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Accurate building segmentation has become critical in various fields such as 
urban management, urban planning, mapping, and navigation. With the increasing 
diversity in the number, size, and shape of buildings, convolutional neural networks 
have been used to segment and extract buildings from such images, resulting 
in increased efficiency and utilization of image features. We propose a building 
semantic segmentation method to improve the traditional Unet convolutional 
neural network by integrating attention mechanism and boundary detection. 
The attention mechanism module combines attention in the channel and spatial 
dimensions. The module captures image feature information in the channel 
dimension using a one-dimensional convolutional cross-channel method and 
automatically adjusts the cross-channel dimension using adaptive convolutional 
kernel size. Additionally, a weighted boundary loss function is designed to replace 
the traditional semantic segmentation cross-entropy loss to detect the boundary 
of a building. The loss function optimizes the extraction of building boundaries 
in backpropagation, ensuring the integrity of building boundary extraction in 
the shadow part. Experimental results show that the proposed model AMBDNet 
achieves high-performance metrics, including a recall rate of 0.9046, an IoU of 
0.7797, and a pixel accuracy of 0.9140 on high-resolution remote sensing images, 
demonstrating its robustness and effectiveness in precise building segmentation. 
Experimental results further indicate that AMBDNet improves the single-class 
recall of buildings by 0.0322 and the single-class pixel accuracy by 0.0169 in the 
high-resolution remote sensing image recognition task.
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1 Introduction

With the rapid development of the social economy, buildings have become an important 
part of the city. As the urban landform is constantly changing, building numbers, shapes, and 
sizes are increasingly diverse. Meanwhile, high-resolution images have more apparent features, 
richer texture information, and more prominent feature information in the image pixels (Liu 
et al., 2016). Thus, accurate extraction of buildings from high-resolution images is important 
for urban management, urban planning, mapping, and navigation.
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The traditional methods of automatic building extraction can 
be divided into two categories based on edges and based on regions. 
Lin and Nevatia (1998) used the method of edge detection to 
determine the parallel relationship between lines and determine the 
rectangle to form the outline of the building to extract the geographical 
location of the building. Aytekın et  al. (2012) combined spectral 
characteristics and spatial features to successfully extract buildings 
and roads from the complex background of satellite images. Izadi and 
Saeedi (2010) proposed a building detection method based on 
hierarchical multilayer features for image segmentation using color. 
Wegne et  al. (2011) proposed a method to detect buildings with 
irregular shapes by combining optical and interferometric SAR 
(synthetic aperture radar) features.

With the rapid development of machine learning and deep 
learning, the mainstream building extraction method gradually shifts 
to pixel-level segmentation. Meedeniya et al. (2020) proposed a novel 
automated methodology based on learning models to identify land 
usage and coverage. The method integrates satellite imagery with 
Foursquare venue data to enhance the detail and quality of land-use 
visualization. Long et al. (2015) proposed a fully convolutional neural 
network FCN, which replaced the fully connected layer with a 
convolutional layer to achieve the first end-to-end image input–output 
method for pixel-level classification and improved the speed and 
accuracy of semantic segmentation. Ronneberger et  al. (2015) 
proposed the symmetric structure of the fully convolutional neural 
network Unet, which uses jump links for feature fusion in the network 
and effectively alleviates the deep network degradation problem. Since 
then, fully convolutional neural networks have been extensively 
developed, and semantic segmentation is more often applied in 
building extraction tasks. Wang et al. (2018) propose a cascade coarse-
to-fine network called CasNet, which focuses on regions that are 
difficult to make pixel-level labels. Obeso et  al. (2017) propose a 
convolutional neural network to classify images of buildings using 
sparse features at the input of network in conjunction with primary 
color pixel values. Tang et al. (2019) proposed a random weighted 
averaging for the problem of overfitting in the results of Unet method. 
Zhou et  al. (2022) proposed a novel efficient deep-wise spatial 
attention network (EDSANet), which uses dual attention extraction 
and attention feature refinement to aggregate multi-level semantics 
and enhance the accuracy of building extraction, especially for high 
spatial resolution imagery. Wang et  al. (2022) combined the FPN 
structure with Unet++ so that the feature maps of each layer can 
be linked with the pyramid horizontally layer by layer to better extract 
the deep features of the image. Liu et al. (2021) proposed a context 
transfer network based on UNet (CT-UNet), which designed dense 
boundary blocks, spatial channel attention blocks, and improved loss 
functions. Fan et al. (2023) proposed a ResAt-UNet given the problem 
that the down-sampling of UNet makes it easy to lose context and 
detail information, attention mechanism, and residual module are 
added, which enhances the network depth, improves the fitting 
performance, and extracts small objects more accurately. The above 
studies show that Unet outperforms segmentation models such as 
FCN and ResNet in the building extraction task, and its unique 
symmetric structure is more helpful for the model to learn building 
features at different scales.

