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Introduction: Precise identification of acupuncture points (acupoints) is 
essential for effective treatment, but manual location by untrained individuals 
can often lack accuracy and consistency. This study proposes two approaches 
that use artificial intelligence (AI) specifically computer vision to automatically 
and accurately identify acupoints on the face and hand in real-time, enhancing 
both precision and accessibility in acupuncture practices.

Methods: The first approach applies a real-time landmark detection system to 
locate 38 specific acupoints on the face and hand by translating anatomical 
landmarks from image data into acupoint coordinates. The second approach uses 
a convolutional neural network (CNN) specifically optimized for pose estimation to 
detect five key acupoints on the arm and hand (LI11, LI10, TE5, TE3, LI4), drawing 
on constrained medical imaging data for training. To validate these methods, we 
compared the predicted acupoint locations with those annotated by experts.

Results: Both approaches demonstrated high accuracy, with mean localization errors 
of less than 5 mm when compared to expert annotations. The landmark detection 
system successfully mapped multiple acupoints across the face and hand even in 
complex imaging scenarios. The data-driven approach accurately detected five arm 
and hand acupoints with a mean Average Precision (mAP) of 0.99 at OKS 50%.

Discussion: These AI-driven methods establish a solid foundation for the 
automated localization of acupoints, enhancing both self-guided and 
professional acupuncture practices. By enabling precise, real-time localization 
of acupoints, these technologies could improve the accuracy of treatments, 
facilitate self-training, and increase the accessibility of acupuncture. Future 
developments could expand these models to include additional acupoints and 
incorporate them into intuitive applications for broader use.
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1 Introduction

Acupuncture is an ancient medical technique is a practice with roots extending back 
thousands of years. It involves the precise insertion of thin, sterile needles into specific points 
on the body known as acupoints (Formenti et al., 2023; Hou et al., 2015). These acupoints lie 
along meridians, or pathways, that are believed to facilitate the flow of vital energy, known as 
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qi or chi, throughout the body. By stimulating these acupoints, 
acupuncture aims to balance qi flow and promote healing. These 
points are not visible to the naked eye but are identified based on 
anatomical landmarks, palpation (feeling for subtle depressions or 
sensitivities), and traditional knowledge passed down through 
generations of practitioners (Tegiacchi, 2021).

In traditional medicine, acupuncture is used to treat various 
conditions including chronic pain, nausea, allergies, anxiety, 
depression, infertility, and more (Formenti et al., 2023; Yang et al., 
2011). It is thought to work by releasing natural painkillers called 
endorphins, regulating blood flow, stimulating nerves and connective 
tissue, altering brain chemistry, and affecting hormone release (Wang 
et  al., 2022; Vanderploeg and Yi, 2009). There are hundreds of 
acupoints located throughout the body, each associated with specific 
meridians and therapeutic effects (Zhang B. et al., 2022). For example, 
acupoint LI4 (Hegu), located between the thumb and index finger, is 
commonly used to relieve headaches and toothaches (Lu and Lu, 
2008). Some practitioners even suggest its potential benefits for 
managing symptoms associated with Parkinson’s disease (Park et al., 
2023). Once dismissed by Western medicine, acupuncture has gained 
more mainstream acceptance in recent decades. In 1997, the National 
Institutes of Health found acupuncture to be effective for nausea and 
other conditions. Since then, clinical trials have demonstrated its 
efficacy for various health issues (Mayer, 2000; Mao and Khanna, 
2012). Today, acupuncture is practiced worldwide including in 
Western countries. It is one of the most widely used forms of alternative 
and complementary medicine (Yang et al., 2011; Wang et al., 2022).

Traditionally, acupuncturists locate acupuncture points by feeling 
for specific landmarks on the body, such as bony protrusions or 
muscle lines. However, manual identification depends heavily on the 
experience of the acupuncturist and can suffer from inaccuracy, and 
can be time-consuming. Technology may be able to improve acupoint 
localization. Artificial intelligence (AI) can be used to revolutionize 
the practice of acupuncture. One of the most promising applications 
of AI in acupuncture is the use of computer vision to locate 
acupuncture points (Wang et al., 2022; Sun et al., 2020; Zhang M. et al., 
2022). Computer vision techniques like pose estimation provide an 
attractive solution by automating acupoint localization in a 
standardized way. Pose estimation is an important computer vision 
task that involves detecting key points on the human body and 
understanding their positions and orientations. It has a wide range of 
applications such as human-computer interaction, augmented reality, 
action recognition, and motion capture (Sulong and Randles, 2023).

Recent studies have increasingly focused on leveraging computer 
vision techniques to automate the identification and localization of 
acupoints, recognizing the complexity of acupoint anatomy and the 
subtlety of acupoint landmarks. Deep learning approaches, particularly 
convolutional neural networks (CNNs), have emerged as promising 
tools for acupoint recognition due to their powerful feature extraction 
capabilities. Researchers have explored various architectures, including 
U-Net, cascaded networks, and improved high-resolution networks 
(HRNet), to enhance detection accuracy (Sun et al., 2020; Sun et al., 
2022; Chan et al., 2021; Li et al., 2024; Yuan et al., 2024). In a recent study, 
Liu et al. (2023) introduced an improved Keypoint RCNN network was 
designed for back acupoint localization. By incorporating a posterior 
median line positioning method, the accuracy improved to 90.12%. 
Another significant development is the integration of anatomical 
measurements and proportional bone measurement methods with deep 
learning models to improve acupoint localization (Zhang M. et al., 2022; 
Chan et al., 2021). This approach combines traditional acupuncture 
knowledge with modern computer vision techniques.

