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Significant strides have been made in emotion recognition from

Electroencephalography (EEG) signals. However, e�ectively modeling the

diverse spatial, spectral, and temporal features of multi-channel brain signals

remains a challenge. This paper proposes a novel framework, the Directional

Spatial and Spectral Attention Network (DSSA Net), which enhances emotion

recognition accuracy by capturing critical spatial-spectral-temporal features

from EEG signals. The framework consists of three modules: Positional

Attention (PA), Spectral Attention (SA), and Temporal Attention (TA). The

PA module includes Vertical Attention (VA) and Horizontal Attention (HA)

branches, designed to detect active brain regions from di�erent orientations.

Experimental results on three benchmark EEG datasets demonstrate that DSSA

Net outperformsmost competitivemethods. On the SEED and SEED-IV datasets,

it achieves accuracies of 96.61% and 85.07% for subject-dependent emotion

recognition, respectively, and 87.03% and 75.86% for subject-independent

recognition. On the DEAP dataset, it attains accuracies of 94.97% for valence

and 94.73% for arousal. These results showcase the framework’s ability to

leverage both spatial and spectral di�erences across brain hemispheres and

regions, enhancing classification accuracy for emotion recognition.

KEYWORDS

EEG, emotion recognition, spectral attention, position attention, temporal attention,

directional spatial attention

1 Introduction

Emotion plays a crucial role in our daily lives, manifesting through various forms

such as auditory cues, facial expressions, and physiological signals (He L. et al., 2022).

Among these, electroencephalogram (EEG) signals are particularly noteworthy due to their

objective nature and resistance to falsification, making them a reliable indicator of different

emotional states. With the rapid advancements in EEG acquisition technology and the

evolution of machine learning techniques, the field of EEG-based emotion recognition has

gained significant attention and made remarkable progress (Wang et al., 2024).

EEG exhibits distinct features across temporal, spatial, and frequency domains in

different emotions (Li et al., 2019; Mognon et al., 2011). For example, during states

of happiness or sadness, EEG may show different wave amplitudes and frequency
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distributions (Alarcao and Fonseca, 2017). Specific EEG frequency

bands such as alpha waves (8–12 Hz) and beta waves (12–

30 Hz) are known to be associated with different emotional

states. Alpha waves are generally linked to relaxation and

calmness (Davidson et al., 2000), while beta waves often indicate

alertness and tension (Ray and Cole, 1985). Beyond analyzing

these features individually, recent studies have demonstrated

that the fusion of spectral and spatial features can significantly

enhance emotion recognition performance. For example, a spatio-

temporal self-constructing graph neural network (ST-SCGNN)

effectively combines spectral information from EEG frequency

bands with spatial activation patterns across different brain

regions, leveraging their complementary strengths for cross-

subject emotion recognition (Pan et al., 2023). This combination

allows for a more comprehensive understanding of how different

frequency bands manifest across specific spatial areas of the brain,

providing a richer representation of emotional states. In addition

to frequency and spatial attributes, temporal features are crucial

for capturing the dynamic changes in brain activity that occur over

time. For example, temporal models like Temporal Convolutional

Networks (TCN) have been used to encode these time-dependent

characteristics, significantly improving the performance of EEG-

based cross-domain emotion recognition (He Z. et al., 2022). This

highlights the importance of temporal modeling for capturing the

evolving nature of emotional responses in EEG signals.

Neuroscientific research suggests that emotional processing

involves a closely integrated system across both hemispheres

and the anterior-posterior regions of the brain, with significant

overlap in their roles. The left hemisphere tends to be more

involved in processing emotions related to approach behaviors and

positive affect, such as happiness and satisfaction, whereas the right

hemisphere may play a greater role in processing emotions related

to withdrawal behaviors and negative affect, such as sadness and

fear (Celeghin et al., 2017). Similarly, the anterior brain regions,

particularly the frontal lobe, are associated with heightened activity

in response to positive emotions, while posterior regions, including

the occipital lobe, show increased activity when processing visual

emotional stimuli (Kringelbach and Berridge, 2010; Abdel-Ghaffar

et al., 2024).

In addition to these spatial dimensions, specific frequency

bands are also tied to certain brain regions and emotional states.

For instance, alpha waves (8–12 Hz) are typically dominant in

the posterior brain regions, particularly in occipital and parietal

areas, and are associated with relaxation and calmness. In contrast,

beta waves (12–30 Hz) are more prominent in the frontal regions,

reflecting alertness and cognitive processing. These frequency

bands exhibit different strengths depending on whether the signals

come from the anterior-posterior or left-right axes, which reflect

emotional lateralization (Davidson et al., 2000).

This connection between horizontal and vertical orientations

and spectral characteristics is supported by the psychological

understanding that the anterior-posterior axis is more involved

in processing emotional stimuli, while the left-right axis helps

differentiate positive and negative emotions (Davidson, 1992). Our

proposed model leverages these insights, enabling the attention

mechanism to focus on specific frequency bands according to the

brain regions, improving emotion recognition performance.

Emotion classification based on EEG signals has made

significant strides in recent years, reflecting the objective and

precise emotional states of humans through electrophysiological

manifestations. Wang et al. (2011) utilized a support vector

machine (SVM) classifier to differentiate various emotional states,

but their method struggled with the complex and high-dimensional

nature of EEG data. Alhagry et al. (2017) employed a two-

layer Long Short-Term Memory (LSTM) network, which captured

temporal dependencies in the EEG signals and achieved satisfactory

results. Despite this progress, there remains a need for the

comprehensive fusion of features from spatial, temporal, and

frequency domains. Tao et al. (2020) introduced an attention-

based convolutional recurrent neural network (ACRNN) that

employs a channel-wise attention mechanism with a CNN for

adaptive spatial feature extraction and extended self-attention

within an RNN to analyze temporal dynamics in EEG signals,

considering crucial information across spatial and temporal

domains. To further take advantage of spectral information, Xiao

et al. (2022) utilized a CNN with spectral and spatial attention

mechanisms to dynamically adjust weights across different brain

regions and frequency bands, and incorporatedd a temporal

attention mechanism within a bidirectional LSTM to analyze

temporal dependencies in the data. Zhu et al. (2024) developed

the Self-Organized Graph Pseudo-3D Convolution (SOGPCN). It

uses a self-organizing graph convolution module to extract the

spatial features from each frequency band and 3D-CNN layers

followed by dot product attention layers to focus on valuable

information, and utilizes an LSTM layer to model the temporal

dynamics. In our previous work (Liu et al., 2021), we developed

a 3D convolutional network (3D-CNN) that integrates a parallel

positional-spectral-temporal attention module to learn crucial

information across different domains for EEG emotion recognition.

Although the aforementioned studies have effectively incorporated

spatial, temporal, and spectral information, they typically viewed

the EEG’s spatial domain as a unified whole while ignoring the

functional differences between anterior-posterior and left-right

brain regions.

