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U-Net and its variants have been widely used in the field of image segmentation. In 
this paper, a lightweight multi-scale Ghost U-Net (MSGU-Net) network architecture 
is proposed. This can efficiently and quickly process image segmentation tasks 
while generating high-quality object masks for each object. The pyramid structure 
(SPP-Inception) module and ghost module are seamlessly integrated in a lightweight 
manner. Equipped with an efficient local attention (ELA) mechanism and an 
attention gate mechanism, they are designed to accurately identify the region 
of interest (ROI). The SPP-Inception module and ghost module work in tandem to 
effectively merge multi-scale information derived from low-level features, high-
level features, and decoder masks at each stage. Comparative experiments were 
conducted between the proposed MSGU-Net and state-of-the-art networks on 
the ISIC2017 and ISIC2018 datasets. In short, compared to the baseline U-Net, our 
model achieves superior segmentation performance while reducing parameter 
and computation costs by 96.08 and 92.59%, respectively. Moreover, MSGU-Net 
can serve as a lightweight deep neural network suitable for deployment across a 
range of intelligent devices and mobile platforms, offering considerable potential 
for widespread adoption.
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1 Introduction

In recent years, deep neural networks have been widely used in different fields (Chollet, 
2017; Wu et al., 2022; Wu et al., 2024), and their application in image segmentation has 
achieved good results (Hattie et al., 2024; Pang et al., 2024). This benefits from the advantages 
of deep learning technology in image processing, including the fact that this technology can 
automatically learn the characteristics and rules of the target (Yu et al., 2020), does not need 
to manually design features and rules, can process large-scale data, can improve segmentation 
accuracy and efficiency, etc. In 2014, Long et al. (2015) proposed a deep learning network, 
named FCN (fully-connected network), for image semantic segmentation. This network is 
based on a convolutional neural network (CNN), but unlike the traditional CNN, FCN 
replaces the fully connected layer with a convolutional layer, so that the network can accept 
input images of any size and output the pixel-level prediction results of the corresponding size. 
The performance of FCN was outstanding in image segmentation tasks at that time, and it 
became one of the classical models in the field of image segmentation. In 2015, researchers 
were inspired by the FCN architecture and the encoder–decoder model and proposed U-Net 
(Ronneberger et al., 2015), an encoder–decoder-based network that can segment an input 
image into multiple pixel-level regions. Each region is assigned a label, the encoder part 
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consists of multiple convolutional layers and pooling layers to extract 
the features of the input image, and the decoder part consists of 
multiple up-sampling layers and convolutional layers to map the 
feature map extracted by the encoder back to the original image size 
and generate pixel-level segmentation results. The skip connection 
connects the feature maps of the encoder with the corresponding 
feature maps of the decoder, thus improving the accuracy of the 
segmentation. In 2015, Chen et al. (2014) accompanied the Google 
team proposed the Deeplab series. DeepLabv1 is based on VGG16, 
which uses atrous convolution and conditional random fields (CRFs) 
to cooperate with each other. It has achieved excellent performance in 
the field of image segmentation. In 2017, the authors proposed 
DeepLabv2 (Chen et al., 2017) based on ResNet101, which makes 
more flexible use of atrous convolution and proposes atrous spatial 
pyramid pooling (ASPP). Subsequently, Chen et al. (2017) proposed 
DeepLabv3, which combines cascading and parallel extended 
convolution modules. The parallel convolution modules are grouped 
in ASPP, and 1 × 1 convolution and batch normalization were added 
to ASPP. In order to further improve the performance of U-Net 
segmentation, Zhou et al. (2019) proposed (UNet++) (Codella et al., 
2019), which added a convolutional neural network with nested and 
dense skip connections on the basis of U-Net to improve the 
performance of image segmentation. In 2020, UNet3 + was proposed 
by Huang et  al. (2020). It uses full-scale skip connections to fuse 
feature maps at different scales and learns feature expressions from 
multi-scale aggregated feature maps through deep supervision. 
Combining the classification task with the segmentation task can 
enhance organ boundaries and reduce the over-segmentation of 
non-organ images, resulting in more accurate segmentation results. In 
addition to the above network architectures, extended networks based 
on the U-Net framework include EC-CaM-UNet (Xu et al., 2024a), 
Attention U-Net (Jensen et al., 2018; Codella et al., 2019), KiU-Net 
(Valanarasu et al., 2020; Valanarasu et al., 2021a), 3D U-Net (Çiçek 
et al., 2016), V-Net (Milletari et al., 2016), Y-Net (Mehta et al., 2018; 
Codella et al., 2019), etc., which are all based on the basic framework 
of the U-Net network and have demonstrated improved performance 
compared to that of the U-Net network.