Researchers have also explored the application of augmented 
reality (AR) and mixed reality (MR) technologies to visualize and 
localize acupoints in real-time, with systems like FaceAtlasAR and 
HoloLens 2-based applications showing promise. These technologies 
offer real-time tracking and visualization capabilities, potentially 
improving the practical application of automated acupoint detection 
systems in clinical settings (Zhang M. et al., 2022; Chen et al., 2021; 
Chen et al., 2017). For instance, Yang et al. (2021) developed tools like 
the SMART Table, which integrates 3D and AR technologies to 
improve acupoint education, training, and evaluation. This interactive 
system is designed to support both educational purposes and clinical 
competency assessments, showing promise in enhancing skills related 
to acupuncture and musculoskeletal treatments. Despite the limited 
number of studies in this area, several limitations persist in the current 
research despite recent advancements. These issues include limited 
datasets and accuracy problems in certain body areas. Many studies 
focus on a small number of acupoints or specific body regions (Sun 
et al., 2020; Chan et al., 2021), which restricts the applicability of their 
methods to comprehensive acupoint recognition.

The primary objective of this study is to develop a real-time 
acupuncture point detection system using state-of-the-art pose 
estimation models. While previous works like Sun et al. (2022) have 
shown promising results, our approach offers several key innovations. 
We  explore and compare two distinct computer vision techniques: 
utilizing a real-time landmark detection framework to map acupoint 
locations based on classical proportional measurement methods, and 
fine-tuning a state-of-the-art pose estimation model on a custom dataset 
to directly predict acupoint coordinates. Our system is designed to detect 
a comprehensive set of acupoints, not limited small number as in 
previous studies. Furthermore, we develop an integrated application that 
enables real-time visualization of predicted acupuncture points on a 
webcam feed, showcasing their potential for assistive technologies in 
acupuncture treatment. Through this research, we aim to address several 
key questions: How does the accuracy of acupoint localization using a 
landmark-based approach compare to that of a deep learning-based pose 
estimation model? To what extent can these computer vision techniques 
be applied in real-time for practical acupuncture assistance? What are 
the limitations and potential improvements for each approach in the 
context of acupoint localization? By addressing these questions, our 
work aims to bridge the gap between traditional manual methods and 

Abbreviations: AI, Artificial intelligence; FPN, Feature pyramid network; PAN, Path 

aggregation network; CNN, Convolutional neural network; COCO, Common 

objects in context; mAP, Mean average precision; OKS, Object keypoint similarity; 

TP, True positives; FP, False positives; FN, False negatives; TN, True negatives; AP, 

Average precision; SGD, Stochastic gradient descent; CIoU, Complete intersection 

over union; DFL, Distribution focal loss; BCE, Binary cross entropy; KIoU, Keypoint 

intersection over union; FPS, Frames per second; CV, Conception vessel; BL, 

Bladder; GB, Gallbladder; GV, Governing vessel; LI, Large intestine; LU, Lung; PC, 

Pericardium; SI, Small intestine; ST, Stomach; TE, Triple energizer; WHO, World 

Health Organization; RGB, Red, green, blue (color model); GPU, Graphics 

processing unit; IoU, Intersection over union; KBCE, Keypoint objectness binary 

cross entropy.

https://doi.org/10.3389/fnbot.2024.1484038
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Malekroodi et al. 10.3389/fnbot.2024.1484038

Frontiers in Neurorobotics 03 frontiersin.org

automated computer-assisted approaches, providing acupuncturists with 
efficient tool to enhance their practice. This research has the potential to 
significantly impact acupuncture practice by improving accuracy and 
consistency in acupoint localization, providing a more comprehensive 
detection system, and offering real-time assistance to practitioners.

2 Materials and methods

2.1 Landmark detection and proportional 
mapping approach

The MediaPipe framework (Lugaresi et al., 2019), developed by 
Google, has garnered considerable attention in the computer vision 
community due to its versatility and efficiency in building real-time 
applications. Initially designed for hand and face tracking, MediaPipe 
has expanded its capabilities to cater to a wide range of pose 
estimation and human body tracking tasks (Figure  1). The 
framework’s ability to leverage deep learning models, coupled with its 
lightweight design, makes it an attractive choice for developing 
applications that require real-time performance on resource-
constrained devices (Lugaresi et  al., 2019). This attribute was the 
primary motivation for employing this framework in the present 
study. However, an important limitation is that MediaPipe does not 
provide access to the model architectures and parameters. So users 
cannot train the models from scratch on their own datasets. In the 
context of acupuncture point detection, by harnessing the framework’s 
capabilities, it becomes possible to develop a real-time system that 
can efficiently identify acupuncture points on the human body, 
thereby enhancing the precision and effectiveness of acupuncture 
treatments. In this approach we landmark coordinate data generated 
by the MediaPipe framework to calculate proportional acupoint 
locations based on formulas guided by traditional acupuncture 
literature (World Health Organization, 2008; Focks, 2008; National 
University of Korean Medicine, Graduate School of Korean Medicine, 
Meridian and Acupoint Studies Textbook Compilation 
Committee, 2020).

2.1.1 Acupoint selection
A total of 38 acupoints were selected for localization including 18 

acupoints on the hands and 20 acupoints on the face (Table 1). These 
acupoints were selected based on their common usage in clinical 
practice for a variety of conditions. The Supplementary Table S1, 
provides a summary of these acupoints included in the study, along 
with anatomical locations and key clinical usages.

