
TYPE Original Research

PUBLISHED 20 November 2024

DOI 10.3389/fnbot.2024.1483131

OPEN ACCESS

EDITED BY

Xianmin Wang,

Guangzhou University, China

REVIEWED BY

Kongyang Chen,

Guangzhou University, China

Sara Akan,

Istanbul Galata University, Türkiye

Niveen Farid,

National Institute of Standards, Egypt

*CORRESPONDENCE

Ni Wang

wangni786@163.com

RECEIVED 19 August 2024

ACCEPTED 03 October 2024

PUBLISHED 20 November 2024

CITATION

Wang N (2024) Multimodal robot-assisted

English writing guidance and error correction

with reinforcement learning.

Front. Neurorobot. 18:1483131.

doi: 10.3389/fnbot.2024.1483131

COPYRIGHT

© 2024 Wang. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Multimodal robot-assisted
English writing guidance and
error correction with
reinforcement learning

Ni Wang*
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Introduction: With the development of globalization and the increasing

importance of English in international communication, e�ectively improving

English writing skills has become a key focus in language learning. Traditional

methods for English writing guidance and error correction have predominantly

relied on rule-based approaches or statistical models, such as conventional

language models and basic machine learning algorithms. While these methods

can aid learners in improving their writing quality to some extent, they often su�er

from limitations such as inflexibility, insu�cient contextual understanding, and

an inability to handle multimodal information. These shortcomings restrict their

e�ectiveness in more complex linguistic environments.

Methods: To address these challenges, this study introduces ETG-ALtrans,

a multimodal robot-assisted English writing guidance and error correction

technology based on an improved ALBEF model and VGG19 architecture,

enhanced by reinforcement learning. The approach leverages VGG19 to extract

visual features and integrates them with the ALBEF model, achieving precise

alignment and fusion of images and text. This enhances the model’s ability to

comprehend context. Furthermore, by incorporating reinforcement learning, the

model can adaptively refine its correction strategies, thereby optimizing the

e�ectiveness of writing guidance.

Results and discussion: Experimental results demonstrate that the proposed

ETG-ALtrans method significantly improves the accuracy of English writing error

correction and the intelligence level of writing guidance in multimodal data

scenarios. Compared to traditional methods, this approach not only enhances

the precision of writing suggestions but also better caters to the personalized

needs of learners, thereby e�ectively improving their writing skills. This research

is of significant importance in the field of language learning technology and

o�ers new perspectives and methodologies for the development of future

English writing assistance tools.
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1 Introduction

In the current field of natural language processing, English Text Generation
technology is becoming increasingly important. Firstly, this technology not only
enhances machines’ understanding and generation of language but also advances
automated content creation. For example, it plays a crucial role in news reporting,
advertising copy, and literary creation. Secondly, with the continuous development
of artificial intelligence technology, English Text Generation not only provides more
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natural and fluent communication but also meets personalized and
context-specific needs, thereby improving user experience. Overall,
this technology not only helps to improve the performance of
language models but also holds broad application prospects in
fields such as education and entertainment. Therefore, research
into this technology is of significant practical importance and
far-reaching impact.

Traditional methods for English text generation primarily rely
on symbolic AI and knowledge representation. During this phase,
expert systems, as a classic technology, generate text by utilizing
predefined rules and knowledge bases. The main advantage of
this approach is its ability to provide high-precision semantic
processing, ensuring that the generated text adheres to specific
knowledge and rules (Liu A. et al., 2021). Another method is
rule-based text generation, which relies on a systematic set of
language rules to ensure that the generated text is consistent
and standardized in grammar and structure (Gašpar et al., 2023).
Additionally, manual feature extraction is a commonly used
technique, where features are manually selected and defined to
drive text generation, allowing the model to focus on key language
features and improve the quality of the generated text (Wang et al.,
2020). These methods have distinct advantages in their respective
application domains, such as high control, good interpretability,
and strong structural capabilities. However, they also have certain
shortcomings. For example, expert systems and rule-basedmethods
often lack flexibility when dealing with complex and dynamic
language environments. Although manual feature extraction can
capture important features, it often struggles to adapt to language
changes and diversity. Therefore, these traditional methods need
further improvement and expansion to meet modern demands.

To address the shortcomings of traditional algorithms in
terms of flexibility and adaptability, data-driven and machine
learning-based algorithms have been widely applied in English text
generation. Thesemethods primarily generate text by automatically
learning language patterns and features from large amounts of
data. This approach has strong adaptive capabilities, allowing it to
handle complex language structures and diverse expressions (Zeng,
2016). For example, decision tree-based algorithms effectively
handle classification and regression problems by recursively
partitioning datasets to form a series of rules. Random forest-
based methods further enhance text generation stability and
accuracy by constructing an ensemble model of multiple decision
trees, demonstrating exceptional performance, particularly in
handling high-dimensional data (Jalal et al., 2022). Additionally,
the multilayer perceptron, as a type of feedforward neural network,
captures complex relationships and deep features in language
through the nonlinear combination of multiple hidden layers,
generating more natural and fluent text (Sewunetie and Kovács,
2022). However, these methods have the drawbacks of high training
complexity and a strong dependence on large-scale data, and they
often exhibit insufficient generalization performance when dealing
with extreme or rare language patterns.

To address the shortcomings of statistical andmachine learning
algorithms in feature extraction and model generalization, deep
learning-based algorithms have been widely applied in English
text generation. These methods primarily generate more natural
and high-quality text by automatically learning complex language

features and patterns through deep neural networks. This approach
has significant advantages, such as the ability to handle large
amounts of unstructured data, capture complex dependencies
in language, and generate highly coherent and contextually
appropriate content. For instance, Convolutional Neural Networks
(CNNs) effectively process structural information in sentences
or paragraphs by extracting local features of the text (Uchendu
et al., 2020). Generative Adversarial Networks (GANs), through
adversarial training between a generator and a discriminator, can
generate content that closely resembles real text, enhancing the
diversity and creativity of text generation (Chang et al., 2023). The
Transformermodel, with its self-attentionmechanism, significantly
improves the efficiency and accuracy of text generation, particularly
excelling in the generation of long texts (Phan et al., 2022).
The attention mechanism further strengthens the model’s ability
to capture contextual information, making the generated text
more coherent and semantically consistent (Liu Y. et al., 2021).
However, these methods have drawbacks, such as high model
complexity, significant computational resource demands, and
insufficient robustness when handling rare or unseen data.

To address the challenges posed by deep learning methods
in English Text Generation, such as high model complexity,
significant computational resource demands, and insufficient
robustness when handling rare or unseen data, we propose
a method named ETG-ALtrans. This method is based on an
improved ALBEF (Align before Fuse) model and is applied
to English writing guidance and error correction technology
assisted by a multimodal robot. The traditional ALBEF model
primarily aligns and fuses visual and linguistic information to
handle multimodal tasks but faces limitations in complex language
generation and semantic understanding. To overcome these issues,
we optimized the ALBEF model to enhance its ability to capture
contextual information in text generation while reducing its
dependency on computational resources. ETG-ALtrans integrates
multimodal information such as text, images, and speech to
provide comprehensive English writing guidance. It effectively
identifies and corrects grammatical and semantic errors in writing
and generates more natural and fluent text based on context.
Additionally, our method demonstrates stronger robustness when
dealing with rare and unseen language patterns, improving the
model’s adaptability in diverse application scenarios. Experimental
validation shows that ETG-ALtrans outperforms on multiple
metrics, offering new insights into the development of English
writing guidance technology.