Transformer is a neural network model based on a self-attention 
mechanism; it was originally proposed for natural language processing. 
In recent years, increasing studies have shown that a transformer model 
can also achieve good performance in the field of computer vision. 
Vision transformer (ViT) (Dosovitskiy et al., 2021) is a transformer-
based computer vision model. ViT uses pre-training techniques similar 
to those in the field of natural language processing and has achieved 
good results in various computer vision tasks by pre-training models 
on large-scale unlabeled data. The promising applications of 
transformers were demonstrated in the field of computer vision. 
Recently, many transformer-based network architectures have been 
used for image segmentation, and their powerful global understanding 
ability can effectively help image segmentation. TransUNet (Chen et al., 
2021) modified the ViT architecture to U-Net for 2D medical image 
segmentation. TransUNet is a modified version of ViT (vision 
transformer) architecture specifically designed for 2D medical image 
segmentation. It uses a U-Net-like architecture and incorporates the 
self-attention mechanism of ViT, which enables the model to learn local 
and global features from input images. Thus, the segmentation accuracy 
can be improved. TransFuse (Zhang et al., 2021) combines CNN with 
transformer in a parallel way, so that the network can effectively capture 

global dependencies and low-level spatial details in a shallower fashion 
and improve the efficiency of the network in modeling global context. 
Other transformer-based networks, such as MedT (Valanarasu et al., 
2021b), TransBTS (Wang et al., 2021), UNETR (Hatamizadeh et al., 
2022) and MedNeXt (Saikat et al., 2023), have been proposed and used 
in medical image segmentation tasks.

Image segmentation technology is widely used in the practical 
application of the combination of medicine and engineering, which is 
one of the key steps in clinical practice (Çiçek et al., 2016; Milletari 
et al., 2016; Mehta et al., 2018). At present, the mainstream research 
directions in the field of medical imaging include semi-supervised and 
self-supervised learning (such as multimodal contrastive learning; 
Zhang et al., 2023) and adaptive masking (Xu et al., 2024b), aiming to 
achieve excellent performance with fewer images. Many researchers 
have also achieved the improvement of image segmentation 
performance by integrating reinforcement learning and deep learning 
(Duan et al., 2022). Most of the existing work focuses on improving 
performance (Benčević et al., 2023; Chen et al., 2014; Chen et al., 2017; 
Chen et  al., 2017), rather than on computational complexity and 
inference time. Rapid imaging helps clinicians expand service options 
and facilitates patient life, and such applications enable patients to 
obtain final computed tomography (CT) diagnoses without having to 
visit radiology centers. For example, medical imaging mobile 
applications and camera-based images from mobile phones are used 
to detect and diagnose skin conditions, and magnetic resonance 
imaging machines have also been developed for bedside manipulation 
and rapid analysis. However, most of the current deep learning based 
network frameworks have large computational overhead and many 
parameters (Soumya and Sabu, 2023; Yang et al., 2024; Zhang et al., 
2021). They are difficult to embed into mobile devices.