2.1.2 Method
In order to identify the locations of over 38 acupoints, we utilized 

a combination of published literature regarding acupoint locations 
(World Health Organization, 2008; Focks, 2008), principles of oriental 
medicine, and the MediaPipe framework (v0.10.1).

The process involved first compiling a list of acupoint locations on 
the hands and face by referencing established acupuncture literature 
and standards (Supplementary Table S1). Then, each frame of the input 
video was captured through OpenCV computer vision library 
(v4.7.0.72) and converted to RGB format. The RGB frames were input 
into MediaPipe Face Mesh and Hand pipelines to acquire facial and 
hand landmark coordinates. These 468 facial and 21 hand landmarks 
per hand were used to mathematically estimate locations of key 
acupoints based on anatomical proportionality. Small dots were drawn 
on the original frames at the calculated acupoint locations using 
OpenCV drawing functions, representing acupoints. Finally, the 
output frame with overlayed acupoint dots was displayed to the user in 
real-time via OpenCV, allowing viewing of the acupoint tracking in the 
live video stream (Figure 2).

In more detail, the landmark detection framework provides the X, 
Y, and Z coordinates for each of the estimated anatomical landmarks. 
These 3D landmark points were used to mathematically calculate the 
locations of associated acupuncture points. Although MediaPipe 
predicts 21 hand landmarks (Figure 1a), accuracy constraints were 
encountered in projecting acupoints across different hand postures 
based on the literature guidelines. To overcome this, the hand postures 
were divided into four categories—front, inside, outside, and back 
views (Figure 3). To determine which posture the hand was in, three 
specific landmarks on the palm plane were selected (as shown in 

FIGURE 1

Keypoint localization examples using MediaPipe framework. (a) The MediaPipe Hand solution localizing 21 hand-knuckle coordinates within detected 
hand regions. (b) The MediaPipe Facemesh solution localizing 468 facial landmarks. (c) The MediaPipe Pose solution localizing 33 body landmarks. The 
figure demonstrates the capabilities of MediaPipe for anatomical keypoint localization across hands, faces, and bodies through the use of machine 
learning models tailored to each area.
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TABLE 1 Acupuncture points selected for detection utilizing landmark detection framework.

Acupoint Full name Meridian Acupoint Full name Meridian

Facea Handa

CV-24 Chengjiang Conception vessel HT-7 Shenmen Heart

BL-1 Jingming Bladder HT-8 Shaofu Heart

BL-2 Cuanzhu Bladder HT-9 Shaochong Heart

GB-1 Tongziliao Gallbladder LI-1 Shangyang Large intestine

GB-2 Tinghui Gallbladder LI-2 Erjian Large intestine

GB-14 Yangbai Gallbladder LI-3 Sanjian Large intestine

GV-25 Suliao Governing vessel LI-4 Hegu Large intestine

GV-26 Shuigou Governing vessel LU-11 Shaoshang Lung

GV-27 Duiduan Governing vessel LU-9 Taiyuan Lung

LI-19 Kouheliao Large intestine PC-9 Zhongchong Pericardium

LI-20 Yingxiang Large intestine SI-1 Shaoze Small intestine

SI-18 Quanliao Small intestine SI-2 Qiangu Small intestine

ST-1 Chengqi Stomach SI-3 Houxi Small intestine

ST-2 Sibai Stomach SI-4 Wangu Small intestine

ST-3 Juliao Stomach TE-1 Guanchong Triple energizer

ST-4 Dicang Stomach TE-2 Yemen Triple energizer

ST-5 Daying Stomach TE-3 Zhongzhu Triple energizer

ST-6 Jiache Stomach TE-4 Yangchi Triple energizer

ST-7 Xiaguan Stomach

TE-23 Sizhukong Triple energizer

Provides the standard name and abbreviation for each acupuncture point.
aMore detail provided in the Supplementary Table S1.

FIGURE 2

Flowchart illustrating the acupoint detection pipeline using the MediaPipe framework.
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Figure 4), with one landmark serving as the reference point. Vectors 
were calculated from this reference point to the other two landmarks. 
Taking the cross product of these two vectors produced the palm’s 3D 
orientation vector. The angle between this palm vector and the global 
Z-axis was computed using the dot product. This angle measurement 
enabled classifying the hand into one of the four posture categories 
based on how much it diverged from the Z-axis orientation.

A similar methodology was utilized to model the face. The facial 
region was divided into three key postures—center, left, and right—in 
order to account for horizontal head rotation. Each of these three 
poses had a specific set of facial landmarks that were visible and could 
be detected. The proportional distances and angles between these 

landmarks (calculated using Equations 1 and 2) are then used to 
mathematically derive the predicted locations of associated acupoints.

For example, the coordinates of the HT8 (Shaofu) acupoint, which 
is located on the palm of the hand, in the depression between the 
fourth and fifth metacarpal bones, proximal to the fifth 
metacarpophalangeal joint, is calculated in relation to the distance of 
landmarks 5 and 17 as shown in Figure 5. The Euclidean distance 
between these skeletal landmarks is first computed (base_distance). 
Next, based on a proportional measurement, the distance from HT8 
to the point between landmarks 13 and 17 is calculated as 1/5 of that 
length (base_distance) toward landmark 0. Finally, we project the HT8 
coordinates at the proper location along the palm.
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Note that for facial acupuncture points, there are a greater number 
of anatomical landmarks (468) that can be used as reference points, 
which makes estimating the acupoint locations on the face easier 
compared to hand region with fewer identifiable landmarks. In 
addtion, there is no anatomical landmarks that can be reliably used as 
reference points for locating acupoints like LI11, LI10, and TE5 that 
located on forearm. Thus, this work focuses on acupoint localization 
for the hand given the greater challenges in accurately identifying 
forearm acupoints without established anatomical landmark provided 
by MediaPipe hand or pose estimation model.

