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NAN-DETR: noising multi-anchor
makes DETR better for object
detection

Zixin Huang*, Xuesong Tao and Xinyuan Liu

School of Computer Science, Beijing Institute of Technology, Beijing, China

Object detection plays a crucial role in robotic vision, focusing on accurately

identifying and localizing objects within images. However, many existing

methods encounter limitations, particularly when it comes to e�ectively

implementing a one-to-many matching strategy. To address these challenges,

we propose NAN-DETR (Noising Multi-Anchor Detection Transformer), an

innovative framework based on DETR (Detection Transformer). NAN-DETR

introduces three key improvements to transformer-based object detection: a

decoder-based multi-anchor strategy, a centralization noising mechanism, and

the integration of Complete Intersection over Union (CIoU) loss. The multi-

anchor strategy leverages multiple anchors per object, significantly enhancing

detection accuracy by improving the one-to-many matching process. The

centralization noisingmechanismmitigates conflicts among anchors by injecting

controlled noise into the detection boxes, thereby increasing the robustness

of the model. Additionally, CIoU loss, which incorporates both aspect ratio

and spatial distance in its calculations, results in more precise bounding

box predictions compared to the conventional IoU loss. Although NAN-DETR

may not drastically improve real-time processing capabilities, its exceptional

performance positions it as a highly reliable solution for diverse object

detection scenarios.
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1 Introduction

Object detection remains a cornerstone task in robotic vision, with the primary

objective of accurately identifying and localizing objects within an image. A variety

of approaches have emerged over the years, including the influential R-CNN family

and its subsequent variations (Ren et al., 2015; Zhang et al., 2020). For example,

FoveaBox (Kong et al., 2020) offers an anchor-free detection framework leveraging a multi-

level feature pyramid to achieve high-quality results across different scales. Meanwhile,

Soft-NMS (Bodla et al., 2017) introduces an advanced non-maximum suppression

technique that adjusts detection scores in densely populated scenes, thereby enhancing

accuracy. Traditional methods generally rely on one-to-many label assignment strategies,

where multiple predictions are mapped to each ground truth box, often through proposals,

anchors, or window centers. Despite their successes, these methods tend to rely heavily on

complex, manually designed components such as non-maximum suppression (NMS) and

anchor generation, which can lead to inefficiencies and inherent limitations in adaptability.

The advent of the Detection Transformer (DETR) (Carion et al., 2020) marked a

significant shift in the object detection landscape by redefining the task as a set prediction

problem, thereby dispensing with the need for traditional components such as NMS
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and anchors. By utilizing a transformer-based encoder-decoder

architecture (Vaswani et al., 2017) and employing a one-to-one

matching strategy through the Hungarian algorithm (Kuhn, 1955),

DETR enables direct end-to-end optimization, simplifying the

detection process. However, despite these innovations, DETR’s

adoption has been limited by issues such as slow convergence and

the inherent challenges of its one-to-one matching strategy, which

often leads to sparse supervision signals during training.

To mitigate the issues inherent in the original DETR

framework, various enhancements have been developed over

time. For instance, REGO (Chen Z. et al., 2022) enhances

small object detection through optimized feature representation

for specific regions. Salience-DETR (Hou et al., 2024) increases

accuracy by emphasizing salient objects in images. Additionally,

SMCA (Gao et al., 2021) employs a spatially modulated cross-

attention mechanism to refine localization, and Sparse-DETR (Roh

et al., 2022) introduces a sparse sampling strategy to reduce

computational load, making it more suitable for real-time

applications. Methods like UP-DETR (Dai et al., 2022) leverage

unsupervised pre-training to improve performance in data-scarce

environments, and WB-DETR (Liu F. et al., 2021) simplifies

detection by removing the CNN backbone, relying instead on a

pure Transformer-based architecture. Dynamic DETR (Dai et al.,

2021) enhances flexibility through dynamic attention mechanisms,

and Efficient DETR (Yao et al., 2021) reduces model complexity by

optimizing resource usage. Together, these methods contribute to

refining the DETR architecture by enhancing training efficiency,

detection accuracy, and adaptability across diverse object detection

tasks.

Recent advances demonstrate the effectiveness of enhancing

feature learning and improving detection accuracy for boosting

object detection performance. Co-DETR (Zong et al., 2023)

decouples object query assignments and uses auxiliary queries

for broader feature capture, while Group DETR (Chen et al.,

2023) and NMS DETR (Ouyang-Zhang et al., 2022) employ

one-to-many label assignments, with the latter integrating non-

maximum suppression to refine outcomes. DN-DETR (Li et al.,

2022) introduces denoising to stabilize training, a concept further

optimized by DINO’s (Zhang et al., 2023) contrastive learning

approach. Additionally, in real-time detection, DIoU and CIoU

losses (Zheng et al., 2020) have emerged, improving bounding

box accuracy by addressing limitations in traditional IoU metrics

through enhanced convergence speed and regression precision.

