights are derived through Equation 31:

ωi, · · · ,ωk;

7: Aggregated the objectives: L (θ) =
K
∑

i=1

ωiLi (θ)

8: end for

Algorithm 1. Dynamic hyperparameter tuning training method based on

Pareto e�ciency.

is the concatenated vector of ci, and Z̃ ∈ RK is the concatenated

vector of−GG⊤c and 1−
K
∑

i=1
ci andM =

(

GG⊤ e

e 0

)

.

During the solution process, the inverse operation of the

matrix is negligible because the number of loss functions for

object detection is small. However, the solution ω̂∗ of Equation 30

may be invalid because the non-negative constraints are ignored.

Therefore, we obtain an effective solution using the projection

method, as shown in Equation 31:

min .
∥

∥ω̃ − ω̂∗
∥

∥

2

2
s.t.

K
∑

i=1

ω̂i = 1, ω̃i ≥ 0, ∀i ∈ {1, ...,K} (31)

Equation 31 represents a non-negative least squares problem,

which can be easily solved using the active set method (Arnström

and Axehill, 2021).

2.4 Summary

In the previous section, we presented three aspects of the

improvement approach for unmanned object detection. First,

we introduced an architecture to solve the insufficiency of

the model for multi-scale object localization and detection.

Subsequently, we developed a transformer encoder with group

axial attention to reduce computation and enhance the inference

speed. Finally, we presented a novel training technique that

utilizes dynamic hyperparameter tuning inspired by the principle

of Pareto efficiency. By dynamically adjusting the weights to

align the training states of different loss functions, this approach

effectively addresses issues related to manually assigning fixed

weights. As a result, it enhances both the speed and accuracy of

model convergence.

3 Experimental results and analysis

3.1 Setups

3.1.1 Dataset
Dataset 1 was selected from the COCO 2017 (Lin et al., 2014)

dataset with category objectives related to autonomous driving,

consisting of 10 categories, 35,784 images for training, and 2431

images for validation. Dataset 2 combines the original categories

from the PASCAL VOC 2012 (Everingham et al., 2010) dataset,

which include Person, Car, Train, Motorcycle, Bicycle, and Other,

with 11,540 images for training and 2913 images for validation.

Dataset 3 is sourced from the KITTI professional autonomous

driving dataset (Geiger et al., 2013), primarily including categories

such as Car, Pedestrian, Cyclist, Van, Truck, and Tram, with 7,481

images for training and 7,518 images for validation.

3.1.2 Evaluation metrics
The experimental evaluation metrics were AP, FPS, and

GFLOPs. FPS and GFLOPs denote the inference speed and

computation of the model, respectively. Specifically, APS and APM
denote the AP for small- and medium-sized objects, respectively.

AP is the area under the precision-recall (PR) curve, and precision

(P) and recall (R) are calculated using Equations 32, 33:

P =
TP

TP + FP
(32)

R =
TP

TP + FN
(33)

where TP, FP, and FN denote the accurately recognized positive

samples, erroneously recognized positive samples, and erroneously

recognized negative samples, respectively. Mean average precision

(mAP) can be computed by taking the average of the AP values

across different categories, as illustrated in Equations 34, 35:

AP =

∫ 1

0
P(R)dR (34)

mAP =
1

n

n
∑

i=1

APi (35)
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FIGURE 8

(A) The result of the number of CA modules. (B) The result of the number of scales.

In the context of object detection, the average precision

(AP) is calculated across different Intersection over Union (IoU)

thresholds ranging from 0.5 to 0.95 with increments of 0.05. When

the IoU threshold is specifically set at 0.5, it is denoted as AP50.

The mAP is then computed as the average of the AP values for

each category in the dataset. Therefore, all individual AP values

mentioned correspond to the overall mAP.

3.1.3 Implementation details
The model was trained on an NVIDIA V100 GPU. In each

stage the multi-scale feature and location information extraction

method (MLEM), N was set to 3, 4, 6, and 3 correspondingly. The

Adam optimizer was used for all experiments: initial_learning_ rate

= 0.0005, weight_decay = 0.0001, and batchsize = 8.