In essence, classical acupuncture proportional methods are 
translated into computational geometric transformations in order to 
map key reference points on the body to known acupoint locations 
based on their relative positions. Further optimization of these 
formulaic projection techniques could enhance precision.

FIGURE 3

Visualization of hand acupuncture points organized by four postures. Segmenting points by posture enables clear visualization and access across hand 
surfaces (Images of hand from the source National University of Korean Medicine, Graduate School of Korean Medicine, Meridian and Acupoint Studies 
Textbook Compilation Committee, 2020).

FIGURE 4

The 3D landmarks we used and the specific ones selected to calculate 
the palm normal and the angle that determined hand postures.
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2.2 Data-driven pose estimation approach

In addition to the proportional mapping approach, a data-driven 
deep learning model based on YOLOv8-pose was also developed to 
provide a comparative solution. Ultralytics released a version of the 
YOLO object detection model, providing state-of-the-art accuracy 
and speed for detection tasks. This version of YOLO has the same 
overall architecture (Figure 6) as previous versions, but it includes 
many enhancements compared to earlier iterations. It uses a new 
neural network design that combines feature pyramid network (FPN) 
and path aggregation network (PAN) architectures (Jocher et  al., 
2023). YOLO models are generally known for their computational 
efficiency and real-time performance, which aligns with the study’s 
goal of developing a real-time acupuncture point detection system.

YOLOv8 comes in 5 sizes and expands the capabilities beyond just 
detection to also include segmentation, pose estimation, tracking and 
classification. This new comprehensive computer vision system aims 
to provide an all-in-one solution for real-world applications (Terven 
et  al., 2023). The YOLOv8 architecture leverages a convolutional 
neural network (Terven et al., 2023) to spatially localize and predict 
keypoints within the images. However, an official paper has yet to 
be released. We implement the code from the Ultralytics repository 
(Jocher et al., 2023).

2.2.1 Dataset collection and preprocessing
To train a real-time acupoint detection model, we collected a 

dataset comprising 5,997 acupoint-annotated images of arms at a 
resolution of 1,488 × 837 pixels. These images were sourced from 194 
participants (49 male, 45 female, age range 19–68 years) at Pukyong 
National University and Dongshin University in South Korea, 
captured in a controlled laboratory environment with a white 
background. The dataset contains annotations marking five common 
acupoints on arm and hand—LI4 (Hegu), TE3 (Zhongzhu), TE5 
(Waiguan), LI10 (Shousanli) and LI11 (Quchi)—localized according 
to the standard acupuncture point locations in the Western Pacific 
Region defined by the World Health Organization (Sulong and 
Randles, 2023) and verified by experts in oriental medicine (Figure 7). 
The annotations include bounding boxes around each arm and 
keypoint locations for the acupoints. The annotations were done using 
the COCO Annotator tool (Stefanics and Fox, 2022).

The data was then split into a training set of 5,392 images and a 
validation set of 605 images. A limitation of this dataset is that the arm 
poses and sizes are relatively uniform, lacking diversity. To help 
mitigate this, data augmentation techniques like rotation, scaling, and 
cropping applied on-the-fly to the training images to increase the 
diversity of the training data. Supplementary Figure S1 provides 
example input images from the dataset used by the model.

FIGURE 5

Example approach to localize an acupoint (HT8).

FIGURE 6

YOLOv8 architecture. The head can be decoupled to process objectness, classification, and regression tasks independently (Jocher et al., 2023; 
MMYOLO Contributors, 2023).
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A limitation of this dataset is that the arm poses and sizes are 
relatively uniform, which may restrict the model’s ability to 
generalize to real-world scenarios with greater variability. To 
mitigate this, we employed data augmentation techniques during 
training. These techniques included rotation, scaling, and cropping, 
which were applied on-the-fly to the training images. This process 
introduced artificial variations in arm poses and sizes, enhancing 
the model’s exposure to a wider range of potential inputs. To 
minimize the impact of potential similarity between images from 
the same participant, we  split the dataset into training and 
validation sets based on participants. The data was then split into a 
training set of 5,392 images and a validation set of 605 images. 
While these measures were taken to enhance the dataset’s diversity 
and mitigate potential biases, it is important to acknowledge that 
the validation process may still be  limited by the relatively 
controlled nature of the data. Further evaluation on a more diverse 
dataset with a wider range of arm poses and sizes would 
be  beneficial for a comprehensive assessment of the model’s 
generalizability. Supplementary Figure S1 provides example input 
images from the dataset used by the model.

2.2.2 Model training and evaluation metrics
We decide to implement transfer learning and initialize our 

models with pre-trained weights from YOLOv8l-pose (large), 
which was pre-trained on human pose estimation using the COCO 

dataset. Evaluated on COCO Keypoints validation 2017 dataset, 
YOLOv8l-pose achieved an mAP50–95 of 67.6% and mAP50 of 90.0% 
with an image size of 640 pixels (Jocher et al., 2023). We then begin 
fine-tuning this base model on our custom dataset of acupoints on 
arm and hand images that as mentioned was split into a 90% 
training set and 10% validation set to adapt the model to specifically 
identify acupoints on hands. This transfer learning approach allows 
us to leverage the representations learned by the pre-trained 
YOLOv8-pose model to accelerate training on our more specialized 
acupoint detection task. In addition, it’s clear that a diverse dataset 
is crucial for deep learning models to make precise predictions. To 
enhance the performance of our pose estimation model, 
we  implemented various data augmentation techniques. The 
augmentations we  implemented were horizontal flipping of the 
images, rotation by varying degrees, mixup which combines 
samples through linear interpolation, and Mosaic augmentation 
that stitches together regions from multiple samples. These methods 
increased the diversity of our training data, which helped the model 
learn more robust features and improved accuracy.