Many studies employ Unet as the backbone of the corresponding 
network. For example, He et  al. (2022) proposed an E-Unet 
architecture combined with void convolution, which improved the 

extraction accuracy of buildings and improved the extraction edge 
corner ambiguity and detail loss. Yu et  al. (2022) proposed an 
innovative Attention Gates U-Net (AGs-Unet), which can 
automatically learn diverse building structures from high-resolution 
remote sensing images. This is built upon the newly introduced 
attention gate module (AG) specifically for building extraction tasks. 
Qiu et al. (2023) proposed an improved network based on the UNet 
structure (Re-fine-UNet). The proposed Refine-UNet mainly consists 
of an encoder module, a decoder module, and a refined skip 
connection scheme. The refined skip connection scheme is composed 
of an atrous spatial convolutional pyramid pooling (ASPP) module 
and several improved depthwise separable convolution (IDSC) 
modules. Although these models obtain better performance of 
building extraction by replacing the original convolution layer of 
Unet, these methods bring more complexity to the models, such as 
more parameters for training, and suffer the problem of incomplete 
extraction of building contours in high-resolution remote 
sensing images.

To solve the problems, we propose an improved Unet network by 
integrating efficient convolution block attention (ECBA) and 
boundary detection to capture more comprehensive information of 
buildings. ECBA employs efficient channel attention as channel 
attention and the spatial attention of the convolutional block attention 
module (CBAM) as spatial attention. Channel information of the 
cross-channel joint feature map is achieved with the help of group 
convolution, and the plug-and-play feature of CBAM is retained to 
compose a lightweight attention module with more comprehensive 
extracted information. Rather than employing post-processing to 
optimize the building contours (Moghalles et  al., 2022; Liu et  al., 
2020), a novel weighted loss function, i.e., a linear combination of dice 
loss and boundary loss, is designed to implement the boundary 
detection of building in an end-to-end method without changing the 
complexity of the method.

The main contributions of the study are as follows:

 1) ECBA is proposed by sequentially combining dual attention 
mechanisms. ECBA could learn the specified features in both 
channel and space dimensions and focus on which information 
to emphasize or suppress.

 2) A novel weighted loss function method is proposed to solve the 
unclear segmentation of building boundaries. The loss function 
is used to strengthen the segmentation of the building 
boundary in an end-to-end method.

 3) Extensive experiments demonstrate that AMBDNet achieves 
superior recall, IoU, and pixel accuracy than traditional Unet 
and attention-based variants. This validates the effectiveness of 
combining ECBA with the boundary loss function for high-
resolution building segmentation.

2 Proposed method

The Unet network is one of the most excellent basic models for 
semantic segmentation, but the fixed structure of Unet and its simple 
network architecture cannot cope with the overly complex situations 
in high-resolution remote sensing images. To address the problem, 
AMBDNet is proposed by integrating a dual-attention mechanism 
module ECBA and a weighted loss function into the Unet network. 
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First, the dual-attention mechanism ECBA could help the network 
focus on important building features and suppress unnecessary 
background features. Second, the weighted loss function could 
mitigate the incomplete identification of building boundaries due to 
shadow occlusion. Thus, the model could acquire sufficient 
contextual information in high-resolution image segmentation tasks 
and is prone to solve the problem of missed extraction and 
incomplete boundary recovery. The network structure is shown in 
Figure 1.