In this paper, we propose a Directional Spatial and Spectral

Attention Network (DSSA Net) that enhances spatial, spectral,

and temporal features, specifically emphasizing the attention across

complementary orientations in the brain area. It is composed of

the Position Attention (PA), Spectral Attention (SA), and Temporal

Attention (TA) modules. The PA Module, consisting of the vertical

attention (VA) branch and horizontal attention (HA) branch,

learns the spatial attentions on orthogonal orientations from

both anterior-posterior and left-right brain regions, While the SA

Module learns the attention on different frequency bands. Unlike

traditional undirectedmodels, which treat the spatial dimensions of

EEG signals uniformly, DSSA Net leverages the directional nature

of brain activities by separately modeling the attention across

anterior-posterior and left-right brain regions. This directional

approach aligns with established neuroscientific findings that

different hemispheres and brain regions are differentially involved

in emotional processing, allowing the network to more accurately

capture emotion-specific patterns in EEG data. These two modules

produce a 3D attention map that enhances important frequency

bands within the spatial context. Subsequently, the Temporal
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Attention (TA) Module models the temporal dynamics of the

enhanced feature sequence using a Transformer encoder. In this

way, our proposed framework captures the critical features across

the spatial, spectral, and temporal domains, highlighting the

contributions of various brain regions in the anterior-posterior

and left-right directions on emotion recognition. The primary

contributions of this paper are as follows:

• In this paper, we propose the Directional Spatial and Spectral

Attention Network (DSSA Net), a novel EEG emotion

recognition framework, which emphasizes the contributions

of various brain regions on emotion recognition, while

specially taking into account the functional differences

between the anterior and posterior as well as the left and right

brain regions, and the specific frequency bands associated with

different emotional states.

• We conducted comprehensive experiments on benchmark

datasets such as DEAP, SEED, and SEED-IV, which confirmed

that the DSSA Net significantly outperforms most existing

methods in emotion recognition tasks. This superior

performance is largely due to its effective analysis of EEG

signals from distinct brain orientations, notably the anterior-

posterior and left-right directions. Ablation studies further

confirm the critical importance of cohesively analyzing spatial

directions and spectral features.

2 Related work

Emotion classification based on EEG signals is a

meaningful research direction. As the electrophysiological

manifestation of the central nervous system, EEG objectively

and precisely reflects the real emotional states of humans.

With the development of artificial intelligence technology,

emotion recognition has become a hot research topic in

human-computer interaction.

2.1 Traditional machine learning based
methods

In recent years, several studies have applied traditional

machine learning techniques to EEG-based emotion recognition.

Koelstra et al. (2011), Wang et al. (2011), and Bahari and

Janghorbani (2013) have employed Gaussian Naive Bayes,

Support Vector Machines (SVM), and a combination of

recurrence plot analysis with k-nearest neighbor classifiers,

respectively, to analyze various emotional states. Additionally,

Jiang et al. (2019) and Zhang et al. (2024) have enhanced

cross-subject emotion recognition by integrating decision tree

classifiers and a dynamically optimized Random Forest model,

respectively, each enhanced by algorithmic adaptations for

better performance. Xu X. et al. (2024) addressed the challenges

of small EEG sample sizes and high feature dimensionality

by leveraging both local and global label relevance for feature

selection. It employs orthogonal regression to map EEG

features into a low-dimensional space to capture local label

correlations, and then integrates global label correlations

from the original multi-dimension emotional label space. Xu

et al. (2021) optimized EEG emotion recognition by globally

evaluating and reducing feature redundancy, selecting informative

and non-redundant features to improve performance across

various datasets.

2.2 Deep learning based methods

Compared with traditional methods, deep learning

technologies offer significant advantages in high-level

representation and end-to-end training schemes. Al-Nafjan

et al. (2017) utilized Deep Neural Networks (DNN) with Power

Spectral Density (PSD) features to identify human emotions.

Further considering the temporal characteristics of EEG, Alhagry

et al. (2017) achieved satisfactory emotion recognition results by

employing a two-layer Long Short-TermMemory (LSTM) network

using EEG signals as input. Hefron et al. (2017) implemented

LSTM-based Recurrent Neural Networks (RNNs) to model the

time dependence of cognitive-related EEG signals. However, these

studies did not fully exploit the multi-dimensional information

available in EEG signals. To address the limitations of these

approaches, some researchers have explored multi-dimensional

features in EEG-based emotion recognition. Bashivan et al. (2015)

proposed a deep recursive convolutional neural network (R-CNN)

for EEG-based cognitive and mental load classification tasks,

incorporating spatial and temporal dimensions. Zhang et al.

(2017) developed a deep CNN model to learn robust spatio-

temporal feature representations of raw EEG data for motion

intention classification. Despite considering multi-dimensional

features, these studies still have limitations. They often overlook

critical aspects such as the frequency domain or the dynamic

changes in EEG signals over longer periods, which are essential

for a more comprehensive understanding of emotional states.

Wu et al. (2024) enhanced the adaptability of EEG emotion

recognition by using a dual-graph structure to capture emotion-

relevant and emotion-irrelevant features, and applying orthogonal

purification to reduce redundancy and align feature spaces

across subjects.

2.3 Attention based methods

To further enhance the analysis, attention mechanisms have

been introduced to effectively capture and emphasize the most

relevant features across different dimensions, providing a more

detailed and accurate understanding of EEG-based emotion

recognition. Building on this foundation, several advanced

approaches have emerged. Tao et al. (2020) proposed an

attention-based convolutional recurrent neural network (ACRNN)

to extract more discriminative features and improve emotion

recognition accuracy. The model employed a channel-wise

attention mechanism and a CNN to adaptively extract spatial

information, which further integrated extended self-attention with

an RNN to explore temporal information based on intrinsic

similarities within the EEG signals. To further take advantage of the

different importance of frequency band features, Xiao et al. (2022)
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introduced the four-dimensional attention-based neural network

(4D-aNN) for EEG emotion recognition. The 4D-aNN employs

spectral and spatial attentionmechanisms to dynamically adjust the

weights assigned to different brain regions and frequency bands.

A convolutional neural network (CNN) processes this spectral and

spatial information. Additionally, the model integrates a temporal

attention mechanism within a bidirectional Long Short-Term

Memory (LSTM) network, enabling the exploration of temporal

dependencies in the 4D EEG representations, aiming to enhance

the utilization of comprehensive signal information for emotion

recognition. Zhang et al. (2023) introduced an attention-based

hybrid deep learning model for EEG emotion recognition. The

model starts by extracting differential entropy features from EEG

data, organized by electrode positions. It uses a convolutional

encoder to capture spatial features and a band attentionmechanism

to weight different frequency bands. A long short-term memory

(LSTM) network with a time attention mechanism then extracts

and highlights key temporal features, enhancing classification

accuracy. To further consider spatial correlations and temporal

context information, Zhu et al. (2024) presented the Self-Organized

Graph Pseudo-3D Convolution (SOGPCN). Unlike traditional

methods that construct static graph structures for brain channels,

SOGPCN dynamically addresses the varying spatial relationships

between electrodes across different frequency bands. The process

begins with creating a self-organizing map for each channel within

each frequency band, identifying the 10 most relevant channels.