In order to promote the effective solution of the above problems, 
a new network architecture named MSGU-Net is proposed in this 
work for application in image segmentation. This is an image 
segmentation network based on the Ghost (Tang et al., 2022) module. 
The encoder–decoder stage of MSGU-Net is designed as a Ghost 
module. Through the strategies of feature enhancement, computational 
efficiency improvement, parameter sharing, and network capacity 
control, the performance and computational efficiency of the network 
are improved. In the encoder, MSGU-Net optimizes the inception 
(Chollet, 2017; Ioffe and Szegedy, 2015; Szegedy et al., 2015; Szegedy 
et al., 2016; Szegedy et al., 2017) module and captures features of 
different scales by applying convolution kernels of different sizes to the 
input feature map. This design enables the network to learn the 
hierarchical structure of the image more effectively. After combining 
the SPP-Inception module and Ghost module, the ELA (Xu and Wan, 
2024) mechanism is added to improve the network’s focus on the area 
of interest, provide long-distance dependencies, and improve the 
performance of the model. In the decoder, MSGU-Net adds an 
attention gate (Jensen et al., 2018) so that it can effectively extract 
important local features during the up-sampling process. The 
lightweight U-Net designed in this paper enables the network to 
effectively serve all kinds of intelligent mobile terminal devices. At the 
same time, it has less computational overhead, fewer parameters, 
faster inference time, and can maintain good performance. To 
summarize, the main contributions of this paper are as follows:

 1 The proposed MSGU-Net incorporates an SPP-Inception 
module for feature extraction, effectively enhancing multi-scale 
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feature fusion capabilities. Additionally, the convolutional part 
is designed as a Ghost module, providing a lightweight 
processing of the network.

 2 The encoder stage is designed with an ELA (efficient local 
attention) mechanism, which strengthens the long-distance 
dependencies between pixels.

 3 The decoder stage utilizes an attention gate, which 
autonomously learns the regions of interest and suppresses the 
background areas, thereby enhancing the delineation of 
segmentation boundaries.

2 Materials and methods

In this section, the overall network architecture is demonstrated 
along with the specific principles and functions of each module. 
Additionally, an analysis is provided to explain why the modules were 
combined in this manner.

2.1 Data

The ISIC2017 and ISIC2018 datasets are International Skin 
Imaging Collaborative Challenge datasets (ISIC2017; Berseth, 2017) 
and (ISIC2018; Codella et al., 2019), two publicly available skin lesion 
segmentation datasets containing 2,150 and 2,694 dermoscopic 
images labeled with segmentation membranes, respectively. In 
previous work, the dataset was split into a 7:3 ratio for training and 
test sets. Specifically, for the ISIC2017 dataset, the training set consists 

of 1,500 constituent images and the test set consists of 650 images. For 
the ISIC2018 dataset the training set contains 1886 images while the 
test set contains 808 images.

2.2 MSGU-Net network architecture

MSGU-Net, as shown in Figure  1, is an encoder-decoder 
architecture that employs a U-shaped design similar to U-Net, with 
skip connections, but it modifies the construction of each stage. In 
each stage of MSGU-Net down-sampling, two kinds of modules 
were concerned. One module was the SPP-Inception, which mainly 
deals with multi-scale feature fusion so that the network can learn 
multi-scale features in the feature extraction stage. The other 
module was the Ghost module. In this work, the Ghost module was 
lightweight and played the role of extracting features. After these 
two modules, the ELA mechanism was added to accurately locate 
the ROI region, improve long-distance dependencies, and 
strengthen the connection between pixels. In the process of 
up-sampling, the Ghost module with an attention gate was 
uniformly used. The role of the Ghost module here was the same as 
that of the down-sampling, and the attention gate was mainly used 
to concentrate the local attention of the feature map in order to 
better process the information of the feature map in the up-sampling. 
Skip connections were also applied between encoder and decoder. 
The number of channels on each block is a hyperparameter, denoted 
as C1 to C5. When using the MSGU-Net architecture, C1 = 32, 
C2 = 64, C3 = 128, C4 = 256, and C5 = 512 were followed. Note that 
these numbers are smaller than the number of filters in the U-Net 

FIGURE 1

Overview of MSGU-Net network architecture.
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series, which helps to reduce the number of parameters 
and computations.