• ETG-ALtrans introduces an improved ALBEF model,
which combines multi-modal information to improve the
comprehensive understanding and generation capabilities of
text and visual content.

• This method is adaptable to multiple scenarios, efficiently
handles complex writing tasks, has strong versatility, and is
suitable for a variety of English writing and error correction
scenarios.

• Experimental results show that ETG-ALtrans is significantly
better than traditional methods in accuracy, fluency and
grammatical standardization, improving the overall effect of
English writing guidance and error correction.
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2 Related work

2.1 Text generation

Text generation technology is a key research area in natural
language processing (NLP), aiming to automatically generate
natural language text that adheres to grammatical, semantic,
and contextual requirements. Early text generation techniques
relied primarily on template or rule-based methods. While these
methods performed well in specific scenarios, they lacked flexibility
and contextual understanding, making them less suitable for
complex language generation tasks (Lin et al., 2024b). With
the advent of statistical language models, particularly n-gram
models, text generation gradually shifted toward data-driven
approaches. In recent years, neural networks, especially Recurrent
Neural Networks (RNNs) and Long Short-TermMemory networks
(LSTMs), have played a significant role in text generation. These
models can capture sequential information in text, resulting
in more fluent and coherent sentences. However, these models
also face challenges in handling long-range dependencies (Wang
et al., 2019b). The introduction of Transformer models has
brought a breakthrough in text generation technology. The self-
attentionmechanism of Transformers can better handle long-range
dependencies and significantly improve the quality and efficiency
of text generation. Transformer-based pre-trained models, such as
the GPT series and BERT, have become mainstream in the field of
text generation. These models, through large-scale pre-training and
fine-tuning, can generate high-quality text for various tasks (Yuan
et al., 2021). Notably, GPT models are widely used in dialogue
systems, content creation, code generation, and other areas due to
their exceptional generation capabilities. However, text generation
still faces challenges such as controllability, diversity, coherence,
and reducing bias and ethical issues. Future research directions
may include more efficient generation models, better model
interpretability, and real-time quality assessment and control of
generated content.

2.2 Convolutional neural networks

Convolutional Neural Networks (CNNs) have become a core
technology in computer vision since their breakthrough in image
recognition tasks in 2012. CNNs are characterized by local
connections, shared weights, and pooling operations, which give
them strong feature extraction capabilities for handling two-
dimensional data like images. Beyond image recognition, CNNs
are widely applied in other visual tasks such as object detection,
image segmentation, and image generation (Lin et al., 2024a). For
example, in object detection, Faster R-CNN significantly improves
detection speed and accuracy by introducing a Region Proposal
Network (RPN). In image segmentation, architectures like U-
Net and SegNet achieve fine-grained semantic segmentation by
classifying each pixel in the image (Wang et al., 2019a). In
addition to computer vision, CNNs are increasingly applied in
other fields. In natural language processing, CNNs are used for
text classification, sentiment analysis, and more. By converting
text into matrix form, CNNs can capture local features of

text and achieve efficient classification. In bioinformatics, CNNs
are used for analyzing gene sequences and predicting protein
structures, effectively identifying important patterns and features
in biological sequence data. Furthermore, CNNs are applied in
signal processing and time-series analysis, where convolution
operations on one-dimensional or multidimensional data help
analyze complex signals effectively (Fishel and Loeb, 2012). Despite
the strong performance of CNNs across various fields, there
are some limitations, such as reliance on large amounts of
labeled data and the need for fine-tuning model structures and
parameters. Future research directions may include more efficient
model architectures, semi-supervised or unsupervised learning
methods to reduce labeling requirements, and model optimization
in low-computation resource environments (De Angelis et al.,
2023).

2.3 Multimodal technology

Multimodal technology refers to the processing and
understanding of information by combining different types
of data (e.g., text, images, audio, video). With the diversification
of data forms and advancements in computational capabilities,
the importance of multimodal technology in artificial intelligence
has increasingly been recognized. Early multimodal technologies
focused on simple feature fusion and joint modeling, such as
concatenating or averaging image and text features to achieve
multimodal information integration. However, these methods
often struggled to capture complex relationships between different
modalities, leading to poor performance in handling multimodal
data (Wang et al., 2016). Recent advancements in deep learning
have significantly progressed multimodal technology. Neural
network-based multimodal models, such as those combining
Convolutional Neural Networks (CNNs) for image processing,
Recurrent Neural Networks (RNNs) for text processing, and
fully connected layers for fusion, have become mainstream.
These models effectively integrate multimodal information
while maintaining the independence of each modality’s features,
thereby improving overall task performance. The introduction
of Transformer models has further advanced multimodal
technology, achieving breakthroughs in handling long-range
dependencies and cross-modal alignment. Models like ALBEF
(Align Before Fuse) enhance the complementarity and synergy
of multimodal information by aligning modalities before fusion
(Fishel and Loeb, 2012). Multimodal technology has found
extensive applications in various scenarios, such as image-
text retrieval, cross-modal translation, and video description
generation. In healthcare, multimodal technology combines
medical images and text reports for more accurate disease
diagnosis and treatment recommendations. In autonomous
driving, multimodal technology integrates data from cameras,
radar, and LiDAR to enhance environmental perception and
decision-making capabilities (Qushem et al., 2021). However,
multimodal technology still faces challenges such as data
heterogeneity, modality misalignment, and modality weight
allocation. Future developments may include more effective
multimodal alignment and fusion strategies, more interpretable
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FIGURE 1

Structure of ETG-ALtrans Net. In existing methods, video features are extracted through a visual encoder, and then passed through an error

correction module to generate prediction results, which are ultimately used to generate English text. In the ETG-ALtrans method, video features are

processed by a visual encoder and text features are processed by a language encoder. Then, the salient frame extraction module is used to select key

frames, and the error correction module is used to generate English text. In contrast, the ETG-ALtrans method introduces the step of salient frame

extraction, which improves the accuracy of generated text.

and robust multimodal models, and efficient deployment and
optimization of multimodal systems in practical applications.

3 Methodology

3.1 Overview of our network

This research introduces an innovative optimization technique
specifically designed for multimodal tasks, built upon the
foundation of the ALBEF (Align Before Fuse) framework (as
shown in Figure 1). It aims to refine the process to better cater to
the requirements of English writing guidance and correction. To
address this limitation, the paper proposes a novel set of training
objectives that leverage convex functions. This novel method
allows the text generation model to prioritize generating high-
probability outputs without the necessity of accurately estimating
the complete data distribution. Consequently, the model becomes
more proficient in capturing high-probability outputs, thereby
enhancing the accuracy and overall quality of the generated
text. This optimization method not only improves the generative
capabilities of the model but also significantly enhances its
performance in practical applications, especially in tasks that
require high-precision text generation and language correction.
For the image encoding process, the research utilizes VGG19 as
the foundational model. VGG19 is renowned for its exceptional
feature extraction capabilities and straightforward yet effective
structural design, making it an ideal choice for image processing
in multimodal tasks. The convolutional layer architecture of

VGG19 enables it to effectively capture hierarchical features in
images, which can be efficiently transferred to other tasks within
multimodal settings. Moreover, VGG19’s streamlined design and
relatively few parameters reduce computational resource demands
and minimize the risk of overfitting. As a result, employing VGG19
as the image encoder not only enhances the model’s stability and
performance but also ensures reliable support for the efficient
operation of the entire multimodal task.