3.2 Analysis of model parameters

3.2.1 Parameter analysis of multi-scale feature
extraction module

To explore the effect of the scale n on this approach, n was set

as a scale control parameter. Six experiments were designed with

n = 1, 2, 3, 4, 5, 6. n = 1 represents a scale of one with no multi-

scale fusion. Similarly, n = 2 represents a scale of 2, and the data

are divided into two parts for multi-scale fusion. We adopted AP,

APM, and APs as indicators, as shown in Figure 8.

The experimental results show that the multi-scale fusion

operation has a significant effect on APS. An increase of n indicates

that the number of different scales of the feature map fusion

increases, and all show an upward trend. When n = 4, the multi-

scale effect is obvious and optimal. When n = 5 or 6, the value

of AP decreases slightly. Probably owing to limitations on the

image size, the multi-scale feature extraction ability remains almost

unchanged. However, an excessive number of branches can lead to

a model degradation.

3.2.2 Parameter analysis of coordinate attention
module

To investigate the effects of the CAmodule on the experiments,

k was set as the experimental parameter. Five experiments were

designed with k = 0, 1, 2, 3, 4. There are four stages: k = 0 denotes

no use of CA, k = 1 denotes that the module is deployed in stage

1, k = 2 denotes that the module is deployed in the first two stages,

etc. We adopted AP as an indicator, as shown in Figure 8.

The experimental results show that the CA module effectively

improves the AP compared with the case of k = 0. Building on

the multi-scale feature maps obtained in the previous stages helps

further improve the effectiveness of CA in later stages. When k = 1

or 2, shallow features, such as space and details, are retained, which

helps improve the AP. When k = 4, the enhancement effect of AP

is weakened, but AP reaches its peak.

3.2.3 Parameter analysis of group axial attention
layer

To investigate the effect of the attention range s on the feature

map in the group axial attention layer, we set the number of

encoders n = 6, the attention layer in the encoder adopts a single

attention range for each encoder to the feature map, si denotes

the i-th range combination, s0 denotes the original method, s1 =

[1, 1, 1, 1, 1, 1], s2 = [2, 2, 2, 2, 2, 2], s3 = [1, 1, 1, 2, 2, 2], s4 =

[1, 1, 2, 2, 4, 4], s5 = [1, 1, 2, 2, 6, 6], s6 = [2, 2, 4, 4, 6, 6], and we

performed seven experiments, as shown in Figure 9.

When s0 becomes s1, the AP gradually increases. When the

attention range is s2 the accuracy is further improved, probably due

to the expansion of the attention calculation range. As the encoders

continue to stack, the image feature level continuously increases.

However, s1 and s2 do not take this case into account. From s3 to

s6, the attention range increases. In the early stages, the smaller

attention range facilitates learning of the local details of the image.

In the later stages, a larger range is more conducive to learning the

global information of the image. Therefore, s3 from to s5, APM is
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FIGURE 9

(A) Result of the range of group axial attention layer. (B) Result of the window size of window axial group attention.

TABLE 2 Ablation experiments number and results.

ID MLEM TEGA DHMP AP AP50

Exp.1 0.519 0.721

Exp.2 X 0.535 0.723

Exp.3 X 0.528 0.725

Exp.4 X 0.525 0.734

Exp.5 X X 0.541 0.736

Exp.6 X X 0.543 0.733

Exp.7 X X 0.539 0.737

Exp.8 X X X 0.552 0.741

TABLE 3 Ablation experiments number and results.

ID WGA Dataset
1

Dataset
2

FPS
(p = 4)

FPS
(p = 8)

Exp.1 X 40 40

Exp.2 X 41 41

Exp.3 X X 46 44

Exp.4 X X 45 43

significantly improved compared to the cases of s1 and s2, and the

AP reaches its best for s5. Comparing s6 and s1, it can be observed

that a larger attention range is more favorable for targets at the

medium scale.

3.2.4 Parameter analysis of window group axial
attention

To explore the effect of window size on window group axial

attention, we set the window size p as the experimental parameter,

adjusted the size of the feature map toW = H in the encoder group

FIGURE 10

Comparison of accuracy trends before and after improvement.

axial attention layer, set the number of encoders to n = 6, and the

attention range of the feature map in the group axial attention layer

in each encoder was set to s5 = [1, 1, 2, 2, 6, 6], where p = 0 denotes

no window partition, p = 1 denotes a partition size of 1 × 1, etc.