In the down-sampling process, each stage was equipped with an 
SPP-Inception module, Ghost module, and ELA attention mechanism. 
The batch normalization layer and ReLU (rectified linear unit) 
activation function were used in each module and attention 
mechanism. In the process of up-sampling, each stage was equipped 
with a Ghost module and attention gate. A max pooling layer was also 
added in the encoder with a window size of 2 2× , while in the decoder 
a 2 2×  bilinear interpolation layer was used to up-sample the features. 
The main reason for using bilinear interpolation instead of transposed 
convolution was to adapt to the mobile app with fewer parameters.

2.2.1 SPP-Inception module
The Inception module is a key component in Google’s Inception 

network. It captures features at different scales by applying different 
sizes of convolution kernels to the input feature maps. This design 
allows the network to learn the hierarchical structure of the image 
more efficiently. The traditional Inception module consists of 
multiple parallel convolutional layers, each of which processes input 
feature maps of different sizes. These convolutional layers typically 
include 1 1× , 3 3× , and 5 5×  convolutional kernels and a 3 3×  max 
pooling layer. After each branch is processed, the results are 
concatenated in the channel dimension to form the final output 
feature map. Although the Inception module is very effective in 
capturing multi-scale features, it uses many parameters, which may 
lead to model training difficulties, overfitting, and high consumption 
of computational resources.

A slight adjustment was carried out to the number of output 
channels during feature extraction:

 • Adjustment of the number of output channels: At the end of each 
convolution branch, the number of output channels was divided 
by four. Doing so significantly reduced the number of parameters 
per branch while maintaining the expressive power of the model.

 • Unified number of channels: In the improved module, the 
number of output channels of each branch (1 1× , 3 3× , and 5 5×  
and 3 3×  max pooling followed by 1 1×  convolution) was 
uniformly adjusted to one-quarter of the original design. In this 
way, the total number of channels after the CONCAT operation 
was exactly the desired number of output channels without 
further adjustment.

 • Reduced computation: By reducing the number of output 
channels per branch, the improved Inception module reduces 
computation and memory requirements while 
maintaining performance.

Specifically, this feature extraction is divided into four channels in 
parallel; therefore, the final output channel of each channel was 
divided by four so that the number of channels after the CONCAT 
operation does not need to be adjusted, and the number of parameters 
output by each channel is also effectively controlled. As shown in 
Figure 2, the improved Inception module changes the number of 
output channels of each branch in layer (2) to C1, C2, C3, and C4, 
respectively. The improved module adjusts the number of these 
channels to C1/4, C2/4, C3/4, C4/4, and C4/4. (3) The number of 
output channels of each branch in the layer is C1/4, C2/4, C3/4, and 
C4/4. In this way, the total number of channels after the CONCAT 

operation is C1/4 + C2/4 + C3/4 + C4/4 = (C1 + C2 + C3 + C4)/4, 
which helps to reduce overfitting and improve the generalization 
ability of the model. The number of channels of C1, C2, C3, and C4 is 
equal; the final result is exactly the number of output channels need; 
and there is no need to modify the number of channels.

2.2.2 Ghost module
The detailed structure of the Ghost module is shown in Figure 3. 

This module is taken from the GhostNetV2 network architecture, 
which is a lightweight convolutional neural network specifically 
designed for applications on mobile devices. Its main component is 
the Ghost module, a novel plug-and-play module. The Ghost module 
is designed to use fewer parameters to generate more feature maps. 
The Ghost module consists of three parts, as shown in Figure 3; the 
first part uses pointwise convolution in depth wise separable 
convolution, which is a 1 × 1 ordinary convolution. To keep the 
number of parameters as low as possible, the number of channels was 
strictly controlled:

 1 1,Y X F ×′ = ∗  (1)

In Equation 1, * represents the convolution operation, 1 1F× is the 
pointwise convolution layer, and Y'  is the first part of the output.