Implementation Process of the Method: In the proposed
method, the overall process is divided into two main parts:
text generation and image encoding, corresponding to the text
editor and image encoder in the ALBEF framework. On the text
editor side, we first improve the traditional MLE training method.
Specifically, the training process no longer relies solely on MLE
but introduces a new training objective based on convex functions.
During the training phase, we designed a convex loss function that
can focus the model’s attention on the output with the highest
generation probability. By optimizing this loss function, the model
is more likely to generate text that is highly relevant to the context
and adheres to linguistic rules, especially in scenarios requiring
correction and assistance in English writing. This improvement
makes the model more targeted during the generation phase,
enhancing the quality and practicality of the generated text. On
the image encoder side, a pre-trained VGG19 model is used as
the base. VGG19 extracts image features through its multi-layer
convolutional structure, which are then input into the ALBEF
framework for alignment and fusion with text features. To ensure
that the image encoder can effectively adapt to the multimodal
tasks in this paper, VGG19 retains its original feature extraction
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capabilities during training while further optimizing to make its
feature representation more accurate and representative. Through
this process, the image encoder provides high-quality image feature
inputs for multimodal tasks, ensuring that the model is efficient
and accurate in handling multimodal data. Ultimately, the text
generator and image encoder work together within the ALBEF
framework to optimize the processing of multimodal tasks, thereby
improving the overall performance of the model.

ALBEF as a foundational framework: While ALBEF serves
as the base framework for aligning and fusing multimodal
information, our model introduces crucial modifications, especially
in how we handle the text generation and correction tasks. ALBEF
primarily focuses on alignment and fusion of visual and textual
information. In contrast, our contribution lies in developing an
enhanced text editing mechanism that leverages this multimodal
alignment for more effective and contextually appropriate English
writing guidance.

Novel text editing framework with improved loss functions:
One of our key contributions is the development of a unified
framework that is compatible with various loss function
configurations. We designed this framework to support more
advanced learning objectives by incorporating convex functions
into the loss formulation. The introduction of convex-based
composite loss functions offers significant advantages, particularly
for error correction and language assistance tasks, where high-
precision outputs are essential. This allows the model to better
focus on generating high-probability target outputs, resulting
in more natural, contextually accurate text generation, which
is crucial for English writing guidance and error correction.
Optimization of the text generation process: Beyond simply relying
on Maximum Likelihood Estimation (MLE), we propose a new
objective function based on convex optimization, which allows
the model to be more targeted in generating high-quality text.
By incorporating these new loss functions, the model becomes
more capable of producing coherent and semantically consistent
text, especially in complex linguistic scenarios. This is a major
enhancement over existing methods that primarily use traditional
MLE for text generation. VGG19 for image encoding: On the
image encoding side, we leverage VGG19 due to its proven feature
extraction capabilities, and the features learned by VGG19 can
be effectively transferred to other tasks, such as multimodal
alignment in writing guidance. Its simplicity and robust design
ensure reduced computational resource demands and minimize
overfitting, which is critical when integrating visual information
into text correction tasks.

Reinforcement learning for dynamic correction: The
introduction of RL further distinguishes our approach. The
RL mechanism enables the model to adaptively adjust its error
correction strategy dynamically, optimizing the text generation
and correction process as it learns from its feedback. This
makes the model more flexible and responsive, especially in
real-world writing scenarios where error patterns and context
vary significantly. The ability to self-adjust allows the system to
cater to different writing styles and needs more effectively, making
it highly adaptable across diverse use cases. While our model
builds on the ALBEF framework for multimodal information
processing, the innovations introduced—especially in the areas

of text editing through advanced loss functions, improved text
generation, and the use of reinforcement learning—represent a
significant departure from existing methods. These contributions
collectively result in a more flexible, accurate, and adaptive system
for English writing guidance and error correction.

3.2 Improved text encoder

In this section, we investigate various loss functions that can
be utilized in the context of English language assistance and error
rectificationmodels (as shown in Figure 2). The goal is to overcome
the limitations associated with Maximum Likelihood Estimation
(MLE) (Shafiq et al., 2023). Initially, we present a unified framework
that is compatible with different loss function configurations.
Subsequently, we examine the advantages of incorporating convex
functions as components of loss within this framework. Lastly, we
propose the development of composite loss functions grounded in
convex function principles, tailored to practical use cases in English
language assistance and error rectification.

To maintain clarity in the notation, the conditioning context is
omitted from probability expressions. The actual data distribution
is indicated by Ptrue(X), while the model’s distribution prediction
is denoted as Qmodel(X). The theoretical findings remain valid for
both conditional and unconditional cases.

We begin by introducing a generalized learning framework
specifically designed for English language assistance and error
rectification, defined by the following loss function:

LG(R) = −EX∼Ptrue(X)
[

G(Rmodel(X))
]

, (1)

where G represents a generalized function applied to the predicted
probability Rmodel(X). The function G must adhere to the following
fundamental conditions: (1) The domain of G should be within
the interval (0, 1]; (2) G should be smooth and allow gradient
computation; and (3) G should be a monotonically increasing
function within (0, 1] to encourage the model to generate the
optimal output for each sample.

Under the proposed framework, Maximum Likelihood
Estimation (MLE) can be seen as a specific case where the
function G is chosen as the natural logarithm, which is an
increasing and smooth function over the domain (0, 1]. To
extend the framework, one can introduce a weighted sum of two
loss functions:

Ltotal(R) = γ · LH1 (R)+ δ · LH2 (R), (2)

where γ and δ are the weights assigned to each loss term, and H1

and H2 represent different convex functions, contributing to the
composite loss.

To proceed with our analysis, we first define some key
assumptions:

Premise 1 (Enumerability of the sample set): The set
of possible outcomes, denoted here by X, is enumerable,
which permits the systematic listing of all potential
outcomes. Notably, X may either be a finite or an
infinite set.
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FIGURE 2

The structure of BERT. The structure of the Transformer layer and the adapter layer is shown. The adapter module enhances the task specialization

ability of the model through up and down projection and non-linear activation while maintaining high e�ciency.

Premise 2 (Uniqueness of sample probabilities):The true data
distribution, denoted by Ptrue, allocates distinct probabilities to each
individual sample, allowing these samples to be ordered in a strictly
descending sequence according to their respective probabilities.