Five experiments were conducted, as shown in Figure 9.

It follows that dividing the attention range within a fixed

window can further reduce the computational complexity. When

p = 4, the window size is smaller, the computation complexity is

minimized, and the FPS increases; however, this will have a greater

impact on dividing the attention region, which will lead to a lower

AP. When p is larger, the impact on the operation of dividing the

attention region is reduced, and although the individual window

complexity increases, it leads to further increases in FPS and AP.
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TABLE 4 The results of comparison.

Model AP AP50 APS Epoch GFLOPs Params

YOLOv6 (Li et al., 2023) 0.542 0.727 0.327 100 150 59M

YOLOv7 (Wang et al., 2023) 0.546 0.733 0.331 100 104 36M

YOLOv8 (Talaat and ZainEldin, 2023) 0.551 0.739 0.350 100 165 43M

DETR (Carion et al., 2020) 0.519 0.720 0.291 110 187 41M

H-DETR (Zong et al., 2023) 0.539 0.732 0.332 70 268 42M

Anchor-DETR (Li et al., 2022) 0.521 0.721 0.294 80 172 39M

Deformable-DETR (Zhu et al., 2020) 0.539 0.726 0.316 50 173 40M

DAB-DETR (Liu et al., 2022) 0.543 0.732 0.325 50 256 44M

DN-Deformable-DETR (Li et al., 2022) 0.545 0.731 0.327 50 265 48M

DINO-DETR (Zhang et al., 2022) 0.550 0.737 0.332 25 279 47M

Proposed method 0.552 0.741 0.336 40 161 37M

Bold values indicate the best or second-best values.

TABLE 5 The results of comparison.

Model AP AP50 APS Epoch GFLOPs Params

YOLOv6 (Li et al., 2023) 0.571 0.672 0.316 100 150 59M

YOLOv7 (Wang et al., 2023) 0.473 0.676 0.319 100 104 36M

YOLOv8 (Talaat and ZainEldin, 2023) 0.477 0.678 0.323 100 165 43M

DETR (Carion et al., 2020) 0.433 0.643 0.251 110 187 41M

H-DETR (Zong et al., 2023) 0.443 0.653 0.268 70 268 42M

Anchor-DETR (Li et al., 2022) 0.438 0.652 0.256 80 172 39M

Deformable-DETR (Zhu et al., 2020) 0.461 0.663 0.273 50 173 40M

DAB-DETR (Liu et al., 2022) 0.465 0.669 0.278 50 256 44M

DN-Deformable-DETR (Li et al., 2022) 0.469 0.673 0.309 50 265 48M

DINO-DETR (Zhang et al., 2022) 0.475 0.678 0.318 25 279 47M

Proposed method 0.478 0.687 0.321 35 161 37M

Bold values indicate the best or second-best values.

TABLE 6 The results of comparison.

Model AP AP50 APS Epoch GFLOPs Params

YOLOv6 (Li et al., 2023) 0.546 0.745 0.347 100 150 59M

YOLOv7 (Wang et al., 2023) 0.548 0.766 0.352 100 104 36M

YOLOv8 (Talaat and ZainEldin, 2023) 0.554 0.821 0.403 100 165 43M

DETR (Carion et al., 2020) 0.526 0.722 0.286 110 187 41M

H-DETR (Zong et al., 2023) 0.539 0.732 0.332 70 268 42M

Anchor-DETR (Li et al., 2022) 0.537 0.729 0.327 80 172 39M

Deformable-DETR (Zhu et al., 2020) 0.541 0.736 0.349 50 173 40M

DAB-DETR (Liu et al., 2022) 0.545 0.739 0.353 50 256 44M

DN-Deformable-DETR (Li et al., 2022) 0.549 0.811 0.364 50 265 48M

DINO-DETR (Zhang et al., 2022) 0.553 0.819 0.381 25 279 47M

Proposed method 0.556 0.823 0.397 35 161 37M

Bold values indicate the best or second-best values.
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3.3 Ablations