Previous methods have struggled to achieve effective one-

to-many matching, while NAN-DETR (Noising multi-ANchor

DEtection TRansformer) addresses these challenges through a

series of novel improvements. The architecture of NAN-DETR

consists of a backbone network, a multi-layer transformer encoder,

several multi-layer transformer decoders, and multiple prediction

heads. A key innovation is the multi-anchor strategy based on

decoders, where multiple independent decoders refine the initial

anchors generated by the encoder, thereby improving detection

accuracy. Additionally, the introduction of a concentrated noise

mechanism in the decoders minimizes conflicts between anchor

boxes, further enhancing the robustness. Similar to DETR, the

matching process employs the “Complete Intersection over Union”

(CIoU) loss function to enhance anchor box similarity and optimize

detection results. The combination of these innovative techniques

significantly improves object detection accuracy, particularly in

terms of Average Precision (AP) for objects of various sizes,

distinguishing NAN-DETR from other DETR variants.

Our contributions can be summarized as follows:

• We present a new end-to-end DETR-type model with a

centralization noising multi-anchor strategy, achieving high-

accuracy object detection.

• We propose the Decoder-based multi-anchor strategy to

enhance object detection accuracy and the centralization

noising mechanism to reduce conflicts between different

anchors. In addition, we employ the complete intersection

over union (CIoU) loss to improve the precise measurement

of similarity between anchors.

• We validate the effectiveness of NAN-DETR through

comprehensive experiments on the COCO dataset, where our

model, using ResNet-50 as the backbone, achieves an average

precision (AP) of 50.1%, outperforming existing state-of-the-

art methods.

The structure of this paper is as follows: In Section 2, we

review the existing literature on object detection, focusing on

the progress made in set matching, anchor-based techniques,

and label assignment strategies. Section 3 delves into the

fundamental aspects of the DETR framework and details the key

innovations introduced in NAN-DETR, such as the decoder-based

multi-anchor strategy and the centralization noising mechanism.

Section 4 presents the experimental results, showcasing how NAN-

DETR outperforms other DETR variants on the COCO dataset in

terms of performance. Finally, Section 5 concludes the paper by

underscoring the improvements NAN-DETR brings to detection

accuracy and offering suggestions for future research.

2 Related works

This section reviews key developments in transformer-based

object detection, particularly focusing on the DETR framework and

various improvement strategies.

2.1 One-to-one set matching

DETR (Carion et al., 2020) introduced a significant shift in

object detection by framing the task as a set prediction problem,

utilizing a transformer architecture. Thismethod employs a one-to-

one matching strategy based on the Hungarian algorithm, enabling

direct end-to-end training without the need for conventional

components like non-maximum suppression (NMS). However, this

one-to-one matching approach often results in sparse supervision

signals and slower convergence rates during training, which can

limit its effectiveness. To address these challenges, DN-DETR (Li

et al., 2022) incorporated a denoising technique during the training

process, which helps stabilize the matching process and speeds

up convergence. By introducing noise into the training queries,

DN-DETR mitigates the issues caused by sparse positive samples.
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Furthermore, Conditional DETR (Meng et al., 2021; Chen X. et al.,

2022) enhances this approach by refining the query mechanism,

leading to improved efficiency in model training and faster

convergence, ultimately boosting detection accuracy.

2.2 Anchor matching

Although DETR initially removed the reliance on anchors,

subsequent studies have shown that reintroducing anchors can

significantly enhance performance. Approaches such as Anchor

DETR (Wang et al., 2022) and DAB-DETR (Liu S. et al.,

2022) reintegrate anchor boxes within the DETR framework,

which not only makes the query process more interpretable but

also accelerates convergence by narrowing the search space. By

anchoring queries closer to likely object locations, these methods

reduce computational complexity and improve overall model

efficiency. DINO (Zhang et al., 2023) further refines this anchor-

based strategy by integrating advanced denoising methods and

contrastive learning, particularly enhancing detection accuracy

in more complex scenarios. These developments highlight the

effectiveness of merging traditional object detection techniques

with transformer-based models, offering a pathway to superior

detection performance.