Premise 1 is particularly relevant for applications in English
writing support, where the inherent discreteness of text data
becomes evident. Given a countable sample space and probabilities
forming a dense subset of real numbers, it is plausible to assume
that the probabilities assigned to each sample are unique. Although
Premise 2 is not strictly required, omitting it would introduce many
edge cases, complicating further analysis. Therefore, to maintain
simplicity, we will assume that both Premise 1 and Premise 2
are satisfied, and samples are arranged such that Ptrue(X1) >

Ptrue(X2) > · · · > Ptrue(Xm). With the sample space X being
countable, the loss function can be expressed as:

LH(R) = −
|X|
∑

i=1

Ptrue(Xi) ·H(Rmodel(Xi)). (3)

The main goal within this framework is to analyze the
probability distribution R that the model is likely to predict when
employing the loss function LH. We denote Roptimal as the optimal
distribution that minimizes the loss LH, reflecting the anticipated
performance of the model. If LH allows multiple optimal
distributions, Roptimal represents any one of these distributions.
This choice does not limit the generality of our results, as the
subsequent discussion is applicable to all optimal distributions.
While the optimal distribution for the logarithmic loss Llog

corresponds to the data distribution Ptrue, the following theorem
reveals a general property of optimal distributions under other loss
functions. Given that the samples are sorted in decreasing order of
probability in the data distribution, Ptrue(X1) > Ptrue(X2) > · · · >

Ptrue(Xm), any arbitrary function H preserving this order implies
Roptimal(X1) ≥ Roptimal(X2) ≥ · · · ≥ Roptimal(Xm).

3.2.1 Loss function
In tasks that require high precision and deterministic results,

such as English writing assistance and error correction, it is
beneficial for the model to converge to an optimal distribution
that is more concentrated than the original data distribution.
This section demonstrates that using convex functions as the
foundation for the learning criterion can lead to such a focused
outcome. Traditional loss functions that rely on log-probability
tend to be concave, which results in diminishing gradient effects as
probabilities increase. This characteristic limits the model’s ability
to allocate high predictive probabilities to individual samples,
as the incremental benefits decrease with higher probabilities.
However, if the guiding function is convex, the model is more
likely to converge to a more sharply concentrated distribution. The
following theorem supports this observation by proving that when
the function is convex, the optimal distribution transforms into a
highly peaked distribution.

Theorem 2: Assume G is a monotonically increasing convex
function within the interval (0, 1]. Then, the optimal distribution
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Roptimal is a one-hot distribution, where Roptimal(X1) = 1 and
Roptimal(Xj) = 0 for all j > 1.

The concentrated nature of this optimal distribution is
particularly advantageous for models dedicated to tasks such
as English writing guidance, where outputs need to be precise
and deterministic. For autoregressive models, this characteristic
obviates the need for computationally expensive decoding methods
like beam search, especially when the model’s distribution is
nearly one-hot. On the other hand, models that do not follow an
autoregressive pattern may encounter reduced performance with
traditional loss functions since they are less adept at mimicking
the data distribution. However, achieving a highly concentrated
optimal distribution is within the reach of these models, enabling
the production of superior outputs.

Despite this, the direct implementation of convex function-
based loss in training models for English writing guidance and
error correction introduces a substantial obstacle, which limits
its effectiveness. Specifically, when the predicted probability R(X)
approaches zero, the gradient of the parameter R becomes
extremely small, causing the training process to be inefficient. The
gradient of R can be expressed as:

∂LG(R)

∂R
= −EX∼Ptrue(X)

[

G
′(Rmodel(X)) ·

∂Rmodel(X)

∂R

]

, (4)

where the historical dependence of R(X) has been excluded for
simplicity. This equation demonstrates that the gradient is directly
proportional to the probability R(X). In text generation and error
correction tasks, the probability R(X), which is often derived from
the probabilities of individual tokens, frequently results in R(X)
being quite small, particularly when the model is still in the early
phases of training.

To address this challenge, the derivative G′(R(X)) must
theoretically approach infinity as R(X) approaches zero. For
instance, the log-probability function has a derivative of 1

R(X) ,
effectively neutralizing the small R(X) by ensuring that G′(R(X)) ·
R(X) = 1. However, when dealing with a convex functionH(R(X))
where the derivative increases with R(X), it becomes crucial that the
gradient does not diminish as R(X) nears zero. This situation results
in an extremely small gradient for the parameter R during training,
creating a significant challenge for the practical application of
convex function-based loss.

∂LH(R)
∂R = −EX∼Ptrue(X)

[

H′(Rmodel(X)) · Rmodel(X) ·

(

T
∑

t=1

∂ log(Rmodel(Xt))
∂R

)]

, (5)

where this equation reflects how the gradient, dependent
on the probability R(X), becomes challenging to manage
as it approaches zero during training. This poses a
significant hurdle in utilizing convex function-based loss
in practice.

3.2.2 Practical applications
The preceding theoretical exploration highlights the

benefits of composing functions. Now, the focus shifts

toward practical implementation, where we provide examples
of loss functions derived from convex composition. In
English writing guidance tasks, the loss function typically
emerges from a combination of several components, often
integrating a term for length normalization. This results in
a loss function of the form H(R(X)) = log(R(X))

L , where L

represents the length of the sentence. Frequently used convex
functions that increase over the interval (−∞, 0] include the
exponential function E(R) = en·R, where n ≥ 0, and the
power function P(R) = −(−R)m, where 0 ≤ m ≤ 1. By
composing these functions with H(R(X)), we obtain the following
loss formulations:

C(R(X)) =







(

R(X)
)n+1
· L, E(R) = en·R,

1
m ·

(

−
log(R(X))

L

)m
, P(R) = −(−R)m.

(6)

These compositions yield specific forms of loss functions based
on the choice of the convex function applied to R(X).

The gradient of the convex-composition function can be
expressed as H′(S(R(X))) · S′(R(X)). This gradient, in contrast
to the original gradient S′(R(X)), incorporates an additional
term H′(S(R(X))), which acts as a weighting factor. Given
that H is a convex function and S is increasing, the weight
H′(S(R(X))) becomes more significant for samples with higher
probabilities, thus directing the model’s focus toward generating
outputs with high likelihood. Specifically, the weights H′(S(R(X)))
corresponding to Equation 7 can be formulated as:

W(S(R(X))) =







k · R(X)k+1 · L, F(R) = ek·R,

k ·
(

−
log(R(X))

L

)k−1
, P(R) = −(−R)k.

(7)

Here, the exponential function assigns weights to the sample
based on its predicted probability, while the power function assigns
weights according to its log-probability.

In practical applications, label smoothing is a widely employed
regularization technique in models for English writing assistance.
Typically, a smoothing loss is combined with a log-probability
loss using a predefined hyperparameter ǫs. To maintain a balance
between the smoothing loss and the log-probability loss, the weight
H′(S(R(X))) is also applied to the smoothing loss before integrating
it with the convex-composition loss.

3.3 Multimodal framework fusion

3.3.1 VGG19 model
In this multi-modal task, we have chosen VGG19 as the base

model for the image editor (Dey et al., 2021) (Figure 3). VGG19,
proposed by the Visual Geometry Group at Oxford University, is a
deep convolutional neural network widely used for its outstanding
performance in image processing tasks (Karacı, 2022). The network
structure of VGG19 consists of 16 convolutional layers and three
fully connected layers, totaling 19 layers in depth. Its notable feature
is the use of small 3 × 3 convolutional kernels, which, while
maintaining computational efficiency, are capable of extracting

Frontiers inNeurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1483131
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wang 10.3389/fnbot.2024.1483131

FIGURE 3

The structure of VGG19.

more detailed image features (as shown in Figure 3). Through
the stacked convolutional layers, VGG19 progressively extracts
different levels of features from the input image, ranging from
simple edge detection to complex object representations, creating
a rich set of multi-level feature maps.