Graph convolution then captures spatial relationships within these

maps. Subsequently, pseudo-three-dimensional convolution paired

with dot product attention is used to extract temporal features

from the EEG sequences. Finally, an LSTM layer is utilized to learn

contextual information between adjacent time-series data, aiming

to improve the accuracy and reliability of emotion recognition from

EEG signals.

Building on the significant advancements made in EEG-based

emotion recognition through various attention-based models, it

is evident that the incorporation of attention mechanisms in

different dimensions significantly improves the feature extraction

process. However, many existing methods still fail to fully integrate

attention mechanisms across all dimensions, potentially missing

crucial features. Additionally, even when these dimensions are

considered, existing methods often fail to adequately explore the

interactions between specific frequency bands and directional

spatial positions within critical brain regions such as the left and

right hemispheres and the anterior and posterior areas. These areas

are essential for a nuanced understanding of emotional processing,

yet they are frequently overlooked in the simultaneous analysis of

spatial and spectral data. To address these issues, we introduce

the DSSA Net, a framework that not only incorporates attention

mechanisms across spatial, spectral, and temporal dimensions but

also intricately links specific frequency bands to spatially distinct

brain regions. This approach utilizes Positional Attention (PA)

to highlight key positions related to emotion processing, which

are directly associated with distinct frequency bands through

the Spectral Attention (SA). By aligning spatial distinctions with

spectral characteristics, our model enhances the detection of

emotional states. Temporal Attention (TA) further prioritizes

significant temporal slices, collectively enhancing the accuracy of

emotion recognition.

3 Methodology

3.1 Overview of model structure

The proposed DSSA Net framework comprising three modules

is illustrated in Figure 1. The signal processing and feature

extraction module segments the EEG signals into non-overlapping

samples. For each sample, it extracts the differential entropy

features across five frequency bands, and reorganizes them into a

3D feature representation following the layout of EEG electrodes.

The design of the Position Attention (PA) module, which

includes vertical attention (VA) and horizontal attention (HA), is

grounded in neuroscientific evidence that different brain regions

play specific roles in emotional processing. The VA focuses on

anterior-posterior brain activity, capturing the differences between

frontal and occipital regions, which are known to be involved in

cognitive and emotional responses. The HA focuses on left-right

differences, reflecting the lateralization of emotions, where the left

hemisphere is more associated with positive emotions and the

right hemisphere with negative emotions (Davidson, 1992). These

attentions allow the model to align with the spatial structure of

brain activity as outlined in the introduction.

The local feature learningmodule contains a Position Attention

(PA) branch with vertical attention (VA) and horizontal attention

(HA) to emphasize the significant brain regions by analyzing

comprehensive directional activation patterns, and a Spectral

Attention (SA) branch to identify the frequency bands that are

essential for emotion recognition.

The choice of the Spectral Attention (SA) branch is aimed

at leveraging the frequency-specific emotional information, such

as alpha and beta waves, which are linked to relaxation and

alertness, respectively. This complements the spatial focus of VA

and HA by allowing the model to focus on the most informative

frequency bands.

The 3D attention map, learned from the VA, HA, and SA

branches, is then applied to enhance the 3D feature representation

via element-wise multiplication. The Temporal Modeling (TA)

module leverages a Transformer encoder to capture the temporal

dynamics among the enhanced feature representation sequence of

the EEG signals. Finally, the attention-weighted EEG features are

averaged along the temporal domain and fed into a multilayer

perceptron (MLP) head to predict the emotional state.

3.2 Signal processing and feature
organization

In this section, we introduce the form of EEG signal processing

and feature representation. Firstly, we partition the EEG signals

into samples of T seconds, which are assigned the same emotion

labels as those of their original EEG signals. For each sample, the

EEG signal of each channel is first passed through a Butterworth

bandpass filter between 0.5 and 50 Hz, then sliced into 1-s non-

overlapping segments. For each segment, differential entropy (DE)

features are extracted at five frequency bands: δ (1–3 Hz), θ (4–7

Hz), α (8–13 Hz), β (14–30 Hz), and γ (31–50 Hz), resulting in a

five-dimensional feature vector.
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FIGURE 1

Overview of the DSSA Net framework for EEG-based emotion recognition. The framework includes: (1) Signal Processing and Feature Extraction,

which segments EEG signals and extracts di�erential entropy features across five frequency bands; (2) Local Feature Learning, featuring Position

Attention (PA) with Vertical (VA) and Horizontal (HA) branches for spatial focus, and Spectral Attention (SA) for frequency-specific information; (3)

Temporal Modeling (TA) using a Transformer encoder to capture temporal dynamics, followed by an MLP head for emotion prediction. The 3D

attention map combines spatial and spectral insights to enhance feature representation.

Therefore, for the total C channels of the t-th second of a

sample, a 2D feature matrix ft ∈ R
C×S is obtained, where S = 5

represents the number of spectral bands.

The extracted DE features in each band correspond to different

physiological characteristics of brain activity. For example, α waves

(8–13 Hz) are dominant in the posterior regions and are associated

with states of relaxation and calmness, reflecting reduced cognitive

load and increased internal focus. β waves (14–30 Hz), on the other

hand, are prominent in the frontal regions during states of alertness,

focus, and even stress, indicating active cognitive processing. δ

waves (1–3 Hz) are often linked to deep sleep and restorative

brain activities, which can affect the baseline emotional state. θ

waves (4–7 Hz) play a role in memory and emotional regulation,

and often become more pronounced during meditative states or

drowsiness. γ waves (31–50 Hz) are associated with high-frequency

cognitive processing and attention, particularly during intense

emotional experiences. These band-specific characteristics align

with the brain’s horizontal and vertical differentiation in emotional

processing, as described in the introduction. By reorganizing

the EEG data into a 3D feature representation following the

electrode layout, our model integrates both the spatial and spectral

information in a manner that reflects these known neural patterns.

To fully utilize the positional information of EEG electrodes,

following the H × V grid layout of EEG electrodes as shown on

the left of Figure 2, we reorganize ft ∈ R
C×S of C EEG channels

into a reshaped EEG feature representation f
′

t ∈ R
H×V×S. For the

empty grids in the layout that do not match the actual electrodes,

considering that the electrical activity of the brain is spatially

continuous and signals from adjacent electrodes are usually highly

correlated (Valk et al., 2020), we use bi-linear interpolation to fill in

the missing values.