For implementation, we utilized an Nvidia RTX 4090 GPU with 
24GB RAM to efficiently train the acupoint detection model. Table 2 
outlines the key training parameters used in the training process.

After model training was complete, several validation metrics 
were used to evaluate the performance of the acupoint detection 
model, including distance error (E), precision, recall, mean average 
precision (mAP), and object keypoint similarity (OKS), as outlined 
in Equations 3–7. The error E between the predicted acupoint 
position Ppred and the annotated ground truth acupoint position Pgt is 
defined as the Euclidean distance between them in the image space. 
The OKS metric specifically measures the similarity between 
predicted and ground truth keypoints, which is relevant for 
evaluating acupoint detection performance.

The specific formulas for calculating these metrics are:

 pred gtE P P= − 

 (3)

 
TPPrecison 100%

TP FP
= ×

+  
(4)

FIGURE 7

Location of acupoints on the hand. Shown are LI4 (Hegu), TE3 (Zhongzhu), TE5 (Waiguan), LI10 (Shousanli), and LI11 (Quchi). (Hand image reproduce 
from source National University of Korean Medicine, Graduate School of Korean Medicine, Meridian and Acupoint Studies Textbook Compilation 
Committee, 2020).

TABLE 2 Parameter settings for model training.

Parametersa Values

Image size 640 × 640

#Epochs 300

#Batch-size 16

Initial learning rate 0.01

Main optimizer SGD

Loss CIoU_loss + DFL + Kobj_

BCE + KIoU_lossb

aFull list of parameters used provided in Supplementary param.yaml file.
bIoU, intersection over union; CIoU, complete IoU; DFL, distribution focal loss; KBCE, 
keypoint objectness binary cross entropy; KIoU, Keypoint IoU (keypoint oks loss).
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where: TP = true positives, FP = false positives, FN = false 
negatives, TN = true negatives, C = total number of categories, 
APi = average precision for the ith category and mAP was calculated 
as the mean of average precision scores across all categories, to 
summarize the model’s overall precision. For each predicted keypoint, 
the OKS is calculated based on the Euclidean distance between the 
predicted and ground truth keypoint (di), adjusted by the scale (s) 
which normalizes for object size, and a per-keypoint constant (k) that 
controls falloff. In our dataset, we used a constant k value of 0.02 for 
all keypoints. The OKS scores can then be averaged across keypoints 
and images to evaluate overall localization performance.

These metrics were computed on a validation set to evaluate the 
performance of the acupoint detection model after training.

3 Results

3.1 Landmark detection and proportional 
mapping approach

Through integrating principles of oriental medicine, literature 
references, and the MediaPipe framework, real-time performance 
in localizing 38 acupoints was accomplished in this study. Figures 8, 9 
presents exemplary outcomes, demonstrating the proficiency of the 

proposed approach in detecting acupoints across various postures. 
Additionally, Supplementary Videos S1, S2 provide more extensive 
examples showcasing acupoint detection across a wide range of 
motions and poses.

We only evaluated the accuracy of our proposed model using a 
subset of 188 images from the larger dataset mentioned previously, 
which included 8 acupoints localization. These 188 images contain 
annotated acupuncture points that serve as ground truth landmarks. 
The images have annotations for 8 common acupoints on the back of 
the hand: LI4 (Hegu), TE3 (Zhongzhu), SI1 (Shaoze), HT9 
(Shaochong), TE1 (Guanchong), PC9 (Zhongchong), LI1 
(Shangyang), and TE2 (Erjian), These acupoints were selected for 
evaluation because of their frequent utilization in acupuncture therapy.

Quantitative evaluation of model performance utilized the 
Euclidean distance metric (see Equation 3) to compute error between 
predicted and ground truth acupoint coordinates across all images of 
dataset. The average distance error achieved by this method was less 
than 10 pixels over all annotated landmarks (see Figure 10b). The low 
average distance error signifies that the predicted acupoint locations 
from the model closely correspond to the true anatomical locations 
demarcated by experienced practitioners.

We also analyzed the errors for localizing each individual acupoint 
location as shown in Figure  10. The box plots summarize the 
distribution of errors over all test images for each point. The median 
error varied based on the size and distinguishability of each point, 
ranging from ~4.0 pixels for the prominent PC9 acupoint to ~9.0 
pixels for the TE3 acupoint. These results demonstrate that the model 
can detect acupoint near fingertips with high accuracy, localizing 
them within ~10 pixels for the majority of validation cases. These 
pixel-level errors correspond to approximately sub-centimeter 
accuracy in real-world coordinates.