2.1 Backbone

Unet (Ronneberger et  al., 2015) is one of the most basic 
classical segmentation networks, where the Unet structure is 
shown in Figure 2. Unet consists of the encoder network and the 
decoder network. The encoder network has 10 convolutional 
layers to extract the abstract feature information of the input 
image, and each group of two convolutional layers is bridged with 
a rectified linear unit (ReLU) and a max pooling operation. Four 
transposed convolutional layers are present in the decoder 
network to recover the image. Each transposed convolutional layer 
is connected to the corresponding layer in the downsampling 
stage, a concatenation with the correspondingly cropped feature 
map from the encoder network, and two convolutions, each 
followed by a ReLU function.

The proposed method AMBDNet integrates the dual-attention 
mechanism ECBA and the weighted loss function into the Unet 
network. The corresponding network architecture is shown in 
Table 1, where N is the number of repetitions of the module. In the 
encoder stage, a 3 × 3 convolution is used to encode the image. In 
the first three layers, the ECBA module is incorporated to enhance 
the extraction of the network model of building image features. To 
prevent overfitting, the ReLU activation function is bridged after 
each convolution operation, and the feature map is normalized after 
each convolution operation to prevent the gradient from 
disappearing during the training process. The decoder stage is 
completed by the upsampling operation of the de-convolution. 

Moreover, the feature map of the encoder stage is integrated by 
using two 3 × 3 convolutions. Finally, the number of feature map 
channels is compressed using 3 × 3 convolution to obtain the feature 
map of the original image size, and then, the classification 
probability map of each pixel is obtained by Softmax 
activation function.

2.2 Efficient convolution block attention 
module

The ECBA module consists of a channel attention and a spatial 
attention. Inspired by CBAM (Woo et  al., 2018), we  also 
sequentially apply channel and spatial attention modules to learn 
‘what’ and ‘where’ to attend in both modules, respectively. ECBA 
employs efficient convolution attention (ECA) (Wang et al., 2020) 
as the channel attention module followed by the original spatial 
attention module. The structure of the ECBA module is shown in 
Figure 3.

The ECA module is employed as the channel attention, which 
could provide appropriate cross-channel interaction and avoid 
dimensionality reduction. The network is implemented by a fast 
1D convolution of kernel size, where kernel size is proportional to 
channel dimension. In detail, the input feature map is processed by 
global average pooling to obtain the aggregated spatial information 
of the feature map; then, 1D convolution is performed followed by 
a Sigmoid function with the convolution kernel size adaptively 
selected to learn the channel attention; finally, the channel 
attention is multiplied with the input feature map to obtain the 
final feature map. The detailed mathematical functions are 
as follows:

 
( )( )c

c avgM conv1d F= σ

 
c
out c inputF M F= ×

FIGURE 1

Unet_ECBA structure diagram.
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where c is the number of input feature map channels, c
avgF is the 

average pooled processed feature map, conv1d  is the 
one-dimensional convolution, ó  is the Sigmoid activation function, 

cM  denotes the attention weight of the feature map on the channel, 
inputF  is the input feature map, and c

outF  is the final output feature 
map. The corresponding diagram of the ECA module is shown in 
Figure 4.

Spatial attention focuses on the inter-spatial relationship of 
features, which are used to capture the important spatial features. In 
detail, the input feature map is processed by average-pooling and 
max-pooling operations, respectively, then both are concatenated into 
a feature map in the channel dimension. The feature map is then 
passed to a convolution layer followed by the Sigmoid activation 
function. Finally, the final output feature map is obtained by 
multiplying the feature weights of spatial attention with the input 
feature map. The detailed mathematical functions are as follows:

 
( )( )7 7

s max avgM conv2d F ;F×  = σ  

 out s inputF M F′= ×

where maxF  is the feature map generated by the max-pooling 
operation, avgF  denotes the feature map processed by the average-
pooling operation, 7 7conv2d ×  denotes a two-dimensional convolution 
operation with a convolution kernel size of 7 × 7, ó  is the Sigmoid 
function, and sM  denotes the spatial attention. The spatial attention 
module is shown in Figure 5.

2.3 Loss function

The boundary segmentation of buildings is a difficult task in 
semantic segmentation. The fully convolutional neural network 
performs size reduction by the extracted building features in the 
upsampling phase but learns less information about the edges of 
buildings in the high perceptual field phase of the network, which leads 
to incomplete contours and distorted contours in the network 
extracted buildings.