3.3 Local feature learning

In psychological and cognitive research, studies have

consistently demonstrated differential activation patterns between

left and right brain hemispheres during various cognitive tasks

and emotional processing. For instance, the lateralization theory

suggests that emotions may be processed differently in the

left and right hemispheres of the brain, leading to distinct

activation patterns (Davidson, 1992). Additionally, investigations

into the anterior-posterior brain regions have highlighted the

significance of anterior and posterior brain areas in emotional

processing (Harmon-Jones and Gable, 2018). These studies

indicate that different brain regions along both horizontal (left-

right) and vertical (anterior-posterior) dimensions play crucial

roles in emotional processing. Given the importance of these

different brain regions in emotional processing, there is a growing

need to explore attention mechanisms that can capture both

the anterior-posterior and left-right directional cues in neural

data processing. Furthermore, in the realm of spectral analysis,

research has underscored the importance of different frequency

bands in encoding emotional states. Studies have shown that

specific frequency bands, such as alpha, beta, and gamma, exhibit

distinct patterns of activity corresponding to different emotional

experiences (Jenke et al., 2014). Hence, capturing effective spectral

information is paramount in accurate decoding of emotional states

from neural signals.

Motivated by these findings, we propose a novel local feature

learning framework as depicted in Figure 3, which consists of

two pivotal modules: the Position Attention (PA) module and

the Spectral Attention (SA) module. The PA module captures

vital cues from both the anterior-posterior and left-right brain

regions, while the SA module emphasizes crucial spectral features

relevant to emotional states. The outputs of these modules

compose a 3D attention map, which is used to weight the EEG

feature representation by element-wise product. This combined

attention mechanism highlights more important spectral bands

among the spatial regions in the anterior-posterior and left-right

directions. The weighted feature representation is then integrated

with the original feature to obtain a comprehensive representation

encapsulating salient spatial and spectral information, which is then

flattened into a feature vector following the grid layout within each

frequency band.

3.3.1 Position attention module
Studies have highlighted the significance of both anterior-

posterior (anterior and posterior) and left-right (hemispheric)

brain regions in emotional processing (Harmon-Jones and Gable,

2018). Furthermore, research in neuroscience has consistently

demonstrated that different brain regions activate differently

during various emotional tasks. This phenomenon, known as

lateralization, indicates that the left and right hemispheres of

the brain exhibit distinct activation patterns when processing

emotions (Davidson, 1992). These differential activation patterns

suggest that capturing spatial attention across these dimensions
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FIGURE 2

Detailed workflow of signal processing and feature organization for EEG-based emotion recognition. This includes filtering, segmentation,

di�erential entropy feature extraction across five frequency bands, and the reorganization of extracted features into a 3D representation following

the EEG electrode layout for enhanced spatial and spectral analysis.

FIGURE 3

The local feature learning framework consisting of the PA module and SA module. While the PA module (faint yellow) highlights more critical features

among left and right brain regions as well as protocerebrum and tritocerebrum, the SA module (faint green) gives prominence to the key EEG

spectral bands for emotion recognition.

is crucial for understanding and classifying emotions. Inspired

by these insights, we propose a Position Attention (PA) module

that consists of two branches to learn spatial attention masks

in both vertical and horizontal directions to highlight valuable

brain regions for emotion classification: the vertical attention

(VA) branch and the horizontal attention (HA) branch. The VA

branch captures the differential activation and highlights more

important features among the anterior-posterior brain regions,

while the HA module highlights the salient information on the

left-right hemispheric regions. Unlike previous spatial attention
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methods (Tao et al., 2020), which employ channel-wise attention

to enhance feature representations by assigning weights to different

electrodes independently, our method considers the significance of

positions among the left-right and anterior-posterior brain regions

by using both horizontal and vertical attention mechanisms.

This approach enables the model to simultaneously capture

spatial dependencies in both directions, enhancing the ability to

detect complex interactions between different brain regions and

improving the accuracy of emotion classification.

Specifically, the PAmodule operates as follows. Given the input

EEG feature representation f ′t , firstly the differential entropy (DE)

features of all the S frequency bands on each grid are pooled,

obtaining the average spectral distribution on the grid layout of

the EEG electrodes. Then the horizontal pooling is performed to

get the average spectral feature Rv(f
′

t ) along the anterior-posterior

brain region direction, and vertical pooling is performed to obtain

the average spectral feature Rh(f
′

t ) along the left-right hemispheric

region direction.

Rv(f
′

t ) =
1

S×H

S
∑

i=1

H
∑

j=1

f ′tij (1)

Rh(f
′

t ) =
1

S× V

S
∑

i=1

V
∑

k=1

f ′tik (2)

where i, j and k represents the indices for the spectral, horizontal

and vertical dimensions of the input tensor, respectively.

While pooling along these directions effectively summarizes

spectral features, it can result in the loss of certain fine-grained

spatial details. To address this, the attention mechanisms in

the orthogonal directions (VA and HA branches) help to retain

important spatial relationships that might be compressed during

the pooling process. Additionally, the original feature maps, which

contain the full spatial distribution, are reintroduced in later stages,

ensuring that the overall spatial structure is preserved.

Next, fully connected layers and activation functions are

applied to generate the attention masks:

Mv = φ(ReLU(fc(f1d(Rv(f
′
t ))))) (3)

Mh = φ(ReLU(fc(f1d(Rh(f
′
t ))))) (4)

where f1d represents the 1D convolution operation. fc denotes

the fully connected layer, which is used to combine the extracted

features into a more compact and representative form. To ensure

that the dimensionality of the EEG features remains consistent

throughout the convolutional layers, we applied padding settings

that preserve the dimensions between input and output after each

convolution operation. This approach is critical for maintaining the

alignment between the attention masks and the feature maps, as it

ensures that the recalibrated features from the attention modules

can be directly applied to the corresponding spatial and spectral

regions without any spatial distortion or resizing. By maintaining

consistent dimensions, the model can effectively focus on relevant

regions, leading to better emotion recognition performance. This

strategy also prevents the need for additional resizing steps,

which could introduce artifacts or reduce the effectiveness of the

attention mechanisms. By preserving the spatial resolution of the

feature maps, we ensure that the attention masks are directly

applied without requiring additional adjustments. ReLU denotes

the ReLU activation function, which is applied to the hidden

layers to introduce non-linearity. This allows the model to capture

complex patterns and relationships within the data by enabling the

learning of non-linear feature transformations. The use of ReLU

helps prevent issues such as the vanishing gradient problem and

promotes efficient gradient-based optimization.

φ stands for the Softmax function, which is applied at the

output of the fully connected layer. Softmax normalizes the outputs

into a probability distribution, where the sum of the outputs

equals 1, making it suitable for tasks where the output needs to

represent mutually exclusive probabilities. This ensures that each

output neuron represents the probability of a particular class or

state, which is critical for the classification task in our model.

By combining ReLU in the hidden layers and Softmax at the

output, the model is able to first learn non-linear transformations

of the input data, and then produce interpretable probabilistic

outputs that can be used for classification. This combination of

non-linearity from ReLU and the probabilistic nature of Softmax

is essential for learning complex patterns while maintaining an

interpretable output space.

Through the position attention learning module, the learned V

dimension vector Mv and H dimension vector Mh can be used as

the attention masks to highlight the brain regions in the vertical

and horizontal directions, respectively.