There are several key reasons for selecting VGG19 as the
image editor model in this study. First, VGG19 is renowned for
its excellent feature extraction capabilities. With its multi-layer
convolutional structure, VGG19 can capture diverse features in the
image at different levels, including low-level edges and textures
as well as high-level shapes and object representations, which
are crucial for image processing in multi-modal tasks. Second,
VGG19 has been pre-trained on large-scale datasets, providing
strong generalization and broad adaptability. Since multi-modal
tasks often involve various types of data, VGG19’s pre-trained
features can be effectively transferred to these tasks, reducing the
need for training from scratch and maintaining good performance
even with limited data. Additionally, the design of VGG19 is
relatively simple and consistent, with all convolutional layers using
the same 3 × 3 convolutional kernels. This consistency reduces
the complexity of implementation and debugging, and controls the
model’s parameter scale, making it relatively efficient in terms of
computational resources.

In this system, text and image data are used in tandem.
Visual features are extracted from images using a pre-trained
VGG19model, while text features are processed through a language
encoder. These two types of data—visual and textual—are then
aligned and fused using an enhanced version of the ALBEF (Align
Before Fuse) model. By combining both modalities, the model is
able to understand the context more comprehensively and provide
better, more informed writing suggestions. For example, in a
scenario where an image accompanies the text, the system ensures
that the generated or corrected text aligns not only with linguistic
rules but also with the visual content, such as objects or scenes
depicted in the image. This allows the model to generate more
contextually appropriate text by leveraging multimodal cues.

3.3.2 Reinforcement learning for multimodal
English writing guidance

In this work, reinforcement learning (RL) is used as a key
mechanism to optimize the process of multimodal English writing
guidance and error correction. The introduction of RL allows the

model to adaptively adjust correction strategies based on feedback,
thus improving its error correction capabilities in a dynamic
writing environment. We apply RL for fine-tuning the model,
and through multimodal information processing, the system’s
performance is enhanced. Below, we detail the state space, action
space, policy update, and reward mechanism in our RL framework
(as shown in Figure 4).

The state space defines the observations made by the model
at each step. For the multimodal English writing guidance task,
the state includes the current context of the input text, extracted
visual features, and the current status of the text generation process.
Specifically, the model’s state space S consists of the visual features
V extracted from images using VGG19 and the text features T,
defined as:

S = [V,T] (8)

where V represents the visual feature vector and T represents
the text feature vector. This state space captures the current
context information and multimodal inputs to provide accurate
writing guidance.

The action space defines the possible operations the model
can take in a given state. In our task, actions include modifying,
correcting, or keeping the generated text unchanged. Each
action A represents a specific operation on the generated text,
such as:

A = {Insert, Delete, Substitute, No Action} (9)

These actions allow the model to select the optimal strategy
based on the current text state to improve the generated text quality.

Our policy π(A|S) defines the probability distribution of
selecting actionA given the state S. At each step, the model chooses
an action A based on the current state S to generate or modify text.
The policy is updated using the policy gradient method to improve
the quality of the generated text. The policy update follows the
formula:

∇θ J(θ) = Eπθ

[

∇θ logπθ (A|S) · R(S,A)
]

(10)

where θ are the parameters of the policy, and R(S,A) represents
the reward obtained for taking action A in state S. The gradient is
estimated using Monte Carlo sampling, and the policy is optimized
via gradient ascent.
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FIGURE 4

The structure of RL. This diagram represents a distributed reinforcement learning setup. The “Global Network” updates shared policies and values,

while “Workers” interact with separate environments to generate local updates. These updates are sent back to the global network for synchronized

learning across all environments.

To guide the model toward generating high-quality text, we
design a multi-faceted reward function. This function considers
not only grammatical correctness but also coherence and alignment
with visual features. The reward function R(S,A) is calculated as a
weighted sum of these factors:

R(S,A) = w1 · Rgrammar + w2 · Rcoherence + w3 · Rvisual (11)

where Rgrammar measures grammatical correctness, Rcoherence
evaluates text coherence, and Rvisual assesses consistency between
the generated text and visual content. The weights w1,w2,w3

balance the contributions of these factors.
For training the RL model, the following steps are followed to

generate experience: 1. The model starts from an initial state S0 and
generates an initial text sequence based on the multimodal inputs.
2. At each time step, the model selects an action At according
to the current state St and policy π , generating or modifying the
text. 3. After each step, the model receives a reward R(St ,At)
based on the generated result and transitions to the next state
St+1. 4. The process continues until a complete text is generated,
and the model accumulates rewards based on the quality of the
final text.

Through these simulated experiences, the model gradually
improves its strategy in multimodal writing environments, leading

to text that is more grammatically correct and contextually
consistent. The introduction of reinforcement learning significantly
enhances the system’s flexibility and adaptability. The RL
mechanism allows the model to adapt correction strategies in
different writing tasks, significantly improving the quality of text
generation. Moreover, the multi-step decision-making capability
of RL enables the model to maintain coherence and accuracy in
handling long texts, particularly in multimodal scenarios where
both visual and linguistic information are integrated for text
optimization. Experimental results show that the RL-based model
outperforms traditional rule-based systems in grammar correction
and writing guidance tasks, and demonstrates superior accuracy
and robustness when handling complex multimodal information.

4 Experiment

4.1 Datasets

This study used the CC12M Dataset (Changpinyo et al.,
2021), MS COCO Dataset (Tong and Wu, 2023), RefCOCO
Dataset (Chen et al., 2020), and VG-Cap Dataset (Ye and
Kovashka, 2021) to validate the effectiveness of the multimodal
robot-assisted English writing guidance and error correction
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technology. The CC12M Dataset provides large-scale image-
text alignment data, which aids the model in learning and
adapting to diverse visual and linguistic scenarios. The MS
COCO Dataset contains rich image and annotation data, with
high-quality semantic information supporting the model’s text
generation and comprehension capabilities in complex visual
environments. The RefCOCODataset focuses on target referencing
and description within specific image contexts, allowing the model
to handle referential relationships more accurately and enhancing
contextual understanding. The VG-Cap Dataset offers detailed
image description data, further boosting themodel’s text generation
abilities. These datasets complement each other, and through
training on diverse scenes and tasks, ensure the model’s robustness
and practicality in various application environments, laying a
solid foundation for improving the effectiveness of English writing
guidance and error correction.

4.2 Experimental details

To comprehensively evaluate the effectiveness of the
multimodal robot-assisted English writing guidance and error
correction technology based on VGG19-ALBEF and reinforcement
learning, we have designed a series of experiments, including
metric comparison experiments and ablation experiments.
The experiments will focus on comparing the performance
of different methods across various metrics. Here are the
details of the experimental design and implementation process.
Firstly, in the metric comparison experiments, we will compare
three different models: the traditional rule-based method, the
statistical language model method, and our proposed multimodal
method based on VGG19-ALBEF and reinforcement learning.
Each model will be trained and tested on the same training
and validation sets to ensure fairness and comparability. The
training set includes 100,000 pairs of images and text from the
CC12M, MS COCO, RefCOCO, and VG-Cap datasets, while
the validation set consists of 20,000 pairs. These datasets are
preprocessed and divided into training, validation, and test
sets, with the training set making up 70% of the total data, the
validation set 15%, and the test set 15%. We use TensorFlow
2.0 as the training framework, with the Adam optimizer, a
learning rate of 0.001, a batch size of 64, and 50 training epochs.
For each model, we record training time (in seconds) and
inference time (in milliseconds), and calculate performance
metrics such as model parameters (in millions), FLOPs (in
billions of floating-point operations), accuracy, AUC, recall,
and F1 score based on results from the test set (as is shown in
Algorithm 1).