To solve the problems, we  design a weighted loss function 
combining dice loss and boundary loss (Kervadec et al., 2019), which 
controls the network model to learn more boundary features of the 
building. The weighted loss function is as follows:

 ( ) ( )d BLoss Loss lab,pre Loss lab,pre ,= + α×

where dLoss  is the dice loss function, BLoss  is the boundary loss, 
lab  is the image label, pre is the predicted image, and á  is a 
weight parameter.

FIGURE 2

Unet structure.

TABLE 1 AMBDNet architecture.

Stage Operator N Channels

Encoder

Conv3 × 3

Conv3 × 3

ECBA

MaxPooling

3

64

128

256

Conv3 × 3

Conv3 × 3

MaxPooling

1 512

Conv3 × 3 2 1,024

Decoder

ConvTranspose3 × 3

Conv3 × 3

Conv3 × 3

4

512

256

128

64

Conv3 × 3 2 2
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2.3.1 Dice loss
Dice loss is a region-dependent loss function where the loss of a 

pixel point is not only correlated with the label and predicted value of 
that point, but also with the label and predicted value of other points, 
representing a region-dependent loss.

 

N
i ii

d N N2 2
i ii i

2 p g
Loss

p g
=

+

∑
∑ ∑

where ip P∈ is the binary segmentation of the predicted by the 
network and ig G∈  is the ground truth segmentation. N is the total 
number of pixels. P and G  can be 3D voxels or 2D pixels. Overall 
summary, it is the sum of two matrices that are bitwise multiplied, 
multiplied by 2, and divided by the bitwise squares of the 
two matrices.

2.3.2 Boundary loss
Inspired by the study of Kervadec et al. (2019), we also employ 

boundary loss to train our model to deal with the unbalanced data 
problem. The boundary loss takes the form of a distance metric on the 
space of contours, not regions. The corresponding form can 
be approximated by

 
( ) ( ) ( )B G qLoss q s q dφ θ

ω

θ = ∫

where ω  and q denote the spatial domain and a specific pixel 
within it. Gφ  and sθ  denote the representation of the ground-truth 
region G  and Softmax probability outputs of the network, 
respectively. In our experiment, the boundary loss is the sum of 
linear functions of the regional Softmax probability outputs of 
the network.

FIGURE 3

Diagram of ECBA module.

FIGURE 4

Diagram of the ECA module. GAP means Global Average Pooling.

FIGURE 5

Diagram of the spatial attention module.
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3 Experiments

3.1 Dataset

The Inria Aerial Image Labeling dataset (Maggiori et al., 2017) is 
selected for building extraction in our experiments. The size of each image 
in the dataset is 5,000*5,000 pixels, and the corresponding resolution is 
0.3 m. Each image is a three-channel RGB image. The images are labeled 
with two categories, i.e., buildings and backgrounds. We  select the  
large-scale images with more buildings as the experimental data.  
The large-scale images are divided into 4,372 patches of size  
512×512 using a sliding window approach. We select 3,971 images as the 
training and validation sets and 401 images as test sets. Figure 6 depicts 
images and labels from a subset of this dataset, where the buildings are 
represented in white and the backgrounds are represented in black.

3.2 Experimental parameter setting

The data were normalized using the transformations with mean 
of 0.485, 0.456, and 0.406 and corresponding SD of 0.229, 0.224, and 
0.225 for the RGB channels of the images, respectively.

For training, the input image size is 512*512, the batch size is set 
as 8, the epoch is set as 120, and the initial learning rate is 10−5. The 
gradient optimizer is the adaptive gradient descent algorithm (Kingma 
and Ba, 2014) and the equal interval learning rate decay strategy is 
selected to optimize the learning rate, which is determined to decay at 
0.5 for every 10 training rounds. The attenuation factor is set as 0.5 
because the factor can ensure the model has a good convergence speed 
with a small learning rate and the stable convergence of the model 
parameters to the optimal solution. For the hyperparameter α of the 
loss function, it is determined that the initial weight is 0.01 and 
increases by 0.001 for each round of experiments with repeated 
experiments. The purpose of such a setting is to make the model focus 
on the boundary features of the building in the later stage of training, 
and the central main features of the building are still the main focus 
in the early stage of training.