3.3.2 Spectral attention module
The spectral analysis of EEG signals has shown that different

frequency bands play crucial roles in encoding emotional states.

For instance, the delta (1–3 Hz) band is often associated with deep

sleep and unconscious processes, the theta (4–7 Hz) band with

meditation and memory retrieval, the alpha (8–13 Hz) band with

relaxation and mental coordination, the beta (14–30 Hz) band with

active thinking and focus, and the gamma (31–50 Hz) band with

higher cognitive functions and information processing (Jenke et al.,

2014). These distinct patterns of activity in different frequency

bands suggest that capturing spectral attention across these bands

is essential for accurate emotion classification. Based on these

findings, we propose a Spectral Attention (SA) module to learn

a spectrum attention mask that emphasizes on more significant

frequency bands for emotion classification. Unlike traditional

statistical methods or Principal Component Analysis (PCA), which

rely on fixed linear transformations to reduce dimensionality, the

SA module highlights key spectral features by focusing on the

differential energy spectrum of these bands when the brain is

subjected to various emotional stimuli. This allows the model to

capture discriminative EEG frequencies, thereby enhancing the

performance of the emotion classifier.

Specifically, given the EEG feature representation f ′t , the

SA module operates as follows. First, the position pooling is

performed to summarize the spectral features on all the grids

Frontiers inNeurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1481746
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Liu et al. 10.3389/fnbot.2024.1481746

of the layout:

Rs(f
′

t ) =
1

V ×H

V
∑

k=1

H
∑

j=1

f ′tkj (5)

Next, the attention weight vector is computed:

Ms = φ(ReLU(fc(f1d(Rs(f
′

t ))))) (6)

where f1d represents the 1D convolution operation, fc denotes

the fully connected layer, and ReLU denotes the ReLU activation

function and φ stands for softmax function. This process generates

a S dimension vector as the attention mask of the spectral features.

3.3.3 3D attention map weighted local feature
representation

After the attention masks (Mv, Mh, and Ms) are learned, they

are composed into a 3D attention map that integrates attention

across horizontal (left-right), vertical (anterior-posterior), and

spectral dimensions:

M = Mv ⊗Mh ⊗Ms (7)

where ⊗ represents the tensor product. The 3D attention map

M effectively captures the salient spatial and spectral features by

considering both horizontal and vertical orientations of the brain,

as well as the most relevant frequency bands. This comprehensive

map ensures that the recalibrated features are enriched with region-

specific and frequency-specific information.

The attention map is then used to recalibrate the local feature

representation as:

f rect = f ′t ×M (8)

where × represents element-wise multiplication. In this step, f rect

becomes an enhanced feature representation that integrates the

spatial attention from the horizontal and vertical brain axes and

spectral attention from frequency bands. This recalibration process

highlights the most informative regions and frequencies in the EEG

data, focusing on features that are most indicative of emotional

states.

The recalibrated feature f rect is then combined with the original

feature f ′t generating an enhanced comprehensive representation

f enht of the EEG signals:

f enht = f ′t + f rect (9)

The enhanced feature f enht , encapsulating the salient spatial and

spectral information, is then flattened into a V ×H × S dimension

feature vector f flatt following the grid layout within each frequency

band. For an EEG sample of T seconds, the flattened outputs of the

local feature learning module for all the T segments are assembled

into a feature sequence F′ = {f
flat
1 , f

flat
2 , ..., f

flat
T }, which is then input

into a Transformer encoder for temporal modeling.

3.4 Temporal modeling

Studies have demonstrated that effectively learning the

temporal dynamics from EEG is crucial for accurately interpreting

neural responses (Tong et al., 2024; Ding and Chen, 2024). In

our study, the feature vector f
flat
t from the local feature module

is fed into the Transformer encoder. Positional embeddings

are combined with each sequence to create an vector X(t) =

{X(1),X(2), . . . ,X(T)}. Within the Transformer encoder, each

enhanced vector passes through the following steps for each

layer: First, multi-head attention allows the model to focus on

discriminative information of the sequence. The output of this

attention process is then added to the original enhanced vector

(residual connection) and normalized (Add & Norm). This output

is subsequently processed through a feedforward network, followed

by another Add and Norm step, producing a series of hidden states

{h1, h2, . . . , hT}. These states encapsulate the temporal and spatial-

spectral relationships within the EEG data. The output of these

states undergoes average pooling to combine them into a fixed-

length vector, which is then fed into a multilayer perceptron (MLP)

for final emotion classification. The whole process is illustrated in

Figure 4.

Before feeding the feature sequences into the Transformer

model, positional embeddings are added to encapsulate the

temporal information within the sequence. These embeddings are

computed as follows:

PE(t, 2i) = sin

(

t

100002i/d

)

PE(t, 2i+ 1) = cos

(

t

100002i/d

) (10)

Here, t indicates the position of the frame within the sequence,

i denotes the index of the dimension, and d represents the

total number of dimensions in the feature vector. This approach

allows the Transformer to better discern the relationships between

frames by infusing the sequence with positional context. Upon

integrating positional embeddings, the abstract feature vector f
flat
t

from the local feature learning module for is combined with these

embeddings, resulting in the enhanced feature vector X(t):

X(t) = f
flat
t + PE(t) (11)

This enriched sequence X = {X(1),X(2), ...,X(T)} is then

processed by the Transformer to model the temporal dynamics

of the EEG signals. In the Transformer’s encoder, as proposed by

Vaswani et al. (2017), each element of the sequence undergoes a

transformation where the attentionmechanism computes scores by

performing a dot product between the query Q, key K, and value V

matrices:

Attention(Q,K,V) = softmax

(

QKT

√

dk

)

V (12)

where dk is the dimension of the Q and K matrices. This facilitates

the generation of a weighted representation of the inputs based on
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FIGURE 4

Temporal modeling of spatial-spectral EEG features using transformer encoder. The process integrates positional embeddings, multi-head attention,

and feedforward networks to capture intricate temporal dynamics, resulting in enhanced feature representations for emotion recognition.

their relevance. The outputs are then aggregated using a multi-head

attention mechanism:

MultiHead(Q,K,V) = Concat(head1, head2, . . . , headh)W
O

(13)

where h represents the number of attention heads, and WO is a

projection matrix. This mechanism enables simultaneous focus on

different segments of the input sequence, enhancing the model’s

ability to process diverse features. Afterward, each sequence,

enhanced by multi-head attention, is normalized through layer

normalization:

Y = LN(X +MultiHead(Q,K,V)) (14)

A feedforward network with ReLU activation then processes

this normalized output:

FFN(Y) = ReLU(YW1 + b1)W2 + b2 (15)

where W1 and W2 are learnable weight matrices, and b1 and b2
are bias vectors, facilitating the transformation and non-linearity

in the model’s feedforward layers. The output from the feedforward

network is subsequently added back to Y and normalized:

Norm(Y , FFN(Y)) = LN(Y + FFN(Y)) (16)

This sequence of operations is repeated across L layers within

the encoder, creating a series of hidden states {h1, h2, ..., hT} that

encapsulate both the detailed features and temporal relationships

of the input sequence. These states form a comprehensive

feature representation, which is then averaged into a fixed-

length vector and fed into a multilayer perceptron for final

classification. Through this structured approach, the Transformer

effectively leverages local spatial-spectral characteristics and

temporal dynamics, enhancing the performance of EEG emotion

recognition tasks.