2.3 One-to-many label assignment

Traditional object detection methods, including those in the

R-CNN family (Ren et al., 2015; Zhang et al., 2020), typically

utilize a one-to-many label assignment strategy, where multiple

predictions correspond to each ground truth box. This concept

has been effectively adapted into transformer-based models. For

example, Group-DETR (Chen et al., 2023) employs a group-wise

one-to-many assignment, allowing multiple queries to align with

each ground truth box. This strategy strengthens the model’s

feature learning and attention mechanisms, resulting in improved

detection performance. Co-DETR (Zong et al., 2023) further

expands on this by incorporating flexible assignments through

auxiliary heads like ATSS and Faster R-CNN, which enhance

supervision and significantly boost accuracy, especially in densely

populated scenes.

2.4 IoU

Intersection over Union (IoU) is a critical metric in computer

vision, extensively used to assess the accuracy of object detection

and segmentation models by measuring the overlap between

predicted and ground truth bounding boxes. Although IoU

became widely recognized through its application in the R-

CNN framework (Girshick et al., 2014), it presents challenges,

particularly when dealing with non-overlapping boxes. To

overcome these limitations, Generalized IoU (GIoU) (Rezatofighi

et al., 2019) was introduced, adding the concept of the smallest

enclosing box to provide a more holistic measure. Further

improvements include Distance-IoU (DIoU) and Complete-IoU

(CIoU) (Zheng et al., 2020), which factor in the distance between

box centers and aspect ratio, respectively, enhancing localization

accuracy and convergence speed.

3 Methodology

3.1 Model overview

NAN-DETR enhances the DETR (Carion et al., 2020)

framework with several key innovations aimed at boosting

detection accuracy. The architecture includes a backbone network,

a Transformer encoder, multiple Transformer decoders, and

prediction heads that output the final detection results as Figure 1.

The process starts by feeding the image into a backbone such as

ResNet (He et al., 2016) or Swin-Transformer (Liu Z. et al., 2021,

2022), which extracts global features. These features, combined

with positional embeddings to capture spatial relationships, are

then processed by the Transformer encoder, dividing the image into

multiple regions (queries). Details of the image feature extraction

process can be obtained in Section 3.2. Each query is used to

generate an initial anchor box through a neural network. These

anchor boxes are then locally refined by k independent decoders

to better detect the object. This strategy is called the decoder-based

multi-anchor strategy, whose details are available in Section 3.3. To

reduce conflicts between multiple anchor boxes, they are perturbed

after being calculated, which is called as centralization noising

mechanism presented in Section 3.4. Finally, the matching process

is similar to DETR, but with CIoU (Zheng et al., 2020) introduced

to improve the precise measurement of similarity between anchors

and optimize the detection results, which is described in Section 3.5.

3.2 Image feature extraction

Given an image, we can obtain the visual feature knowledge

through a visual backbone. In order to acquire different scale image

information, we use multi-scale detection to extract multi-scale

visual features. Meanwhile, as the position relationships between

different regions in the image are highly important, we introduce

position embedding to ensure that the position information of

different regions can be captured by the model. The process of

image feature extraction is as follows:

v = B(x)+ vpos (1)

where v represents the input of the Transformer encoder, B

indicates the backbone, such as ResNet-50 (He et al., 2016)

or Swin Transformer (Liu Z. et al., 2021, 2022) architecture,

and vpos denotes the sinusoidal position embedding. ResNet-50

uses convolution and residual connections, excelling at extracting

local features with high computational efficiency, while Swin

Transformer is based on self-attention, capturing both global and

local information, making it suitable for complex vision tasks but

with higher computational cost.

Next, we add the image features of the position embedding

into the Transformer Encoder for attention interaction to get image

features. Then, multiple query anchor frames for each object in the
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FIGURE 1

Framework of the proposed NAN-DETR. The enhancements primarily focus on the Transformer decoder. We use k decoders to acquire more

anchors and reduce the conflicts between multi-anchor by centralization noising mechanism. Finally, we use CIoU loss to calculate the loss function

of boxes in matching.

image are obtained as input to the Transformer decoder in the full

connection layer.

3.3 Decoder-based multi-anchor strategy

The decoder-based multi-anchor strategy can alleviate

the limitations of the initial DETR framework. In the DETR

architecture, the encoder functions similarly to a standard

Transformer encoder, producing abstract information that

effectively divides the image into several regions, referred to as

queries. To enhance object detection within these query regions, we

introduce a neural network layer that generates four-dimensional

vectors corresponding to anchor boxes (Wang et al., 2022; Zhang

et al., 2023). These vectors, considered as initial anchor boxes,

provide preliminary spatial information that indicates potential

object locations.