To convert pixel errors to real-world coordinates, we used a simple 
calibration method. The images utilized for validation in this analysis 
were captured at a resolution of 1,488 × 837 pixels. A sheet with 
known horizontal length of approximately 80 cm was placed in the 
scene as a scale reference. This sheet spanned roughly 1,488 pixels 

FIGURE 8

Example result of showing acupoints on the face and hand.
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horizontally across the image. Using the known real-world length and 
corresponding pixel length, we  estimated a conversion factor of 
approximately 0.0537 cm per pixel. Utilizing this pixel-to-physical 
space calibration, the quantified pixel-level errors can be translated to 
real-world spatial errors with approximately sub-centimeter accuracy. 
With this calibration, for example, a pixel error of 10 pixels would 
translate to around 5.37 mm error in real-world coordinates.

To further assess the accuracy of predicted acupoint coordinates, 
we expanded our evaluation beyond the Euclidean distance metric. 
This comprehensive approach incorporates multiple statistical 
measures and visualizations, providing a more understanding of the 
model’s performance. In addition to the average distance error 
reported earlier, we calculated confidence intervals, and conducted 
statistical Kolmogorov–Smirnov tests to examine the significance of 
differences between predicted and actual coordinates as shown in 
Table 3. The test is a non-parametric statistical test that compares two 
distributions to see if they differ significantly. The mean distance 
between actual and predicted points is 5.58 pixels, with a narrow 95% 

confidence interval (5.38, 5.78), reflecting high accuracy. The 
Kolmogorov–Smirnov tests for both X and Y axes yield statistics of 
0.010 and 0.012, respectively, with p-values of 1.000, suggesting that 
the error distributions are well-matched to the expected distributions.

The model’s performance was assessed using multiple 
visualizations as shown in Figure 11. The scatter plot of actual vs. 

FIGURE 9

Exemplary images from dataset with landmark-based model outputs depicting acupoint locations on the back side of the hand, including LI4, TE1, TE2, 
TE3, LI1, PC9, SI1, HT9.

FIGURE 10

Acupoint localization accuracy landmark-based approach. (a) Boxplots depicting the distribution of Euclidean distance between predicted and ground 
truth acupoint locations for each evaluated acupoint separated for each hand (right and left). (b) Bar chart visualizing the mean of localization errors 
across different acupoints. The results demonstrate that the majority of points are localized with sub-centimeter accuracy.

TABLE 3 Summary of landmark-based approach model performance 
metrics and statistical tests.

Metric/test Value (pixel)/
statistic

95% CI/p-
value

Mean distance 5.58 5.38–5.78

Kolmogorov–Smirnov 

test (X-axis)

Statistic = 0.010 p = 1.000

Kolmogorov–Smirnov 

test (Y-axis)

Statistic = 0.012 p = 1.000
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predicted points demonstrates a strong overall correspondence, with 
predicted points (blue) closely overlapping actual points (gray) across 
the coordinate space. The distribution of prediction errors reveals a 
mean L2 distance of 5.58 pixels, with a tight 95% confidence interval 
of (5.38, 5.78), indicating consistent accuracy. The error distribution 
for X and Y coordinates, visualized as a 2D density plot, shows a 
concentrated, symmetric pattern centered around zero, suggesting 
unbiased predictions. The residual plot further supports this, 
displaying a relatively even spread of errors around the zero line for 
both X and Y axes, with most residuals falling within ±10 pixels. 
Notably, there’s a clear separation in the residual values for the X-axis. 
This is due to the acupoints being predominantly associated with 
either the left or right hand, leading to distinct coordinate predictions 
based on hand position. Overall, these results demonstrate the model’s 
high precision in predicting spatial coordinates, with a small average 
error and well-suited error distributions across the prediction space.

3.2 Data-driven pose estimation approach

Data-driven pose estimation model achieves good accuracy for 
acupoint localization given the constraints of this dataset. The results 
validate the effectiveness of YOLOv8-pose for this medical imaging 
application and computer vision task.

Figure 12 visualizes two example outputs on the validation set for 
acupoint localization. More examples of validation batch results are 
shown in the Supplementary Figures S3, S4. Additionally, videos 

demonstrating the model’s acupoint localization on full motion 
sequences are provided in Supplementary Video S3. Qualitatively, 
YOLOv8 appears able to predict acupoint locations that closely match 
the ground truth in this controlled dataset. Some slight variations are 
visible upon close inspection, but overall YOLOv8-pose demonstrates 
acceptable performance for this acupoint localization task.

Quantitatively, YOLOv8-pose demonstrates high performance on 
acupoint localization as evidenced by high mean Average Precision 
(mAP) scores on the validation set. Specifically, it achieves an mAP at 
OKS 50% of 0.99 and 50–95 of 0.76 pose estimation. The complete 
quantitative results while training are presented in 
Supplementary Table S2. These high mAP values indicate that the 
model is able to accurately localize and identify acupoints in the 
validation images. Table  4 summarizes the model’s localization 
accuracy for each acupoint by reporting the Mean distance error in 
mm between the predicted and true acupoint positions. Note that to 
convert from pixels to mm, the pixel-to-mm conversion approach 
outlined in section 3.1 was used.

Furthermore, we calculated confidence intervals and conducted 
statistical tests to evaluate differences between predicted and actual 
coordinates, as shown in Table 5. The mean distance between actual and 
predicted points is 6.81 pixels, with a 95% confidence interval of (6.65, 
6.98), indicating good accuracy. The Kolmogorov–Smirnov tests for the 
X and Y axes yield statistics of 0.010 and 0.015, with p-values of 0.997 and 
0.906, respectively, suggesting well-matched error distributions.