4 Experimental analysis

4.1 Datasets and experimental setup

We validate our model on SEED (Zheng et al., 2017; Duan et al.,

2013) SEED-IV (Zheng et al., 2018) and DEAP (Koelstra et al.,

2011) datasets, respectively.

SEED contains three different categories of emotion, namely

positive, negative, and neutral. 62-channel EEG data of 15 subjects

were collected while they were watching emotional videos which

were carefully selected to elicit desired target emotions. For each

subject, three sessions were recorded within an interval of about 1

week, each session contains 15 trails of about 4min. For the subject-

dependent experiments, we put the first nine trials of each session

into the training set and the remaining six trials into the test set

to train the model for each subject. For the subject-independent

experiments, we employ leave-one-subject-out cross-validation. On

SEED, we adopt two different experimental setups to segment

the trials into samples. The first setup uses 1-s non-overlapping

samples. For this setup, the learned local feature vector is used

for emotion classification directly without the temporal modeling

with Transformer, therefore the corresponding model is denoted

as “DSSA Net w/o Transformer.” The second setup segments the

trails into 4-s non-overlapping samples. For this setup, the local

feature vectors are first learned from 1-s segments, then input into

the Transformer for temporal modeling, the whole framework is

denoted as “DSSA Net.”

SEED-IV contains four different categories of emotions,

including happy, sad, fear, and neutral. The record consists of 15

participants. Three groups of experiments were designed for each

participant on different days, each experiment contained 24 trails

with six trails for each emotion category. EEG signals were recorded

using the ESI NeuroScan System with 62 channels. For the subject-

dependent experiments, we use the first 16 trials for training

and the remaining eight trials for testing, ensuring coverage

of all emotions (two trials per emotion category). The subject-

independent experiments also adopt the leave-one-subject-out
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cross-validation strategy. These trials are segmented into 4-s non-

overlapping samples, and DSSA Net first learns the local features

from 1-s segments which are then input into the Transformer for

temporal modeling.

DEAP is a open-source dataset containing multiple

physiological signals with emotional evaluations for

emotion recognition. It recorded the 40-channel EEG,

Electrocardiogram (ECG), Electromyogram (EMG), and other

bio-electrical signals of 32 subjects induced by watching 40

one-minute music videos of different emotional tendencies. The

subjects then evaluated the videos’ emotion category on the scale

of 1–9 in dimension of arousal, valence, liking, dominance, and

familiarity. In our experiments, we employ a 4-s non-overlapping

sliding window, resulting in 15 EEG samples for each video.

Valence and arousal are chosen as the criteria for emotional

evaluation. To classify the samples into two categories (high/low)

of arousal or valence, we set the threshold at a rating of five.

10-fold cross-validation are performed by dividing the samples of

each participant into 10 equal parts. In each iteration, nine parts

(32×9×4×15 = 17, 280 samples) are used for training the model

and 1 part (32× 4× 15 = 1, 920) samples for testing. DSSA Net is

adopted for local feature learning and temporal modeling.

We train our model on an NVIDIA TITAN RTX GPU.

The cross entropy is adopted as the loss function. The Adam

optimizer is used to minimize the loss function, the learning

rate is set to 0.001. The architecture of the VA and HA

modules consists of 2 CNN layers followed by a fully connected

layer. The SA module comprises 1 CNN layer and a fully

connected layer. The TA module consists of 2 Transformer

encoder layers. Accuracy is used as the performance metric in

our experiments. It is defined as the ratio of correctly predicted

instances (both true positives and true negatives) to the total

number of instances.

4.2 Compared models

To evaluate the effectiveness of the proposed model,

we conducted comparisons with several advanced

competitive models known for their efficacy in EEG-based

emotion recognition:

• SVM (Suykens and Vandewalle, 1999): A Least Squares

Support Vector Machine classifier.

• DBN (Zheng and Lu, 2015): Deep Belief Networks, which

delve into critical frequency bands and channels.

• DGCNN (Song et al., 2018): Dynamical Graph Convolutional

Neural Networks, adept at modeling multichannel EEG

features.

• BiDANN (Li et al., 2018): Bi-hemispheres Domain Adversarial

Neural Network, capable of mapping EEG feature data from

both left and right hemispheres into discriminative feature

spaces separately.

• RGNN (Zhong et al., 2020): Regularized Graph Neural

Network, designed to exploit the biological topology among

different brain regions and capture both local and global

relations among EEG channels.

• IAG (Song et al., 2020): Instance-adaptive graph (IAG)

method that flexibly constructs graph connections and utilizes

multi-level and multi-graph convolutional operations to

capture dynamic relationships among different EEG regions.

• 4D-aNN (Xiao et al., 2022): Four-Dimensional Attention-

based Neural Network, proficient in fusing information

from different domains and capturing discriminative patterns

in EEG signals based on the 4D spatial-spectral-temporal

representation.

• EESCN (Xu F. et al., 2024): A novel approach based on spiking

neural networks for emotion recognition.

• EEG-GCN Gao et al. (2022): Spatio-temporal and self-

adaptive graph convolutional network designed for EEG-

based emotion recognition.

• ACRNN (Tao et al., 2020): Attention-based convolutional

recurrent neural network to explore critical features for EEG

emotion recognition.

• SOGPCN (Zhu et al., 2024): Self-organized graph pesudo-

3D convolution based on attention and spatiotemporal

convolution.

• 3D-CNN and PST-Attention (Liu et al., 2021): 3D-CNN

within Positional, Spectral, and Temporal Attention modules.

In the following tables of experimental results,

all the values of these works are taken from the

referred publications.

4.3 Experimental results

The subject-dependent and subject-independent classification

results on SEED and SEED-IV are shown in Table 1, where

the upper part lists the results of the models without temporal

modeling, while the lower part with temporal modeling. From the

results without temporal modeling, one can see that the advanced

models like DGCNN, RGNN, and IAG significantly improve

the performance over the traditional machine learning models

like SVM and DBN. However, they mainly consider the spatial

information of EEG signals collected from different channels. DSSA

Net performs the best among the compared models. This can be

attributed to the following advantages of our proposed model.

Firstly, it effectively integrates spatial and spectral features of the

EEG signals. Moreover, the attention mechanism incorporated in

the model allows it to focus on the most relevant channels and

spectral bands of the EEG signal, which are salient on different

emotions.