However, a single anchor box often fails to adequately represent

larger objects, leading to convergence challenges and difficulties

in model training. While some ideas have been proposed in

prior works, such as Group DETR (Chen et al., 2023) and Co-

DETR (Zong et al., 2023), their research has all introduced a one-

to-many matching approach. But our implementation diverges in

its approach and takes some advantages over them. Group DETR

employs arbitrary grouping, which does not fully leverage the

information from the encoder, whereas Co-DETR relies heavily on

auxiliary heads, leading to redundancy.

To address these issues, our proposed strategy utilizes

multiple decoders, denoted as k decoders, to process each query

independently as Figure 2. Each decoder refines the initial anchor

box, resulting in multiple predicted positions for anchor boxes.

This one-to-many assignment effectively increases the likelihood

of accurately capturing objects of varying scales within the

image. Compared with Group DETR and Co-DETR, our strategy

circumvents these limitations by refining anchor boxes through a

more targeted and efficient process, ensuring better utilization of

the encoder’s output.

3.4 Centralization noising mechanism

Upon generating multiple anchor boxes for each query, a

significant challenge emerges due to potential conflicts between the

outputs of auxiliary heads, as noted in the Co-DETR study (Zong

et al., 2023). For instance, consider a scenario where an object,

such as a square, is initially represented by four anchor boxes

centered within it. If these anchors are perturbed randomly, they

may shift toward the four corners of the square. This perturbation
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FIGURE 2

Details of decoder-based multi-anchor strategy. The process of this strategy mainly involves first creating k decoders. The initial anchor produced by

the encoder is then sent to each decoder, while the key and value outputs from the encoder are provided to each layer of the decoders for

processing. This allows a single query to obtain k anchors, thereby achieving a one-to-many e�ect.

FIGURE 3

Details of centralization noising mechanism. The main process of the centralization noising mechanism first involves finding the centroid of all

obtained anchors. Then, the di�erence (di�) for each anchor is calculated to determine the direction and magnitude of movement (noise). Finally,

the updated anchors are derived by combining the sign with the original anchors.

can cause the anchors to lose sight of the object as a whole,

with some potentially deviating completely from the square’s

boundaries. This phenomenon illustrates that different anchors

may capture disparate and sometimes conflicting information

about the same object, particularly when dealing with large

objects. If these conflicts among the anchors are not effectively

managed, the cumulative information they provide could become

inconsistent or misleading, undermining the overall detection

accuracy. This issue is akin to the aforementioned square example,

where the anchors’ divergence leads to incomplete or erroneous

object representation.

To avoid this problem, we perturb these k anchor boxes. After

calculating the center of these k anchor boxes, we apply random

noise to them, causing them to move a certain distance toward

the center. This step minimizes conflicts and merges the detection

information from multiple boxes. As a result, we obtain k anchor

boxes that influence each other and incorporate the possibilities of

transformations. These k × query number anchor boxes will then

be used for matching, as Figure 3, following the same matching

process as in DETR.

Specifically, the centralization noising process is defined as

follows: Given a set of detection boxes {(xi, yi, ui, di)} along
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with( xi+ui
2 ,

yi+di
2 ) as their center, there exists a lineAx+By+C = 0,

where both ( xi+ui
2 ,

yi+di
2 ) and (

∑k
i=1 xi+ui
2k

,
∑k

i=1 yi+di
2k

) lie on this line,

thus we can denote A,B,C as

A =

∑k
i=1 yi + di

2k
−

yi + di

2
(2)

B =

∑k
i=1 xi + ui

2k
−

xi + ui

2
(3)

C =
(
∑k

i=1 xi + ui)(yi + di)

4k
−

(
∑k

i=1 yi + di)(xi + ui)

4k
. (4)

Moreover, the random noise is set to 1 ∼ N(0, σ (w + h)),

where w, h denote the width and height of the box respectively, and

σ denotes the standard derivation. Then the actual center of the

detection box becomes

Centeri =

(

xi + ui

2
+ sign(i)B1,

yi + di

2
− sign(i)A1

)

, (5)

where sign(i) =







1 (
∑k

i=1 xi+ui
2k

− xi+ui
2 )B1 < 0

−1 otherwise
.

3.5 Complete Intersection over Union
(CIoU) loss

Intersection over Union (IoU) is a widely used metric in object

detection, primarily measuring the overlap between predicted

and ground truth bounding boxes. However, IoU has notable

limitations, such as failing to provide useful gradient information

when boxes do not overlap and not fully accounting for variations

in overlap due to translation or rotation. To address these

shortcomings, we employ Complete Intersection over Union

(CIoU) loss (Zheng et al., 2020), which has shown success inmodels

such as YOLO (Zhao et al., 2024; Redmon et al., 2016). CIoU

extends the basic IoU by incorporating the aspect ratio and the

distance between the centers of bounding boxes, providing a more

comprehensive assessment of similarity. In NAN-DETR, we replace

the traditional IoU with CIoU, leveraging its ability to improve the

precision of bounding box predictions during training, which is

particularly beneficial for high-precision object detection tasks.