The second part is further subdivided into two steps; in the first 
step, the input feature map is deeply convolved once using a 
convolutional layer with a kernel size of 3 3× , stride 1, and padding 1. 
The second step performs a CONCAT operation on the result 
generated after the first convolution step and the result output from 
the first part:

 ( )dpConcat Y ,Y F , = ∗ Y ' '
 (2)

In Equation 2, dpF is the depth convolution, and Y  is the 
final output.

The third component is also the main part that distinguishes 
GhostNetV2 from GhostNet (Han et al., 2020). In GhostNet, although 

FIGURE 2

Overview diagram of SPP-Inception.
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the Ghost module can greatly reduce the computational cost, its 
feature representation ability is also weakened because “the 
convolution operation can only model local information within a 
window.” The spatial information of half of the features is captured by 
a low-cost operation (3 3×  depthwise convolution), and the rest of the 
features are simply obtained by 1 1×  pointwise convolution, without 
any information exchange with other pixels. Therefore, GhostNetV2 
additionally introduces the third part to solve the problems such as 
the lack of feature processing ability of the Ghost module in GhostNet.

The third part is actually a branch of the DFC attention 
mechanism (in Figure  4), and first avg. pooling performs down-
sampling. Then, it passes through 1 1×  convolution, followed by 
horizontal FC and vertical FC. Here, the convolution is used to replace 
the FC convolution kernel size of the two directions with (1, 5) and (5, 
1). Finally, the output of the DFC branch is obtained by sigmoid. The 
output of the DFC branch is upsampled by bilinear interpolation to 
obtain the original input size and then multiplied by the output of the 
original Ghost module to obtain the final output.

The Ghost module makes the network lightweight, and the DFC 
attention mechanism branch is responsible for the dependence 
between pixels. Experiments have found that the Ghost module 
applied to U-Net focuses on a small range of local regions when the 
number of layers is small. Specifically, some cross-shaped patterns are 
shown when convolving at lower layers (5 layers), indicating that 
patches from vertical/horizontal lines are more involved. As the depth 
(15 layers) increases, the pattern of the attention matrix diffuses. 
However, it is difficult to reach 15 layers in U-Net, so an ELA attention 
mechanism was added in the encoder part. The ELA mechanism is 
also designed to provide long-distance dependencies to the spatial 
part and enhance the connection between pixels. The dual interaction 
of the Ghost module and ELA mechanism can play a superposition 
effect, which is better than a single effect and has a small number 
of parameters.

2.3 ELA module

The ELA mechanism is an improvement over the CA mechanism, 
and the 2D Conv and BN (batch normalization) layers adopted by the 
CA mechanism are replaced by the 7 7×  1D conv and GN (group 

normalization) layers, which effectively enhances the interaction and 
generalization ability of location information embedding so that the 
entire ELA can accurately find the region of interest.

ELA consists of two main steps: coordinate information 
embedding and coordinate attention generation. In the first step, long-
distance spatial dependencies are captured by using strip pooling 
instead of spatial global pooling. The specific process is shown in 
Figure 5.

Average pooling was firstly performed on the features of the input 
H X W for each channel in two spatial scales: (H,1) horizontally and 
(1,W) vertically. Using strip pooling (pooling only on the dimensions 
of H or W), the mathematical formula for the features of 1H ×  and 
1 W×  as follows:

 
( ) ( )

0

1 , ,h
c c

i H
z h x h i

H ≤ <
= ∑

 
(3)

 
( ) ( )

0

1 , ,w
c c

j W
z w x j w

W ≤ <
= ∑

 
(4)

h
cz is the output representation of the C-th channel at height h, 

and w
cz  is the output representation of the C-th channel at width w.