All programs run on a PC equipped with Ubuntu 16.04.4 
operation system, Tesla M40 GPU with 24GB memory, python 3.7, 
PyTorch 1.9.0, and CUDA 10.2.

3.3 Evaluation metrics

Following existing studies, we use pixel accuracy (PA), intersection 
over union (IoU), mean intersection over union (MIoU), and Recall 
(R) to evaluate the performance of the models.

PA is the ratio of the number of correctly classified pixel points to 
the number of all pixel points, which indicates the accuracy of 
recognizing pixel objects. IoU is the intersection of the predicted 
labels and the ground-truth labels divided by the concatenation of the 
predicted labels and the ground-truth label. MIoU is the average IoU 
over all classes. R is the ratio of correctly classified pixels to the 
number of all pixels predicted to be in that category. The corresponding 
mathematical formulas are as follows:

 
TP TNPA

TP TN FP FN
+

=
+ + +

 
TPIoU

TP FP FN
=

+ +

 
( ) i

0 1 i
i i i

1 TPMIoU IoU IoU ,IoU ,i 0,1
2 TP FP FN

= + = =
+ +

 
TPR

TP FN
=

+

The true positive (TP) class is denoted as the amount of 
accurately predicted building pixels. The false positive (FP) class 
represents the incorrectly estimated building pixel number. The 
true negative (TN) class is the correctly classified non-buildings 
pixels. The false negative (FN) is the number of misclassified 
buildings. These classes are calculated using a confusion matrix in 
Table 2.

3.4 Baselines

To verify the performance of the proposed model, we selected 
three methods as baseline methods. The details of the baseline can 
be found below.

 (1) Unet (Ronneberger et al., 2015): the traditional Unet network 
with the cross-entropy loss function.

 (2) Unet_ECBA: incorporating the ECBA attention module into 
the Unet network with the cross-entropy loss function. As an 
ablation study, we evaluated the impact of the ECBA attention 
module and the weighted boundary loss function.

 (3) DeeplabV3 (Chen et  al., 2017): incorporating atrous 
convolution with various rates to capture multi-scale context 
for semantic image segmentation.

FIGURE 6

Examples of experimental data. Panel (A) represents images and 
(B) represents buildings and backgrounds with white and dark colors, 
respectively.
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4 Results and discussion

4.1 Experimental results

We compare Unet, Unet_ECBA, and DeeplabV3 with the 
proposed method AMBDNet on the Inria Aerial Building Dataset. 
The experimental results are shown in Table  3. According to the 
results, the proposed method achieves state-of-the-art performance 
in terms of MIoU. In detail, our method obtains 0.9046, 0.7797, and 
0.9140 in terms of R, IoU, and PA for the building class.

To further demonstrate the effectiveness of the proposed 
AMBDNet, ablation experiments were conducted. We evaluated the 
impact of the ECBA attention module and the weighted boundary loss 
function individually by creating two simplified versions of the model: 
(1) Unet: Unet_ECBA without ECBA and (2) Unet_ECBA: AMBDNet 
without the weighted boundary loss function.

Compared with the conventional network Unet, Unet_ECBA 
significantly surpasses its performance by 1.76% MIoU-score. In 
detail, Unet_ECBA obtains 2.04% R-score, 1.88% IoU-score, and 0.84 
PA-score improvements in terms of the building class compared with 
Unet. These improvements are attributed to the fact that Unet_ECBA 
can leverage channel spatial attention modules to obtain the 
dependencies of feature maps.

Compared with Unet_ECBA, AMBDNet significantly surpasses 
its performance by 0.73% MIoU-score. In detail, AMBDNet obtains 
1.61% R-score, 1.46% IoU-score, and 0.80 PA-score improvement in 
terms of the building class compared with Unet_ECBA. These 
improvements are attributed to the efficient convolution block being 
able to learn the important features from spatial and multi-channel 
dimensions by using the new weighted boundary loss function instead 
of the original cross-entropy loss function for better model training 
and learning in building boundary detection.