Ablation experiments were conducted to evaluate the

effectiveness of the proposed method. We trained our model on

the COCO dataset and ensured that the experimental conditions

were consistent. Exp. 1 represents the baseline, based on which we

adopted the MLEM the transformer encoder based on the group

axial attention mechanism (TEGA), and dynamic hyperparameter

tuning training method based on Pareto efficiency (DHMP). A

total of eight ablation experiments were performed, as shown in

Table 2. Exp. 2 shows that the addition of MLEM resulted in a

1.6% increase in AP over DETR, demonstrating that multi-scale

features have a more significant impact on the results. Exp. 3 shows

that after adding TEGA, AP is improved by 0.9% compared to

DETR, and compared to MLEM, the improvement is minimal,

which indicates that the accuracy of the detection may depend

on the pre-processing of the features; however, other experiments

demonstrated that encoders have a material impact in terms of

reducing model complexity and increasing inference speed. Exp.

3 shows that adding DHMP can make the model converge with

a higher accuracy. A comparison of the results of Exps. 5–7 with

those of Exp. 8, respectively, shows that each improvement is

necessary to improve detection. Exp. 8 shows that applying all

three improvements simultaneously significantly improves the

accuracy, with a 2.4% improvement in AP.

As shown in Table 3, we conducted several groups of ablation

experiments to demonstrate the effectiveness of Window G-

Attention (WGA). Dataset 1 and Dataset 2 represent the COCO

and PASCAL VOC datasets, respectively. Exp. 1 refers to the

improved method without using WGA. By comparing the results

of Exps. 1 and 3, as well as Exps. 2 and 3, we conclude that WGA

contributes to improving FPS. It is worth noting that the degree

of FPS improvement achieved by WGA varies across different

datasets, which we believe is related to the distribution of objects

within the images. In addition, we observed that the smaller the

window size p of WGA, the lower the computational complexity

and the higher the FPS, which is consistent with the conclusion we

reached in the article.

Figure 10 reflects the accuracy trends before and after the

improvement in the algorithm. The original method still has no

convergence trend over 50 epochs, the AP and AP50 increase

slowly, and the accuracy only reaches approximately 50% that

of our method after 25 epochs, and the accuracy only reaches

approximately 5% that of our method after 25 epochs. The accuracy

of our method increased faster in the early stages of training, with

AP and AP50 reaching 0.535 and 0.735, respectively, at epoch 20,

which was higher than the accuracy of DETR at epoch 50. After 25

epochs, our method converges, indicating that DLMP is effective,

and AP and AP50 finally reach 0.552 and 0.743, respectively.

3.4 Comparison with other methods

In this section, we compare our method with current

mainstream algorithms on the COCO, PASCAL VOC and KITTI

datasets, as shown in Tables 4–6. As shown in Table 4, the AP of our

method is 0.552, and its AP50 is 0.741; both are the best, although

FIGURE 11

Results of comparison.

FIGURE 12

Comparison of FPS with di�erent algorithms.

APS is 1.4% lower than that of YOLOv8, and the actual epochs

required for training are less than for YOLOv8. Compared with

DN-Deformable-DETR and DINO-DETR, the proposed method

maintains APS at the same level as the former and 0.4% higher

than the latter while significantly reducing the GFLOPS and

params. Compared to DETR, our method reduces the number of

parameters by approximately 10% and improves the AP, AP50, and

APS by 3.3%, 2.1%, and 4.5%, respectively, which is advantageous

for DETR-like models.

Table 5 shows the experimental results of the different methods

on PASCAL VOC. The AP of our method is 0.477, which is

only lower than that of YOLOv8. The proposed method reaches

convergence in 35 epochs, which is only higher than that of DINO-

DETR, showing good convergence speed and more satisfactory

detection accuracy.
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FIGURE 13

Visualization of the proposed method compared with current methods in suburban road scenes.

FIGURE 14

Visualization of the proposed method compared with current methods in suburban street scenes.

Table 6 shows the results of different methods on the KITTI

dataset. Our proposed method achieves the highest AP value of

0.556, representing a 3% improvement compared to the baseline

method. Our method converges within 35 epochs, second only

to DINO-DETR. In terms of APS evaluation, our method is only

slightly behind YOLOv8 and is nearly on par with it, while having

fewer model parameters and lower computational complexity.