From the lower part of Table 1, we can see that the 4D-aNN

(DE) model obtains 95.39% subject-dependent recognition

accuracy by using four-dimensional attention-based networks

to capture spatial-spectral-temporal features. EESCN gets

79.65% subject-dependent classification accuracy in SEED-

IV by introducing a NeuroSpiking framework that extracts

spatio-temporal features. Our previous work, 3D-CNN and

PST-Attention, achieves 95.76% subject-dependent classification

accuracy in SEED and SEED-IV by incorporating a multi-

dimensional attention mechanism that combines spatial, temporal,
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TABLE 1 Subject-dependent and subject-independent classification accuracy (mean/std) on SEED and SEED-IV (%), including results with DSSA Net with

using Leaky ReLU activation function DSSA Net (lr).

Category Model SEED SEED-IV

Dependent Independent Dependent Independent

W/o temporal modeling SVM (Suykens and Vandewalle,

1999)

83.99/9.72 56.73/16.29 56.61/20.05 37.99/12.52

DBN (Zheng and Lu, 2015) 86.08/8.34 - - -

DGCNN (Song et al., 2018) 90.40/8.49 79.95/9.02 69.88/16.29 52.82/9.23

BiDANN (Li et al., 2018) 92.38/7.04 83.28/9.60 70.29/12.63 65.59/10.39

RGNN (Zhong et al., 2020) 94.24/5.95 85.30/6.72 79.37/10.54 73.84/8.02

IAG (Song et al., 2020) 95.44/5.48 86.30/6.91 - -

DSSA Net (lr) w/o transformer 96.18/5.36 85.89/6.30 - -

DSSA Net w/o transformer 96.32/5.31 85.97/6.26 - -

W/temporal modeling 4D-aNN (DE) Xiao et al. (2022) 95.39/3.05 - - -

EESCN (Xu F. et al., 2024) - - 79.65/8.22 -

EEG-GCN (Gao et al., 2022) 85.65/7.49 77.30/8.21 - -

SOGPCN (Zhu et al., 2024) 95.26/3.52 94.22/3.42 - -

3D-CNN & PST-Attention (Liu

et al., 2021)

95.76/4.98 - 82.73/8.96 -

DSSA Net (lr) 96.58/5.41 87.01/5.96 84.98/11.89 75.83/7.20

DSSA Net 96.61/5.39 87.03/5.97 85.07/11.93 75.86/7.18

The bold values indicate the best performance within each category.

and spectral attention. These results highlight that incorporating

temporal modeling consistently improves the performance of

emotion recognition models. The DSSA Net further advances

this by introducing directional spatial attention mechanisms that

separately capture the unique contributions of anterior-posterior

and left-right brain regions. This design allows for a more refined

analysis of spatial dependencies, providing a deeper understanding

of how different brain regions interact during emotional

processing. The DSSA Net, builds on 3D-CNN and PST-Attention

by incorporating directional spatial attentionmechanisms, achieves

the highest accuracy in subject-dependent emotion recognition

on both SEED and SEED-IV datasets. The findings indicate that

integrating multi-dimensional features is crucial for capturing

the complex nature of EEG signals. Additionally, the attention

mechanisms significantly boost the model’s ability to focus on the

most relevant parts of the EEG signals. This targeted focus helps

DSSA Net maintain high performance even when dealing with the

complex variability present in EEG data, making it particularly

robust for subject-independent tasks.

To further explore the impact of different activation functions,

we also evaluated a version of the DSSA Net with Leaky ReLU

(lr) as the activation function, as shown in Table 1. While the

overall performance of the DSSA Net with Leaky ReLU (lr)

remains close to that of the standard DSSA Net, there is a slight

variation in subject-independent accuracy, suggesting that the

choice of activation function can slightly influence the model’s

ability to generalize across subjects. Specifically, the DSSA Net

(lr) achieves 96.58% accuracy in the subject-dependent setting on

SEED and 87.01% in the subject-independent setting, which is

marginally lower than the standard DSSA Net. This observation

TABLE 2 Subject-dependent classification accuracy (mean/std) on DEAP

(%).

Model Valence
mean/std

Arousal
mean/std

RF (Breiman, 2001) 63.93/5.08 66.37/10.29

SVM (Cortes and

Vapnik, 1995)

63.09/6.22 69.65/13.41

DBN (Hinton et al.,

2006)

73.67/7.54 78.04/6.18

CNN (LeCun et al.,

1998)

74.52/6.09 78.08/6.23

GCNN (Kipf and

Welling, 2016)

77.64/4.43 78.62/8.15

EEG-GCN (Gao

et al., 2022)

81.77/5.58 81.95/7.71

ACRNN (Tao et al.,

2020)

93.72/3.21 93.38/3.73

DSSA Net 94.97/4.23 94.73 /3.27

The bold values indicate the best performance within each category.

reinforces the robustness of our model while showing that ReLU

remains a competitive choice for balancing model complexity

and performance.

It is worth noting that we focused on subject-independent

analysis using the SEED and SEED-IV datasets due to their

standardized evaluation protocols, which enable consistent

comparisons across studies. In contrast, the DEAP dataset does
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TABLE 3 The ablation experimental results (mean/std) of DSSA Net on SEED and SEED-IV (%).

Schemes Modules SEED SEED-IV

HA VA SA Dependent Independent Dependent Independent

Baseline X X X 86.37/6.71 77.57/7.21 68.21/12.67 65.39/9.29

SA X X X 92.92/6.67∗ 83.53/7.03∗ 75.73/11.89∗ 70.93/8.29∗

VA X X X 92.27/7.36∗ 83.21/7.19∗ 75.46/12.31∗ 70.13/8.83∗

HA X X X 93.29/8.11∗ 83.91/6.33∗ 76.03/12.31∗ 71.38/7.97∗

PA X X X 93.82/7.06∗ 83.16/6.73∗ 79.31/12.17∗ 72.06/9.03∗

DSSA Net X X X 96.61/5.39∗ 87.03/5.97∗ 85.07/11.93∗ 75.86/7.18∗

Differences are considered significant at p < 0.05. The bold values indicate the best performance within each category. Differences marked with ∗indicate statistical significance at p < 0.05.

TABLE 4 The ablation experimental results (mean/std) of DSSA Net on DEAP (%).

Schemes Modules DEAP

HA VA SA Valence Arousal

Baseline X X X 78.68/7.63 78.22/7.58

SA X X X 85.72/6.97∗ 86.12/6.33∗

VA X X X 85.19/7.31∗ 85.98/6.39∗

HA X X X 86.93/7.12∗ 86.86/6.97∗

PA X X X 90.19/6.17∗ 91.06/5.61∗

DSSA Net X X X 94.97/4.23∗ 94.73/3.27∗

Differences are considered significant at p < 0.05. The bold values indicate the best performance within each category. Differences marked with ∗indicate statistical significance at p < 0.05.

not offer a universally accepted partitioning scheme for subject-

independent testing, making such analysis less standardized

and more challenging to compare fairly with existing work.

Therefore, our initial study emphasized SEED and SEED-IV for

subject-independent evaluations.