The results visualized in Supplementary Figure S2 show the loss 
and accuracy curves for both the training and validation data across 

FIGURE 11

Landmark-based approach model performance evaluation. (a) Actual vs. predicted points scatter plot. (b) L2 distance error distribution [mean: 6.81 
pixels, CI: (6.65, 6.98)]. (c) 2D error distribution for X and Y coordinates. (d) Residual plot showing prediction errors across coordinate range.
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training epochs. As demonstrated, the training and validation results 
showed that the YOLOv8-pose model for acupoint detection 
exhibited good convergence for this dataset. Specifically, the loss 
curve declined rapidly then flattened, indicating effective 
optimization. Meanwhile, the precision, recall, and mAP metrics 
increased quickly then stabilized, demonstrating model performance 
on the validation set.

Additionally, Figure  13 illustrates the acupoint localization 
accuracy achieved by the YOLOv8-pose model. Boxplots in panel (a) 
show the distribution of Euclidean distance errors between predicted 
and ground truth locations for each acupoint. The bar chart in panel 
(b) visualizes the mean of localization errors.

Regarding Figure 14, the scatter plot shows strong alignment 
between actual and predicted points, with a mean L2 error of 6.81 
pixels and a 95% confidence interval of (6.65, 6.98), indicating 
consistent accuracy. The 2D density plot reveals a symmetric error 
distribution centered around zero, though some variability is 
observed. The residual plot highlights errors within ±10 pixels. 
Overall, the model performs well, but improvements could be made 
in reducing prediction variability and enhancing accuracy for points 
farther from the center.

3.3 Application development

To demonstrate the practical application of these models, a simple 
desktop application was developed using Tkinter, a Python library for 
creating graphical user interfaces. The application allows users to use 
a webcam feed for real-time acupoint localization. Upon camera 
activation, the landmark detection framework or the fine-tuned pose 
estimation model processes the input, and the identified acupoints are 
visualized on the screen.

The application provides an intuitive interface for users (Figure 15). 
Further enhancing user experience, the application allows practitioners 
to choose specific acupoints of interest. Once the webcam is activated 
and the desired model and acupoints are selected, the system processes 
the live video feed. Identified acupoints are then dynamically overlaid 
onto the displayed image, providing practitioners with precise visual 
guidance. Looking ahead, we plan to expand the application’s capabilities 
to include acupoint localization on the legs, which are crucial for 
treating conditions affecting the lower body regions. Overall, this 
straightforward and user-friendly application showcases the potential of 
integrating AI-based acupoint localization into acupuncture treatments.

4 Discussion

This study investigated the feasibility of leveraging computer 
vision techniques to automate the localization of acupuncture points 
on the face and hands. Our study focused on these areas due to their 
frequent use in clinical practice and relative accessibility for imaging. 
These areas offer a high density of commonly used acupoints in a 
compact region, facilitating efficient data collection and analysis. 
Specifically, we explored two distinct approaches: Utilizing a real-
time landmark detection framework to identify anatomical keypoints 
and map acupoint locations based on classical proportional 

FIGURE 12

Acupoint localization accuracy of data-driven pose estimation approach. Shows the predicted acupoint locations from YOLOv8-pose.

TABLE 4 Performance of YOLOv8-pose on the custom dataset of arm acupoints after 300 training epochs with an input size of 640  ×  640 pixels.

Model mAPval 50 
(pose)

mAPval 50–95 
(pose)

LI11 (mm) LI10 (mm) TE5 (mm) LI4 (mm) TE3 (mm)

YOLOV8l-pose 

(Pretraind)
0.99 0.76

3.68 3.97 4.14 2.93 3.82

±(2.44) ±(2.65) ±(2.89) ±(2.59) ±(3.08)

TABLE 5 Summary of data-driven pose estimation approach model 
performance metrics and statistical tests.

Metric/test Value (pixel)/
statistic

95% CI/p-
value

Mean distance 6.81 6.65–6.98

Kolmogorov–Smirnov 

test (X-axis)
Statistic = 0.010 p = 0.997

Kolmogorov–Smirnov 

test (Y-axis)
Statistic = 0.015 p = 0.906
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FIGURE 14

Data-driven pose estimation approach model performance evaluation: (a) Actual vs. predicted points scatter plot. (b) L2 distance error distribution 
[mean: 6.81 pixels, CI: (6.65, 6.98)]. (c) 2D error distribution for X and Y coordinates. (d) Residual plot showing prediction errors across coordinate 
range.

measurement methods from acupuncture literature, and; fine-tuning 
a state-of-the-art pose estimation model on a custom dataset to 
directly predict acupoint coordinates through data-driven deep 
learning. Both methodologies demonstrated promising results in 

accurately identifying and visualizing acupuncture points in real-
time settings.

The proposed landmark-based approach effectively detected 
anatomical keypoints to visually guide acupoint positioning. This 

FIGURE 13

Acupoint localization accuracy for data-driven pose estimation approach. (a) Boxplots depicting the distribution of Euclidean distance errors between 
predicted and ground truth acupoint locations for each evaluated point. (b) Bar chart visualizing the mean localization errors across different 
acupoints. The results demonstrate that the majority of points are localized with sub-centimeter accuracy.
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could enable innovative acupuncture-assistive tools by providing 
practitioners with rapid on-screen guidance. A key advantage of our 
approach is the integration of the efficient framework, enabling real-
time landmark detection and proportional mapping of acupoints 
across various hand and facial poses. As the architecture and training 
details of the MediaPipe models are proprietary, we cannot replicate 
the models directly through training our own model from scratch. 
Therefore, the methodology applies classical formulas to anatomically 
map and proportionally estimate acupoint locations. It can be easily 
adapted to different hand and face postures and allows for real-time 
visualization of acupoints. However, challenges remain in improving 
resilience to scale and rotation variances and using it for different 
body parts not accounted for in the original framework models. 
Qualitative assessment shows that accuracy depends heavily on the 
ability to reliably detect and track key anatomical landmarks. This can 
introduce some inaccuracies into the system’s final output. 
Furthermore, mathematical transformations may lack adaptability 
across heterogeneous populations. For a solution, transitioning to 
data-driven machine learning techniques could potentially address 
these limitations. The qualitative results show that the acupoints on 
the face have more invariance to transitional and rotational movement, 
which may be due to the higher number of landmarks in that region 