Specifically, The CIoU loss is defined as:

LCIoU = 1− IoU(b, bgt)+
ρ2(b, bgt)

c2
+ αv (6)

where:

• IoU(b, bgt) is the Intersection over Union between the

predicted box b and the ground truth box bgt ,

• ρ(b, bgt) is the Euclidean distance between the centers of the

two boxes,

• c is the diagonal length of the smallest enclosing box for both

boxes,

• α is a weight that balances the aspect ratio consistency v, which

measures the consistency of the aspect ratios of the predicted

box and the ground truth box.

NAN-DETR utilizes a composite loss function that integrates

the Hungarian matching loss for query-object assignment and the

CIoU loss for bounding box regression. The overall loss L is given

by:

L = λ1LHungarian + λ2LBox + λ3LCIoU (7)

where LHungarian is the Hungarian matching loss (Carion et al.,

2020; Kuhn, 1955), LBox denotes the ℓ1-distance of predicted box

and matched box, and λ1, λ2, λ3 are hyperparameters that balance

the two components of the loss function.

4 Experiments

4.1 Setup

4.1.1 Datasets and evaluation metrics
To assess the performance of NAN-DETR, we conducted

evaluations using the COCO dataset (Lin et al., 2015), a

comprehensive benchmark widely adopted in object detection

research. The dataset encompasses 80 object categories and over

200,000 labeled images. The val subset represents the detection

results that we report. The main evaluation metric is Average

Precision (AP), which measures the area under the precision-recall

curve averaged across all categories. Specific metrics, such as AP50
and AP75, correspond to the Average Precision when the IoU

threshold is 0.5 and 0.75, respectively. In addition, the APS, APM ,

and APL metrics evaluate the performance for different object sizes

(small, medium, and large), providing a deep insight into the ability

of NAN-DETR to tackle different detection challenges.

4.1.2 Implementation details
NAN-DETR is implemented using PyTorch and trained on a

setup comprising 8 NVIDIA A100 GPUs. We utilize the AdamW

optimizer with a base learning rate of 10−4 and a lower learning

rate of 10−5 for the backbone. The model training involves clipping

the maximum gradient norm at 0.1, with a positional encoding

temperature set to 20. Both the encoder and decoder are composed

of 6 layers, each with a feedforward dimension of 2048 and a

hidden dimension of 256, without applying dropout. The model

operates with 8 attention heads and processes 900 queries, each

comprising 4 points in both the encoder and decoder. ReLU serves

as the activation function, and FrozenBatchNorm2d is used for

batch normalization. The model’s cost settings include values of 2.0

for class prediction, 5.0 for bounding boxes, and 2.0 for CIoU. We

set the classification loss coefficient to 1.0, with bounding box and

CIoU loss coefficients at 5.0 and 2.0, respectively. Additionally, the

focal loss alpha parameter is 0.25, and the noise parameter σ is fixed

at 0.05. These hyperparameters were fine-tuned based on extensive

experimentation to optimize model performance.

4.2 Baseline methods

We compare NAN-DETR with various state-of-the-art DETR

variants:
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FIGURE 4

Visualizations of COCO dataset by NAN-DETR with ResNet-50.

• Conditional-DETR (Meng et al., 2021; Chen X. et al.,

2022): Conditional-DETR introduces key methodological

improvements over DETR, primarily by enhancing the query

mechanism, decoder module, and matching strategy.

• Anchor-DETR (Wang et al., 2022): Anchor-DETR brings

significant enhancements to the original DETR by

incorporating object queries that are designed around

anchor points, a concept widely utilized in CNN-based

detectors.

• DAB-DETR (Liu S. et al., 2022): DAB-DETR enhances the

original DETR by introducing dynamic anchor boxes as

queries, with both their position and size being dynamically

adjusted layer by layer.

• AdaMixer (Gao et al., 2022): Compared with DETR,

AdaMixer features adaptive 3D feature sampling, where

queries dynamically sample features across different spatial

and scale dimensions.

• Deformable-DETR (Zhu et al., 2021): Deformable-DETR

advances the original DETR by incorporating a deformable

attention module that focuses on a limited set of key sampling

points near a reference point, rather than considering all

spatial locations.