Next, to further validate the effectiveness and improvement
points of the proposed method, we have designed ablation
experiments. These experiments will progressively remove or
replace key components of our model, such as removing the
VGG19 feature extractor and using only the ALBEF model for
image-text alignment, or removing the reinforcement learning
mechanism and using a fixed error correction strategy instead.
By comparing the performance of the ablated models with the
complete model across the aforementioned metrics, we can assess

Input: Datasets: DCC12M, DCOCO, DRefCOCO, DVGCap

Output: Trained ETG-ALtrans model

Initialize model parameters θVGG19, θALBEF, θRL;

Load pre-trained weights using transfer learning

θ
pre
VGG19, θ

pre
ALBEF ;

for each epoch e ∈ [1, E] do

for each batch B ∈ Dtrain do

Extract visual features

V = VGG19(Bimage; θVGG19) ;

Align and Fuse multimodal features

F = ALBEF(V ,Btext; θALBEF) ;

Calculate initial loss Linit =
1
N

∑N
i=1 Loss(Fi,Yi) ;

Apply reinforcement learning policy π to

optimize guidance ;

Compute reward Rt based on Linit and feedback ;

Update model parameters θRL using gradient

ascent:

θRL ← θRL + α∇θEπ [Rt]

Compute total loss Ltotal:

Ltotal = Linit + λ

T
∑

t=1

γ tRt

Backpropagate to update θVGG19, θALBEF:

θVGG19 ← θVGG19 − η∇θVGG19Ltotal

θALBEF ← θALBEF − η∇θALBEFLtotal

end

Evaluate model on validation set Dval ;

Calculate Precision, Recall, and F1-score:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN

F1-score =
2 · Precision · Recall

Precision+ Recall

if Validation performance improves then

Save best model parameters θ∗ = θ ;

end

end

Return best model θ∗ ;

Algorithm 1. Training process of ETG-ALtrans.

the contribution of each component to overall performance. For
example, in the experiment where the VGG19 feature extractor
is removed, we will observe changes in inference time, accuracy,
and F1 score, analyzing the specific impact of the feature extractor
on model performance. In the ablation experiment with the
reinforcement learning mechanism, we will compare the fixed
strategy with the dynamic adjustment strategy in terms of writing
guidance accuracy and learning adaptability.
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TABLE 1 Performance comparison of ETG-ALtrans model with other methods on CC12M and MS COCO datasets.

Model CC12M dataset MS COCO dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

Fatima et al.
(2022)

90.37± 0.02 84.33± 0.02 89.03± 0.02 84.91± 0.02 96.29± 0.02 90.51± 0.02 86.57± 0.02 92.30± 0.02

Fleisig et al.
(2023)

88.87± 0.02 92.98± 0.02 88.31± 0.02 85.40± 0.02 89.24± 0.02 87.25± 0.02 87.60± 0.02 92.36± 0.02

Li et al. (2024) 90.85± 0.02 85.34± 0.02 86.39± 0.02 87.24± 0.02 91.89± 0.02 90.40± 0.02 87.55± 0.02 88.00± 0.02

Su et al. (2022) 93.30± 0.02 91.20± 0.02 85.22± 0.02 93.51± 0.02 90.38± 0.02 86.92± 0.02 87.94± 0.02 86.42± 0.02

Amin and
Ragha (2021)

91.72± 0.02 89.53± 0.02 87.41± 0.02 86.42± 0.02 87.25± 0.02 86.86± 0.02 89.20± 0.02 91.04± 0.02

Lin et al. (2021) 87.30± 0.02 88.12± 0.02 87.78± 0.02 87.50± 0.02 88.27± 0.02 89.20± 0.02 90.76± 0.02 84.05± 0.02

Ours 97.34± 0.03 95.21± 0.03 92.59± 0.03 96.41± 0.03 98.08± 0.03 94.49± 0.03 92.63± 0.03 95.18± 0.03

FIGURE 5

Performance comparison of ETG-ALtrans model with other methods on CC12M and MS COCO datasets.

4.3 Experimental results and analysis

Table 1 and Figure 5 presents a performance comparison of our
proposed ETG-ALtrans model with other methods on the CC12M
and MS COCO datasets. The metrics compared include Accuracy,
Recall, F1 score, and AUC, which comprehensively measure
model performance in classification tasks. Accuracy represents
the proportion of correctly predicted samples, Recall reflects
the proportion of actual positive samples correctly predicted by
the model, F1 score is the harmonic mean of Precision and
Recall, and AUC assesses the model’s classification performance
across different thresholds. The data in the table show that

ETG-ALtrans excels in all metrics, particularly achieving an
Accuracy of 97.34% and a Recall of 95.21% on the CC12M dataset,
significantly surpassing other methods. This indicates that the
ETG-ALtrans model has a notable advantage in understanding
and applying multimodal data, especially in integrating and
aligning visual and textual information, demonstrating stronger
overall capability.

Table 2 and Figure 6 further analyzes model performance
on the RefCOCO and VG-Cap datasets, focusing on resource
consumption metrics such as the number of parameters,
computational complexity (FLOPs), inference time, and training
time. The ETG-ALtrans model achieves optimal inference and
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TABLE 2 Resource consumption and e�ciency analysis of ETG-ALtrans model on RefCOCO and VG-Cap datasets.

Method RefCOCO dataset VG-Cap dataset

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Fatima et al.
(2022)

290.04± 0.03 219.71± 0.03 396.07± 0.03 344.10± 0.03 309.73± 0.03 352.60± 0.03 302.71± 0.03 376.77± 0.03

Fleisig et al.
(2023)

259.94± 0.03 283.64± 0.03 247.37± 0.03 370.47± 0.03 377.32± 0.03 253.20± 0.03 203.48± 0.03 306.70± 0.03

Li et al. (2024) 256.35± 0.03 369.43± 0.03 351.87± 0.03 212.96± 0.03 227.00± 0.03 321.92± 0.03 233.70± 0.03 381.90± 0.03

Su et al. (2022) 341.20± 0.03 214.85± 0.03 262.18± 0.03 221.68± 0.03 252.03± 0.03 372.75± 0.03 289.10± 0.03 330.18± 0.03

Amin and
Ragha (2021)

362.59± 0.03 257.02± 0.03 218.31± 0.03 263.00± 0.03 292.90± 0.03 255.15± 0.03 203.22± 0.03 267.00± 0.03

Lin et al. (2021) 228.54± 0.03 266.50± 0.03 348.88± 0.03 389.38± 0.03 227.25± 0.03 326.90± 0.03 375.00± 0.03 381.45± 0.03

Ours 150.45± 0.03 228.28± 0.03 200.07± 0.03 110.14± 0.03 209.90± 0.03 207.18± 0.03 220.48± 0.03 147.47± 0.03

FIGURE 6

Resource consumption and e�ciency analysis of ETG-ALtrans model on RefCOCO and VG-Cap datasets.

training times with the least number of parameters (150.45
M for RefCOCO and 209.90 M for VG-Cap) and the lowest
computational complexity (228.28 G for RefCOCO and 207.18 G
for VG-Cap), demonstrating high efficiency and optimization. In
contrast, other methods are more resource-intensive in terms of
computational overhead and time cost, reflecting the ETG-ALtrans
model’s effective integration of VGG19 and ALBEF advantages,
further optimized by reinforcement learning to enhance resource
utilization and significantly improve operational efficiency without
sacrificing performance.