(468 keypoints). The quantitative results for hand dataset of 188 
validation images reveal that the accuracy is higher for areas around 
the fingertips. This suggests it is easier for the model to locate these 
points compared to acupoints in the middle of the back of the hand.

In contrast to classical mapping techniques, data-driven deep 
learning approaches like the one employed by Sun et al. (2020, 2022) 
using U-Net and HRNet architectures can learn acupoint features 
directly from data. Our pose estimation model achieved acceptable 
acupoint localization accuracy (mAP at OKS 50–95% = 0.76, Mean 
error less than ~5 mm) in constrained arm dataset images for locating 
five acupoints. Compared to Sun et al.’s method that detected only 2 
acupoints, our model localized 5 hand acupoints with high precision. 
Nevertheless, from Figure 10 it is evident that that the majority of the 
predicted acupoint locations for LI4, TE3, and LI11 exhibit high 
accuracy when approximately converted from pixel coordinates to 
physical distances based on the defined pixel-to-cm conversion factor. 
However, acupoints LI10 and TE5 exhibit higher localization errors 
compared to other acupoints. This suggests these two acupoints are 
more challenging for the model to precisely predict, perhaps due to 
greater variability in their location or appearance in the dataset. Further 
analysis of these acupoints may be needed to improve localization 
performance. While this model demonstrates acceptable performance 

FIGURE 15

Interactive desktop application for real-time acupoint localization using pose estimation models on webcam feed (Additional usage examples provided 
in the Supplementary Figure S5 and Supplementary Video S4).
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for acupoint localization for controlled lab images, it may not generalize 
as well to more complex real-world hand images with cluttered 
background compared to MediaPipe that their model for hand 
landmarks trained on more than 30,000 images of hand. These initial 
results are encouraging, further evaluation is needed to determine how 
the model generalizes to real-world settings outside of the lab.

However, a significant limitation shared across studies in this 
scope, including ours, is the lack of large, publicly available datasets 
with expert-annotated acupoints. This hinders the ability to 
benchmark and compare the performance of different computer 
vision models specifically designed for acupuncture point detection, 
as we do not have access to comparable datasets or models (Sun et al., 
2020; Sun et al., 2022; Chen et al., 2021). Finally, in this study the 
quantitative evaluation of facial acupoint localization was not 
addressed due to lack of a dataset of faces with known acupoint 
locations in this study, presenting an area for future investigation. 
Combining data-driven techniques with domain expertise in oriental 
medicine can pave the way for more advanced and integrative 
acupoint recognition systems.

Looking ahead, integrating the 3D capabilities of real-time 
landmark detection framework (including depth information) could 
enable 3D acupoint visualization and localization, a capability not 
explored in prior works. In contrast, the pose estimation currently lacks 
support for depth estimation, presenting an area for potential 
enhancement. Furthermore, investigating few-shot learning or domain 
adaptation techniques could enhance the generalization of data-driven 
models to handle real-world diversity beyond limited training data.

5 Conclusion

In conclusion, this study explored the potential of leveraging 
computer vision techniques for automating the localization of 
acupuncture points on the face and hands. Two distinct approaches 
were investigated: (1) utilizing a real-time landmark detection 
framework to map acupoints based on anatomical landmarks and 
proportional measurements, and (2) fine-tuning a state-of-the-art 
pose estimation model on a custom dataset for direct acupoint 
detection. The landmark-based system showed promising real-
time acupoint visualization capabilities but had limitations due to 
potential landmark detection inaccuracies and rigid mapping 
formulas. The pose estimation model achieved sub-centimeter 
mean localization accuracy when fine-tuned on a controlled 
dataset but may face performance degradation in complex, real-
world scenarios beyond the training dataset constraints. While 
both methodologies exhibit encouraging preliminary results, 
several challenges persist. These include the lack of large, diverse 
datasets for training and benchmarking acupoint detection 
models, as well as the need for further generalization and 
robustness to real-world variations. To address these challenges, 
our future work plans to curate a comprehensive dataset 
encompassing acupoints on legs and arms across a wide range of 
cluttered backgrounds and poses. Ultimately, the successful 
integration of computer vision and artificial intelligence into 
acupuncture practice holds immense potential for streamlining 
treatments, enhancing precision, and providing valuable assistive 
capabilities to practitioners. This work represents an important 
step towards realizing automated, technology-aided acupuncture, 

paving the way for further advancements in modernizing this 
ancient healing modality.
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SUPPLEMENTARY VIDEO S1

Real-time facial acupoint detection using MediaPipe.

SUPPLEMENTARY VIDEO S2

Real-time hand acupoint detection using MediaPipe.

SUPPLEMENTARY VIDEO S3

Real-time hand acupoint detection using YOLOv8 pose estimation  
model.

SUPPLEMENTARY VIDEO S4

Real-time customized hand acupoint detection using Mediapipe through 
the GUI.
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