• DN-Deformable-DETR (Li et al., 2022): DN-Deformable-

DETR enhances the original DETR by implementing a

denoising training technique that stabilizes the bipartite graph

matching process, which is often unstable during the early

stages of training. This technique involves inputting noisy

ground truth bounding boxes into the transformer decoder

and training the model to accurately reconstruct the original

boxes, thereby speeding up convergence and boosting overall

model performance.

• H-Deformable-DETR (Jia et al., 2023):H-Deformable-DETR

enhances the original DETR by introducing a hybrid matching

strategy, which integrates one-to-one matching with an

additional one-to-many matching branch during the training

process.

• DINO-Deformable-DETR (Zhang et al., 2023): DINO

improves upon DETR by introducing several key

advancements: a contrastive denoising training method

to handle noisy data, a mixed query selection strategy to better

initialize queries, and a “look forward twice” scheme that

enhances the box prediction process by refining parameters

from both the current and subsequent layers.

• Co-Deformable-DETR (Zong et al., 2023): Co-Deformable-

DETR improves upon DETR by introducing a collaborative

hybrid assignment training scheme with auxiliary heads that

combines one-to-one and one-to-many label assignments.

4.3 Main results

Our method performs well on the COCO dataset, and the

specific visualization results are shown in Figure 4.

4.3.1 ResNet-50 backbone
The performance of various DETR variants using the ResNet-

50 backbone in Table 1 and Figure 5 demonstrates significant

differences in object detection capabilities. Methods such as

Conditional-DETR (Meng et al., 2021; Chen X. et al., 2022) and

Anchor-DETR (Wang et al., 2022), which reintroduce anchor

boxes and conditional queries, show moderate performance with

AP scores of 43.0% and 42.1%, respectively. These methods

improve query interpretability but still lag behind more advanced

models. DAB-DETR (Liu S. et al., 2022) and AdaMixer (Gao

et al., 2022), incorporating dynamic anchor boxes and adaptive

mixing strategies, achieve better AP scores of 45.7% and 47.0%,

respectively, showing enhanced query formulation and faster

convergence.

More advanced methods like DN-Deformable-DETR (Li

et al., 2022) and H-Deformable-DETR (Jia et al., 2023) leverage
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TABLE 1 Comparison to the baselines on COCO valwith ResNet-50.

Method Backbone Multi-scale #query #epochs AP↑ AP50↑ AP75↑ APS↑ APM↑ APL↑

Conditional-DETR; Meng

et al. (2021)

R50 ✗ 300 108 43.0 64.0 45.7 22.7 46.7 61.5

Anchor-DETR; Wang et al.

(2022)

R50 ✗ 300 50 42.1 63.1 44.9 22.3 46.2 60.0

DAB-DETR; Liu S. et al.

(2022)

R50 ✗ 900 50 45.7 66.2 49.0 26.1 49.4 63.1

AdaMixer; Gao et al. (2022) R50 ✓ 300 36 47.0 66.0 51.1 30.1 50.2 61.8

Deformable-DETR; Zhu et al.

(2021)

R50 ✓ 300 50 46.9 65.6 51.0 29.6 50.1 61.6

DN-Deformable-DETR; Li

et al. (2022)

R50 ✓ 300 50 48.6 67.4 52.7 31.0 52.0 63.7

H-Deformable-DETR; Jia

et al. (2023)

R50 ✓ 300 12 48.7 66.4 52.9 31.2 51.5 63.5

DINO-Deformable-DETR;

Zhang et al. (2023)

R50 ✓ 900 12 49.4 66.9 53.8 32.3 52.5 63.9

Co-Deformable-DETR; Zong

et al. (2023)

R50 ✓ 300 12 49.5 67.6 54.3 32.4 52.7 63.7

NAN-DETR(CIoU, single

anchor)

R50 ✓ 900 12 49.5 67.0 54.1 32.5 52.6 64.1

NAN-DETR(CIoU,

Multi-noising anchors)

R50 ✓ 900 12 50.1 67.8 54.5 31.8 53.7 65.3

Bolded and underlined fonts indicate the first two best values.
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FIGURE 5

Comparison to the baselines DETR variants on COCO val with ResNet-50.

deformable attention modules and denoising techniques, resulting

in higher AP scores of 48.6% and 48.7%, respectively. DINO-

Deformable-DETR (Zhang et al., 2023) further improves upon

these techniques, achieving an AP of 49.4%. Co-Deformable-

DETR (Zong et al., 2023) also demonstrates strong performance

with an AP of 49.5%, showcasing the effectiveness of collaborative

hybrid assignments and the importance of detection heads.