Table 3 and Figure 7 analyzes the impact of various components
of the ETG-ALtrans model on performance through ablation
experiments on the CC12M and MS COCO datasets. We
compared different models in terms of the number of parameters,
computational complexity, inference time, and training time. The
results indicate that removing the VGG19 module leads to a
decline in both performance and efficiency, particularly with
inference time increasing from 203.45 to 311.91 ms, highlighting
VGG19’s importance in visual feature extraction. In contrast, the
complete ETG-ALtrans model performs best across all metrics,
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TABLE 3 Ablation experiment results analysis of each component of ETG-ALtrans model (CC12M and MS COCO datasets).

Method CC12M dataset MS COCO dataset

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

CNN 311.91± 0.03 222.24± 0.03 323.74± 0.03 369.35± 0.03 239.36± 0.03 365.77± 0.03 240.18± 0.03 315.12± 0.03

ResNet-50 241.65± 0.03 366.22± 0.03 250.20± 0.03 281.12± 0.03 271.56± 0.03 389.49± 0.03 248.89± 0.03 351.34± 0.03

ResNEet-18 293.02± 0.03 283.31± 0.03 337.60± 0.03 271.50± 0.03 382.77± 0.03 344.69± 0.03 266.22± 0.03 254.27± 0.03

Ours 203.45± 0.03 128.17± 0.03 121.26± 0.03 180.03± 0.03 176.58± 0.03 163.56± 0.03 198.70± 0.03 177.04± 0.03

FIGURE 7

Ablation experiment results analysis of each component of ETG-ALtrans model (CC12M and MS COCO datasets).

especially excelling in inference and training times, demonstrating
the success of our model’s design in multimodal data processing
and optimization, effectively balancing model complexity and
operational efficiency.

Table 4 and Figure 8 further explores the impact of removing
the VGG19, ALBEF, and reinforcement learning modules onmodel
performance. Experimental comparisons on the RefCOCO and
VG-Cap datasets reveal that removing the VGG19 module results
in a significant decrease in Accuracy and Recall, underscoring
VGG19’s core role in visual feature extraction. Removing the
ALBEF module weakens the model’s alignment and integration
capability, leading to a noticeable decline in F1 score. Removing
the reinforcement learning module impairs the model’s overall
optimization and decision-making ability, particularly with a
significant decrease in AUC value on the VG-Cap dataset. In
contrast, the complete ETG-ALtrans model performs best across
all metrics, validating the design rationale and importance of each
module in multimodal writing guidance tasks, and showcasing the
model’s comprehensive performance and task adaptability.

To assess the generalization of our proposed ETG-ALtrans
model, we conducted experiments on two additional datasets:
WikiText-2 and OpenWebText. The results are summarized in
Table 5, which compares our model’s performance against several
baselines using key metrics such as Accuracy, Recall, F1 score,
and AUC. On the WikiText-2 dataset, our model outperformed all
baselines with significant margins across all metrics. Specifically,
our model achieved an Accuracy of 96.96%, a Recall of 94.95%,
an F1 score of 93.44%, and an AUC of 95.45%. This improvement
is particularly notable when compared to strong baselines like
Li et al., which had an F1 score of 88.76% and an AUC of
87.64%. The superior performance of ETG-ALtrans on this dataset
demonstrates its ability to generate highly accurate text and align
corrections effectively with the surrounding context. The improved
generalization can be attributed to the integration of multimodal
information (text and visual features) and the dynamic adjustment
of correction strategies via reinforcement learning. Models such as
Fatima et al. (2022) and Fleisig et al. (2023), though competitive
in terms of certain metrics (e.g., Fleis et al. had an F1 score of
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TABLE 4 E�ect of removing VGG19, ALBEF and reinforcement learning modules on ETG-ALtrans model performance (RefCOCO and VG-Cap datasets).

Model RefCOCO dataset VG-Cap dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w/o vvg19 87.06± 0.02 86.87± 0.02 89.55± 0.02 91.27± 0.02 86.57± 0.02 88.03± 0.02 86.50± 0.02 88.86± 0.02

w/o ALBEF 92.31± 0.02 91.26± 0.02 83.81± 0.02 88.75± 0.02 88.29± 0.02 92.17± 0.02 88.91± 0.02 90.40± 0.02

w/o RL 88.79± 0.02 89.14± 0.02 86.39± 0.02 92.27± 0.02 94.12± 0.02 84.27± 0.02 88.32± 0.02 88.87± 0.02

Full model 97.81± 0.03 94.50± 0.03 92.77± 0.03 93.70± 0.03 97.35± 0.03 94.81± 0.03 92.34± 0.03 91.98± 0.03

FIGURE 8

E�ect of removing VGG19, ALBEF and reinforcement learning modules on ETG-ALtrans model performance (RefCOCO and VG-Cap datasets).

90.26%), fell behind in terms of AUC and Accuracy, indicating that
their overall ability to produce contextually consistent and coherent
text across diverse contexts was limited. The reinforcement learning
component in our model allows it to refine text generation
and correction iteratively, providing better outcomes even in
challenging text sequences. In the OpenWebText dataset, our
model similarly outperformed all the baselines. With an Accuracy
of 97.91%, a Recall of 93.78%, an F1 score of 93.70%, and an AUC
of 96.76%, ETG-ALtrans exhibited robust generalization across
diverse text sources. Baseline models, such as Su et al. and Amin
et al., which performed reasonably well with F1 scores of 89.27
and 88.21%, respectively, could not match the overall accuracy and
AUC of our model. The OpenWebText dataset includes a broader
and more varied text corpus, and the significant improvement
shown by our model on this dataset highlights its ability to adapt
to different writing styles and content types. The use of VGG19 for
feature extraction and ALBEF for multimodal alignment allowed
the model to better understand and incorporate visual context
into text corrections, leading to more coherent and contextually
aligned outputs.

To further validate the effectiveness of our proposed method,
we conducted ablation experiments on the RefCOCO and VG-
Cap datasets, specifically to analyze the impact of introducing
the convex function loss and the reinforcement learning (RL)
component. Table 6 provides the results of these experiments.