The convergence of the different algorithms during training

is shown in Figure 11. The training of the proposed method

essentially converged in fewer than 45 epochs, which is a

remarkable improvement over DETR and YOLOv8. DINO-DETR

converges in the 25th epoch, but in actual training, owing to its high

complexity, the actual training of an epoch is approximately three

times as long as that of the proposed method.

Figure 12 shows the relationship between the model

computation GFLOPs and FPS and test images from the COCO

and PASCAL VOC datasets, with an image size of 900 × 900. The

proposed method had the smallest GFLOPs and best FPS in the

DETR series. Version v1 uses Window G-Attention, and there is

still a large gap in the FPS compared to YOLOv8; however, the FPS

is improved by 84% compared to DETR.

In conclusion, the proposed method demonstrates robust

performance across three distinct datasets. First, the AP values

underscore the superior detection accuracy of the method,
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FIGURE 15

Visualization of the proposed method compared with current methods in suburban road scenes.

effectively identifying objects of varying scales in autonomous

driving scenarios, including obstacles, vehicles, pedestrians, and

traffic lights. Second, considering the inherent constraints of

computational resources and energy consumption in autonomous

driving hardware, our model is designed to minimize parameter

size while achieving notable computational efficiency compared to

mainstream object detection algorithms. With respect to the FPS

metric, our method achieves the best performance among DETR-

based algorithms, satisfying the stringent real-time detection

requirements of autonomous driving systems. Furthermore, the

proposed model is implemented using the PyTorch framework,

ensuring seamless deployment on vehicle-embedded hardware.

Notably, our method exhibits slightly lower performance on the

APS metric compared to YOLOv8, likely due to the embedded

data augmentation techniques employed by YOLOv8. This insight

highlights a promising direction for further optimization and

refinement of our algorithm.

3.5 Visualization

We tested the visualization of the different methods in various

driving scenarios. The threshold for each detector was set to

0.6, and the performances are shown in Figures 13–15. Each

image shows visualization of several approaches (Corresponding

order from top to bottom, left to right): (a) the image to be

detected, (b) DETR, (c) Deformable-DETR, (d) DAB-DETR, (e)

DN-Deformable-DETR, (g) DINO-DETR (f) YOLOv8, and (h)

the proposed method. According to the experimental results,

the proposed method addresses the issues of omission and false

detection caused by mutual occlusion, mutilation, and the small

size of the target, and it has excellent adaptability to complex scenes.

Figure 13 shows a suburban road scene with clearer vehicle

targets, but the problem of missing the car occurs in both (b) and

(c), where the person in the car is a more difficult target to identify,

and the remaining methods did not produce a missed detection.

Both the proposed method and YOLOv8 detected traffic signs and

the farthest vehicle.

Figure 14 shows a street scene, where people stand densely

and the targets are small; however, the proposed method showed

the least number of missed detections and best object detection.

Figure 15 shows a city road scene, where there are cases of mutual

occlusion andmutilation of detected objects, and only the proposed

method successfully detected the vehicles behind the grass.

4 Conclusion

This paper presented an improved autonomous driving object

detectionmethod based onDETR. This approach includes a feature

extraction technique that incorporates position-sensitive attention

to improve multi-scale object detection. In addition, a transformer

encoder with a group axial attention mechanism was developed

to enhance the inference speed and reduce model computation.

Furthermore, a dynamic hyperparameter tuning training method

based on Pareto efficiency was implemented to adjust the training

state of the loss function by dynamically modifying the weights.

This approach aims to overcome the limitations associated

with manually setting fixed weights, accelerate convergence, and

improve model accuracy. Experimental results demonstrated that

this approach outperforms traditional methods.

It should be emphasized that our method stands out for

its exceptional inference speed compared to other DETR-like

algorithms. However, it lags behind the YOLO series of algorithms

in this regard. Achieving a high inference speed often results

in a tradeoff with detection accuracy, posing a challenge for

DETR-type algorithms to strike a balance between the two. In

addition, our approach proved that the object detection model

can be enhanced by synchronizing the training phases of the

loss function. Developing a more intricate training strategy for

the loss function is a promising prospect for future research.
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Finally, addressing faults in autonomous driving through fault

detection, data reconstruction, decision optimization, and fault-

tolerant mechanisms based on deep learning models is of great

significance for improving the robustness and safety of autonomous

driving systems.
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