Compared with DeeplabV3, AMBDNet significantly surpasses its 
performance by 16.83% MIoU-score. In detail, AMBDNet obtains 
6.72% R-score, 29.58% IoU-score, and 17.98 PA-score improvements 
in terms of the building class compared with DeeplabV3. These 
improvements are attributed to the combination of the Unet network 
and the efficient convolution block attention mechanism based on the 
weighted boundary loss function proposed in this study.

Figure 7 compares the segmentation performance of different 
models on the building dataset. From the predicted maps, several key 
observations can be made: As seen in the red circular box in the first 
row, AMBDNet effectively captures detailed building edges compared 
to other models. This indicates that integration of AMBDNet of 
attention mechanisms enables it to better distinguish fine-grained 
boundary details, reducing misclassification around building edges. 
In the red rectangle of the second row, AMBDNet accurately 
segments building boundaries in shadowed areas, whereas other 
models such as Unet and Unet_ECBA fail to differentiate the 
boundaries properly. This suggests that the boundary loss function in 
AMBDNet plays a crucial role in enhancing the ability of the model 
to identify structures even under challenging lighting conditions. The 
circular box of the fourth row highlights regions with similar pixel 
values between buildings and backgrounds. While Unet and other 
models struggle with misclassification in these regions, AMBDNet 
successfully distinguishes the building features. This demonstrates 
that attention mechanism of AMBDNet is effective in reducing 
confusion between similar pixel intensities, leading to more accurate 
segmentation results.

In the comparison between Unet, Unet_ECBA, and AMBDNet, 
Figure 7 reveals that Unet_ECBA and AMBDNet can capture more 
relevant building pixels, particularly in the fourth row. This indicates 
that both models are better at extracting building features than the 
original Unet. Specifically, the red rectangles in the third row highlight 
areas where Unet_ECBA and AMBDNet successfully distinguish the 
shaded regions within the central cavity of the building, whereas Unet 
struggles to classify these regions accurately. This improvement can 
be attributed to the ECBA attention mechanism, which enhances the 
robustness of the model by reducing interference from 
non-building features.

Additionally, AMBDNet demonstrates superior edge detail 
extraction than Unet_ECBA, as evidenced by the clearer building 
boundaries in the fourth row of Figure  7. This is a result of the 
weighted boundary loss function, which enables AMBDNet to more 
accurately segment building boundaries, ensuring complete extraction 
even in challenging shadowed regions. Therefore, the observations 
from Figure 7 underscore the advantages of our model in capturing 
intricate building edge details.

Table 4 further supports these findings by showing the tradeoff 
between model complexity and performance. While AMBDNet 
marginally increases the training time compared to Unet and Unet_
ECBA, it achieves significant improvements in segmentation accuracy 
without a substantial rise in model complexity. This balance between 
efficiency and effectiveness indicates that AMBDNet is capable of 
achieving enhanced segmentation performance without incurring 
significant computational costs.

TABLE 2 Confusion matrix.

Actual performance

1 0

Predicted Performance
1 TP FP

0 FN TN

TABLE 3 Evaluation results of different models on the building datasets.

Model R IoU PA MIoU

Building Others Building Others Building Others

Unet 0.8724 0.9300 0.7543 0.9314 0.8971 0.9664 0.8428

Unet_ECBA 0.8902 0.9414 0.7685 0.9467 0.9067 0.9683 0.8576

DeeplabV3 0.8476 0.9070 0.6017 0.8772 0.7747 0.8633 0.7394

AMBDNet 0.9046 0.9743 0.7797 0.9481 0.9140 0.9713 0.8639
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4.2 Attention mechanisms in the 
upsampling and downsampling stages

The proposed method AMBDNet integrates the ECBA 
attention in all upsampling stages and no attention mechanism in 
all downsampling stages, thus achieving better segmentation 
performance. To further verify the fact that attentions works in the 
upsampling stages, we  conduct more experiments in that 
attentions are incorporated into both the upsampling and 
downsampling stages. Here, four-layer and five-layer attention 
mechanism fusion are incorporated into the downsampling stages 
as AMBDNet_4 and AMBDNet_5, respectively. The evaluation 
results of different attentions on the building datasets are shown 
in Table 5.