However, the top performer in this category is NAN-DETR

with multi-noising anchors, achieving an impressive AP of 50.1%.

This method outperforms all other DETR variants, demonstrating

significant improvements in detection precision. The CIoU loss

also enhances bounding box predictions, contributing to higher

AP75 scores. As shown in Figure 7, while there is a slight decrease

in performance for small objects, NAN-DETR consistently excels

in detecting medium and large objects, making it a versatile

and robust solution for various object detection tasks to resolve

multiple anchors conflicts. From the results of APS and APL,

the centralization noising mechanism performs well and indeed

achieves excellent results in large object detection.

4.3.2 Swin backbone
The performance with the Swin backbone in Table 2 and

Figure 6 shows considerable improvements, particularly for models

utilizing advanced features of the Swin transformers. Methods like

AdaMixer (Gao et al., 2022) with Swin-S backbone achieve an

AP of 51.3%, showing good performance with adaptive mixing.

Deformable-DETR (Zhu et al., 2021) with Swin-T and Swin-L

backbones show significant improvements with AP scores of 49.3%

and 54.5%, respectively, leveraging deformable attention modules

to enhance detection accuracy.

H-Deformable-DETR (Jia et al., 2023) continues this trend

with Swin-T and Swin-L backbones, achieving AP scores of

50.6% and 55.9%, respectively. Co-Deformable-DETR (Zong et al.,

2023) with the Swin-L backbone achieves a strong AP of 58.5%,

showcasing the effectiveness of collaborative hybrid assignments

and the importance of detection heads. This method also achieves

the highest APM of 62.4%, indicating superior performance in

detecting medium-sized objects.

NAN-DETR with the Swin-L backbone, on the other hand,

achieves an impressive AP of 58.2%, very close to Co-Deformable-

DETR. However, it outperforms all other methods in the

APL metric with a score of 74.2%, demonstrating exceptional

performance in detecting large objects. This indicates that NAN-

DETR’s decoder-based multi-anchor strategy and centralization

noising mechanism are highly effective for tasks requiring precise

detection of larger objects.

These results demonstrate that both Co-Deformable-DETR and

NAN-DETR excel in different aspects of object detection. Co-

Deformable-DETR leads in medium-sized object detection, while

NAN-DETR stands out in large object detection. The integration

of the CIoU loss in NAN-DETR also enhances bounding box

prediction accuracy, making both models valuable tools for a wide

range of object detection scenarios.

4.3.3 Overall analysis
Figure 7 presents the various precision metrics of the NAN-

DETR model on the COCO dataset, specifically focusing on

the effects of the CIoU loss and Multi-noising anchors. The

figure illustrates how the NAN-DETR model performs in terms

of Average Precision (AP) across different IoU thresholds and

object sizes after being trained for 12 epochs using the ResNet-50

backbone.

Analysis of Performance:

• AP (average precision) improvement: the NAN-DETR

model with the CIoU loss and multi-noising anchors achieves

an AP of 50.1%, which is a significant improvement over other

configurations, including the baseline NAN-DETR with single

anchors and no CIoU. This suggests that the combination of
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TABLE 2 Comparison to the baselines on COCO valwith Swin.

Method Backbone Multi-scale #query #epochs AP↑ APS↑ APM↑ APL↑

AdaMixer; Gao et al.

(2022)

Swin-S ✓ 300 36 51.3 34.2 54.6 67.3

Deformable-DETR;

Zhu et al. (2021)

Swin-T ✓ 300 12 49.3 31.6 52.4 64.6

Deformable-DETR;

Zhu et al. (2021)

Swin-L ✓ 300 12 54.5 37.0 58.6 71.0

H-Deformable-

DETR; Jia et al.

(2023)

Swin-T ✓ 300 12 50.6 33.4 53.7 65.9

H-Deformable-

DETR; Jia et al.

(2023)

Swin-L ✓ 300 12 55.9 39.1 59.9 72.2

Co-Deformable-

DETR; Zong et al.

(2023)

Swin-L ✓ 900 36 58.5 42.4 62.4 74.0

NAN-DETR(CIoU,

Multi-noising

anchors)

Swin-L ✓ 900 12 58.2 42.5 62.0 74.2

Bolded and underlined fonts indicate the first two best values.

FIGURE 6

Comparison to the baselines DETR variants on COCO val with Swin.

CIoU and multi-noising anchors contributes to more accurate

detection, especially for bounding box predictions.