Table 2 shows the subject-dependent classification

performances on the DEAP dataset for valence and arousal.

Traditional methods like RF and SVM perform relatively

poorly, with accuracies ranging from 63.09 to 69.65% for

both valence and arousal. Deep learning methods such as

CNN and GCNN show remarkable improvements, achieving

accuracies around 77.64% for valence and 78.62% for arousal.

More recent models like EEG-GCN and ACRNN demonstrate

further enhancements. Particularly, the ACRNN model achieves

accuracies of 93.72% for valence and 93.38% for arousal by

using channel-wise attention and self attention. By leveraging

a combination of vertical-horizontal-position attention and

spectral-temporal mechanisms, our DSSA Net is capable of

capturing intricate relationships between spatial and spectral

features. This holistic approach results in a deeper integration

of the different feature domains, which directly translates into

improved emotion recognition accuracy. With the vertical-

horizontal-position, spectral and temporal attention mechanism,

our proposed DSSA Net achieves the highest accuracies for

both valence and arousal, with mean accuracies of 94.97 and

94.73%, respectively. These results underscore the effectiveness

of combining multiple attention mechanisms in a unified

framework, making DSSA Net particularly adept at identifying

the nuanced patterns in EEG signals that correspond to different

emotional states.

4.4 Ablation studies

To demonstrate the effectiveness of each module, we conduct

ablation experiments on the SEED and SEED-IV datasets by

comparing various configurations. The baseline method, which

uses the flattened original DE feature without any attention

module refinement, demonstrates the lowest performance among

all configurations. This method serves as a non-attention baseline,

providing a direct comparison to configurations with SA and PA

modules. To further validate the significance of the differences

in performance across various configurations, we conducted a

paired-sample t-test between the results of the DSSA Net and each

ablation configuration (SA, VA, HA, and PA). The t-tests were

performed, using a significance threshold of p < 0.05. The analysis

confirms that the integration of all three modules (HA, VA, and

SA) in DSSA Net results in significant performance improvements

compared to baseline. The results, as shown in Table 3, highlight

the contributions of each module to the overall performance of the

DSSA Net.

When only the SA module is added, we observe an

improvement in performance, with accuracy rising from 86.37 to

92.92% on the SEED dataset and from 68.21 to 75.73% on SEED-

IV, respectively for subject dependent emotion recognition. This

comparison directly highlights the contribution of the spectral

attention mechanism over non-attention methods, as the SA

module better captures the relevant frequency band information

for emotion recognition. For position attention, the inclusion of

the VA module also leads to enhanced performance, indicating

the importance of vertical integration for modeling brain regions.

The HA module obtains even better results than the VA module,
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FIGURE 5

The attention heatmap M based on the samples of subject 1. The upper, middle, and lower parts correspond to negative, neutral and positive

emotions and from left to right correspond to δ, θ , α, β, and γ bands respectively. Dark red denotes higher while dark blue denotes lower attention

weight for the corresponding emotion.

showing that the lateral dynamics of brain activity play an

important role in emotion recognition. Furthermore, when the HA

and VA modules are both adopted (referred to as PA module),

the accuracies are overall increased. This suggests that attention

to both left-right and anterior-posterior brain areas is crucial

for accurate emotion recognition. The integration of directional

attentionmodules (VA andHA) enables the DSSANet to selectively

emphasize features from specific brain regions, providing a distinct

advantage over undirectedmodels that do not differentiate between

these spatial dimensions. As shown in Table 3, the addition of VA

and HA modules significantly improves accuracy, demonstrating

the benefit of leveraging directional information in the EEG-based

emotion recognition task. Notably, when all the three modules

(HA, VA, and SA) are integrated to form the complete DSSA Net,

the highest accuracies across all tasks are achieved. These results

emphasize that by incorporating spectral attention, the model

gains significant improvements over the non-attention baseline,

validating the value of weighting frequency band information for

enhanced emotion recognition.

Table 4 shows the ablation results of DSSA Net on the

DEAP dataset, evaluating the contributions of the Horizontal

Attention (HA), Vertical Attention (VA), and Spectral Attention

(SA) modules. The baseline model, which lacks any attention

mechanisms, achieves the lowest performance with 78.68 and

78.22% accuracy for Valence and Arousal, respectively. Adding

the SA module improves performance significantly, achieving

85.72% for Valence and 86.12% for Arousal, highlighting the

importance of spectral information in emotion recognition. The

VA and HA modules alone also improve accuracy, with HA

slightly outperforming VA, suggesting that lateral dynamics in

brain activity have a greater impact on emotion classification.

The combination of HA and VA (PA module) further enhances

the performance to 90.19% for Valence and 91.06% for Arousal,

indicating that considering both anterior-posterior and left-right
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spatial differences is beneficial. The complete DSSA Net, which

integrates HA, VA, and SA, achieves the best performance with

94.97% for Valence and 94.73% for Arousal, demonstrating the

effectiveness of combining spectral and spatial attention for

capturing complex emotional representations.

4.5 Analytic visualization

In order to further interpret our experiment results, we

visualize the attention heatmap M as shown in Figure 3. Figure 5

presents the averaged attention map for each emotion type over

all the samples of the training set of the first subject in the SEED

dataset. In the heatmap, red indicates high attention weights,

suggesting higher activation levels in the corresponding brain

regions; the deeper the color, the stronger the activation in that

brain region. Blue indicates low attention weights, suggesting lower

activation levels. From the heatmap, we can see that different

emotional states correspond to distinct patterns of brain activation

across the θ , α, β , and γ bands. For example, in the α band,

which is typically associated with relaxation and calmness, higher

activation is observed in the occipital and parietal lobes during

calm emotional states. Conversely, the γ band, which is linked to

high-level cognitive processing and positive emotional states, shows

widespread activation across various brain regions when subjects

experience positive emotions.

5 Conclusion

In this paper, we introduce a novel framework, the Directional

Spatial and Spectral Attention Network (DSSA Net), which

incorporates positional attention (PA), spectral attention (SA),

and temporal attention (TA) modules to effectively extract and

emphasize critical EEG features. The SA module emphasizes key

spectral aspects by assigning weights to the differential energy

spectrum of these bands, highlighting their importance. The PA

module, which consists of vertical attention (VA) and horizontal

attention (HA), targets brain regions in different directions that are

activated by various emotions. Specifically, the VA branch is adept

at detecting activations across the anterior-posterior brain regions,

while the HA branch is to spotlight critical information from the

left-right hemispheric areas. Moreover, a transformer encoder is

employed to capture the dynamic evolution of emotional responses

throughout different periods. Evaluation on three benchmark

EEG datasets demonstrates that the DSSA Net surpasses most

of the existing advanced methods in emotion recognition. In the

future, we plan to leverage multimodal signals such as ECG and

Galvanic Skin Response (GSR), alongside introducing networks

like graph convolutional networks (GCNs) that are well-suited to

the topological structure of EEG data, to enhance the recognition

of emotional states by gaining deeper insights into brain dynamics.
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