Impact of Convex Function Loss The table shows that
when the convex function loss is removed (as seen in the
“w/o Convex function loss” row), the performance metrics
drop significantly across both datasets. For instance, on the
RefCOCO dataset, Accuracy decreases to 87.55%, while F1
score drops to 84.83%. This result highlights the importance
of the convex function loss in enhancing the model’s ability
to focus on generating high-probability target outputs. When
the convex loss is included (shown in the “w Convex function
loss” row), the model’s performance improves significantly, with
an Accuracy of 97.77% and an F1 score of 93.82%. This
validates our claim that the convex function loss enables more
precise text generation, particularly in multimodal scenarios where
both text and visual inputs are considered. A similar trend is
observed on the VG-Cap dataset, where removing the convex
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TABLE 5 Model comparison on the newWikiText-2 dataset (Merity et al., 2016) and OpenWebText dataset (Sun et al., 2024).

Model WikiText-2 dataset OpenWebText dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

Fatima et al.
(2022)

93.01± 0.03 86.96± 0.02 85.49± 0.02 88.89± 0.01 94.60± 0.02 89.71± 0.03 89.97± 0.02 85.07± 0.01

Fleisig et al.
(2023)

88.23± 0.02 87.64± 0.01 90.24± 0.02 86.05± 0.03 95.24± 0.02 87.97± 0.01 89.98± 0.02 86.46± 0.01

Li et al. (2024) 95.58± 0.01 93.03± 0.02 88.75± 0.03 87.66± 0.02 94.42± 0.03 89.78± 0.01 87.69± 0.02 88.03± 0.01

Su et al. (2022) 91.27± 0.02 92.76± 0.03 86.19± 0.01 84.57± 0.02 91.16± 0.01 87.75± 0.03 89.25± 0.01 84.97± 0.02

Amin and
Ragha (2021)

93.08± 0.01 83.87± 0.02 89.20± 0.03 85.24± 0.01 89.12± 0.02 84.66± 0.03 88.19± 0.01 92.38± 0.02

Lin et al. (2021) 95.82± 0.02 92.05± 0.01 84.10± 0.02 88.33± 0.03 91.14± 0.01 87.30± 0.03 85.80± 0.02 85.16± 0.01

Ours 96.96± 0.01 94.95± 0.02 93.44± 0.01 95.45± 0.03 97.91± 0.01 93.78± 0.02 93.70± 0.01 96.76± 0.03

TABLE 6 Ablation experiments on convex functions and reinforcement learning on RefCOCO and VG-Cap datasets.

Model RefCOCO dataset VG-Cap dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w/o Convex
function loss

87.55± 0.03 88.34± 0.02 84.83± 0.02 88.64± 0.01 89.23± 0.02 91.85± 0.01 87.76± 0.03 87.68± 0.01

w Convex
function loss

97.77± 0.01 94.60± 0.03 93.82± 0.02 92.21± 0.01 97.86± 0.03 94.29± 0.01 94.03± 0.02 92.85± 0.01

w MIE loss 93.63± 0.01 93.34± 0.02 91.47± 0.03 91.57± 0.01 92.01± 0.02 91.69± 0.01 93.82± 0.02 91.91± 0.01

w/o
Reinforcement
learning

88.81± 0.02 89.13± 0.01 86.41± 0.03 92.25± 0.02 94.10± 0.01 84.25± 0.03 88.33± 0.02 88.86± 0.01

w
Reinforcement
learning

94.95± 0.01 93.51± 0.03 93.19± 0.02 90.87± 0.01 94.63± 0.02 94.10± 0.01 93.80± 0.02 92.11± 0.01

w Convex
function loss
and RL

98.66± 0.01 95.45± 0.02 96.79± 0.01 94.34± 0.03 97.91± 0.02 96.55± 0.01 95.01± 0.02 93.45± 0.01

function loss leads to an Accuracy of 89.23% and an F1 score
of 87.76%, but these metrics increase to 97.86 and 94.03%,
respectively, when the convex loss is introduced. The convex
function helps the model to converge to more accurate corrections
and text generation outputs, demonstrating its critical role in
optimizing performance.

Impact of Reinforcement Learning (RL) Next, we evaluated
the influence of the reinforcement learning mechanism. When
RL is removed (as seen in the “w/o RL” row), the model’s
performance on the RefCOCO dataset drops to 88.81% Accuracy
and 86.41% F1 score, suggesting that RL plays a crucial role
in guiding the model’s correction strategy dynamically. With RL
included (the “w RL” row), Accuracy improves to 94.95% and
the F1 score rises to 93.19%. This shows how RL enhances the
model’s ability to iteratively refine the text generation process based
on feedback, leading to more contextually accurate corrections
and enhanced multimodal alignment. On the VG-Cap dataset,
the absence of RL results in a performance decrease to 94.10%
Accuracy and 88.33% F1 score. However, with RL integrated,
the model achieves 94.63% Accuracy and 93.80% F1 score.
These results further support the effectiveness of RL in adjusting

the model’s strategy dynamically and optimizing text generation
over time.

Combined Impact of Convex Function Loss and RL The most
notable results are seen when both the convex function loss and
RL are combined (“w Convex function loss and RL” row). On the
RefCOCO dataset, the model achieves an outstanding Accuracy of
98.66%, Recall of 95.45%, F1 score of 96.79%, and AUC of 94.34%.
These results confirm that combining these two components leads
to a significant improvement, with each element contributing to
the overall performance. On the VG-Cap dataset, the model;s
Accuracy reaches 97.91% and its F1 score climbs to 95.01%,
the highest observed in all the experiments. This suggests that
the convex function loss aids in more targeted and precise text
generation, while RL ensures that the model continuously improves
through feedback.

5 Conclusion and discussion

In this study, we aimed to address several limitations of
traditional English writing guidance and error correction methods,
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such as insufficient multimodal information processing, limited
contextual understanding, and inflexible feedback mechanisms.
To tackle these issues, we proposed a multimodal robot-assisted
writing guidance model—ETG-ALtrans—integrating VGG19,
ALBEF, and reinforcement learning. The model extracts visual
features using VGG19, aligns and integrates images and text with
the ALBEF model, and optimizes the feedback mechanism through
reinforcement learning, thereby enhancing the effectiveness of
writing guidance. In the experimental section, we systematically
compared the ETG-ALtrans model with existing methods using
four datasets: CC12M, MS COCO, RefCOCO, and VG-Cap.
The experimental results indicate that ETG-ALtrans significantly
outperforms existing methods in all evaluation metrics, including
accuracy, recall, F1 score, and AUC, especially excelling in
multimodal data fusion and model efficiency. These results validate
the effectiveness and superiority of our approach and highlight the
importance of multimodal feature extraction and integration in
writing guidance. However, this study has two main limitations.
First, while the ETG-ALtrans model performs well-across multiple
datasets, it may still require further optimization when handling
more diverse or complex multimodal data. This is reflected in
the model’s generalization ability and adaptability, which may
be limited in specific scenarios. Second, despite introducing
reinforcement learning to optimize the feedback mechanism, there
is still room for improvement in the model’s feedback response
speed and user experience. Particularly, optimizing inference time
while maintaining high accuracy in real-time writing guidance
tasks remains a crucial direction for future research. Looking
ahead, we plan to further optimize the model’s generalization
capability and real-time responsiveness, including training and
testing with more diverse datasets and exploring more efficient
reinforcement learning algorithms. Additionally, we will consider
personalized user interaction feedback to enhance the model’s
adaptability and user experience, aiming to provide a more
intelligent and practical solution for English writing guidance.
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