• Small object detection: while the overall performance shows

improvement, the precision for small objects (APS) sees a

slight decrease in the model with multi-noising anchors. The

APS drops from 32.5% in the single-anchor configuration to

31.8% with multi-noising anchors. This could indicate that

the centralization noising mechanism, while beneficial overall,

may introduce challenges in detecting smaller objects where

precise bounding box predictions are critical.

• Medium and large object detection: the model demonstrates

robustness in detecting medium and large objects, with APM

(AP for medium objects) and APL (AP for large objects)

improving to 53.7% and 65.3%, respectively. The consistent

improvement in these metrics highlights the effectiveness of

the multi-noising approach in handling objects with varying

sizes and aspect ratios.

• Impact of CIoU loss: the use of the CIoU loss appears to

enhance bounding box accuracy significantly, particularly for

larger objects. The CIoU takes into account not just the

overlap but also the aspect ratio and center distance between

boxes, leading to more precise predictions. This is reflected

in the higher AP75 score, indicating that the model performs

better at stricter IoU thresholds.
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FIGURE 7

The various precision of NAN-DETR with CIoU and multi-noising anchors on COCO dataset. These detectors are trained with ResNet-50 backbones

for 12 epochs.

TABLE 3 Ablation study on NAN-DETR.

Method Backbone Anchors Noising Box loss AP↑ APS ↑ APM ↑ APL ↑

NAN-DETR R50 1 ✗ IoU 49.4 32.3 52.5 63.9

NAN-DETR R50 1 ✗ CIoU 49.5 32.5 52.6 64.1

NAN-DETR R50 4 ✗ CIoU 49.7 32.2 53.2 64.9

NAN-DETR R50 4 ✓ CIoU 50.1 31.8 53.7 65.3

NAN-DETR Swin-L 4 ✓ CIoU 58.2 42.5 62.0 74.2

Bolded and underlined fonts indicate the first two best values.

4.3.4 Ablation study
4.3.4.1 Decoder-based multi-anchor strategy

The ablation study from Table 3 and Figure 8 highlights the

contributions of each component in NAN-DETR. Introducing

multiple anchors without noising increases the AP to 49.7%,

demonstrating the effectiveness of our decoder-based multi-

anchor strategy in improving detection performance. The

multiple anchors allow the model to better capture objects

of varying sizes and shapes, leading to improved precision in

detection tasks.

4.3.4.2 Centralization noising mechanism

When both multi-anchor and the centralization noising

mechanism are combined, we see a significant jump in AP to

50.1%. This shows that the centralization noising mechanism, by

introducing controlled randomness, enhances the stability of the

model. As we anticipated, perturbingmultiple anchor boxes toward

the center greatly improves situations where the initial setup is

overly divergent, making it difficult to achieve high precision. This

perturbation enhances the model’s stability to some extent. The

AP increase across different object sizes (APS, APM , APL) further

confirms the benefits of these combined strategies in improving

overall detection performance. The fact that APM and APL improve

more quickly than APS further validates this idea. The larger

the object, the more this perturbation reduces the loss caused by

divergence. The decrease in APS is also understandable, likely due

to an imbalance in weights caused by excessive duplication, which

should be suppressed using NMS (Non-Maximum Suppression).

4.3.4.3 Di�erent backbone

From the perspective of changing the backbone, the Swin-L

backbone indeed significantly outperforms smaller models like

ResNet in terms of capturing global features, which is consistent

with expectations. This observation leads to the idea of whether

using a larger model as a backbone could be advantageous.

4.3.4.4 Complete Intersection over Union (CIoU) loss

When comparing a single anchor with and without CIoU loss,

we observe a slight improvement in AP from 49.4% to 49.5%,

indicating that the CIoU loss provides a marginal but consistent

boost in bounding box regression accuracy.
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FIGURE 8

Ablation study on NAN-DETR on COCO val.

5 Conclusion

In this paper, we propose NAN-DETR, a novel object detection

framework that integrates a decoder-based multi-anchor strategy, a

centralization noising mechanism, and the Complete Intersection

over Union loss. Our experimental results on the COCO dataset

indicate that NAN-DETR delivers significantly improved detection

accuracy compared to existing DETR variants. The multi-anchor

strategy enhances the effectiveness of object matching, while the

centralization noising mechanism and CIoU loss contribute to

higher precision across various detection tasks.

Nonetheless, there is potential space for improvement in some

aspects of the proposed approach. Currently, NAN-DETR does

not prioritize processing speed or real-time performance, but

a potential efficiency improvement strategy is to utilize model

distillation techniques. On the other hand, a future direction

is exploring to improve the centralization noising mechanism,

possibly using learned parameters from the backbone network for

dynamically adjusting the perturbation magnitude to further boost

detection performance, particularly for small objects.
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