We could observe that AMBDNet_4 and AMBDNet_5 achieve 
poor segmentation performance on the building dataset by integrating 
the excessive addition of the attention mechanisms in the 
downsampling stages. Attention mechanisms in downsampling stages 
focus on the important features map while the boundary loss function 
focuses on the building boundary. Thus, the conflict between the 
attention mechanism and the boundary loss function in the high 

perceptual field stage of the network may result in poor 
segmentation performance.

Meanwhile, the predicted maps of different models with attention 
mechanisms in the upsampling and downsampling stages on the 
building dataset are shown in Figure 8. We could observe that as the 
attention mechanism increases in the downsampling stage, it instead 
leads to more generalized image predictions, with the building 
boundary segmentation lines showing rounding and poor results at 
the corners of the buildings, presenting worse results overall on 
the buildings.

4.3 Limitations of the research and future 
study

Unet and DeepLabV3 have been demonstrated to achieve better 
performance in tasks such as building segmentation and medical 
image segmentation. Thus, we  incorporate the ECBA attention 
module into Unet to demonstrate the effectiveness of ECBA and the 
weighted boundary loss function. Despite these achievements, the 
proposed model has some limitations. First, the comparison between 
ECBA and different attention mechanisms is lacking and the fusion 
between ECBA and other baseline methods is needed to explore. 
Second, the model exhibits relatively high computational complexity 
and training time, which can hinder real-time applications. 
Additionally, the model is not as lightweight as desired for deployment 
on devices with limited computational resources. In future study, 
we would explore methods to reduce the complexity of model, such 
as pruning techniques or more efficient attention mechanisms, to 

FIGURE 7

Comparison results on the building dataset. (A) Original images. (B) Corresponding labels. (C) Predicted maps of Unet. (D) Predicted maps of Unet_
ECBA. (E) Predicted maps of AMBDNet. (F) Predicted maps of DeeplabV3.

TABLE 4 Number of parameters in different models.

Model Parameters/MB Time (epoch)/s

Unet 132.3 1842.41

Unet_ECBA 132.3 1850.87

AMBDNet 132.3 1885.93
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strike a better balance between accuracy and speed. Moreover, 
we would strengthen the generalizability and robustness of the model 
on diverse datasets.

5 Conclusion

To address the challenges in accurately extracting buildings from 
high-resolution remote sensing images, our study proposed 
improvements to the Unet model by integrating an ECBA attention 
module and a weighted boundary loss function. The ECBA module, 
which combines channel and spatial attention, effectively addresses 
issues of missing and incorrect extractions of buildings and incomplete 
building contours that are common in traditional Unet models. This 

enhancement enables our model to better capture fine-grained 
features, leading to a significant improvement in segmentation quality. 
For addressing the problem of incomplete segmentation of building 
boundaries, particularly in shadowed areas or irregular boundaries, 
we replaced the traditional cross-entropy loss function with a weighted 
boundary loss function. This change allowed the model to better 
preserve boundary integrity during backpropagation, resulting in 
more accurate boundary delineation. The effectiveness of these 
methodological improvements is evident from the results: the 
proposed model achieved a recall rate of 0.9046, an intersection over 
union (IoU) of 0.7797, a pixel accuracy of 0.9140, and a mean 
intersection over union (MIoU) of 0.8639. These metrics highlight the 
ability of the model to outperform traditional approaches in both 
precision and boundary recognition. The enhanced performance of 
the model in shadowed and complex regions makes it suitable for 

TABLE 5 Results of the evaluation of the incorporation of additional layers of attention mechanisms in the downsampling stages on the reference 
dataset.

Model Recall IOU PA MIOU

Building Others Building Others Building Others

AMBDNet 0.9046 0.9743 0.7797 0.9481 0.9140 0.9713 0.8639

AMBDNet_4 0.8910 0.9695 0.7735 0.9453 0.9085 0.9692 0.8592

AMBDNet_5 0.8936 0.9671 0.7719 0.9402 0.9043 0.9657 0.8560

FIGURE 8

Comparison results of different attention mechanisms on the building dataset. (A) Original images. (B) Corresponding labels. (C) Predicted maps of 
AMBDNet. (D) Predicted maps of AMBDNet_4. (E) Predicted maps of AMBDNet_5.
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applications in geographic information systems (GIS) and automated 
mapping technologies.
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