 ( )( )( ),h
n h hy G F zσ=  (5)

 ( )( )( ),w
n w wy G F zσ=  (6)

The localization information obtained from Equations 3, 4 is then 
embedded, and a novel encoding method is used to generate an 
accurate location attention map. The detailed description of the 
process is as follows: hz and wz , obtained by Equations 3, 4, both 
capture the global sensory field and contain precise location 
information. In order to effectively utilize these features, the conv2D 
feature processing mode is overruled, as it is usually more appropriate 
to use 1D convolution instead of 2D convolution for processing these 
sequential signals: 1D convolutions are not only good at processing 

FIGURE 3

Overview diagrams of Ghost module and DFC (dynamic functional connectivity) attention.
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FIGURE 6

Detailed structure of the attention gate.

sequential signals but also more lightweight than 2D convolutions; 
therefore, 1D convolutions are applied to enhance the position 
information in horizontal and vertical directions. Subsequently, the 
GN layer was used to process the enhanced location information, 
resulting in the location attention representation in the horizontal and 
vertical directions, as described in Equations 5, 6.

In the above description, σ  denotes the nonlinear activation 
function, hF  and wF  are used to denote one-dimensional convolution, 
and the convolution kernel size of hF  and wF  is set to 7. The position 
attention representations in the horizontal and vertical directions are 
denoted by hy  and wy , respectively. Finally, the output of ELA is 
obtained through Equation 7, and the result is denoted as Y.

The existence of the Ghost module and ELA mechanism mainly 
provides long-distance dependence; thus, in the up-sampling stage, it 
introduced the attention gate in Attention U-Net to enhance the 
spatial local attention mechanism in order to reduce the amount of 
parameters while ensuring the effect. This makes the network pay 
more attention to the region of interest and analyze the edge features 
of medical images more clearly.

 ,h w
cY x y y= × ×  (7)

2.4 Attention gate

As shown in Figure 6, the other main purpose of applying an 
attention block to the decoder architecture is to improve the local 
(ROI) features and suppress some non-interest regions. Taking the 
output of the previous layer as input, it passed the feature maps with 
the same number of channels through A convolution with kernel 1 
and outputted two feature maps, A and B. Then, the A and B feature 

maps (provided that the A and B feature maps were the same size) 
were added to obtain the C feature map.

From Figure 7, it can see why the size of A and B should be the 
same after convolution. They can only be added when they are the 
same size. From C, it can see that the attention gate has a primary 
effect of increasing the local attention value. A + B essentially 
reinforces the signal value of the same region of interest, which is the 
red part in the figure. The regions that are different from A and B are 
also included as auxiliary functions, and their effects cannot 
be ignored. These effects are denoted in purple in the figure.

As shown in Figure 8, the output C feature map was transformed 
linearly and non-linearly, and a value for each patch was provided by 
using a sigmoid function. This value is the attention weight for the 
next step.

3 Results and discussion

In this section, comprehensive experiments were conducted on 
MSGU-Net for the skin lesion segmentation task. Specifically, the 
performance of MSGU-Net on the medical image segmentation task 
on ISIC2017 and ISIC2018 was evaluated.

3.1 Implementation details

The image size datasets in ISIC2017 and ISIC2018 were resized to 
256 256×  according to previous work. To prevent overfitting, data 
augmentation techniques such as random flipping, random rotation, 
and others were used. The BCEWithLogitsLoss was used for ISIC2017 
and ISIC2018 datasets. The batch size was set to eight and the Adam 
optimizer was used with an initial learning rate of 1e-4. 

FIGURE 4

Overview diagram of DFC attention.

FIGURE 5

Detailed structure of the ELA.
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ReduceLROnPlateau was used as the scheduler, with a minimum 
learning rate of 1e-5. The training period was set to 100. MSGU-Net 
does not use pretrained weights, and all models appearing above are 
randomly initialized. All the experiments were performed on a single 
NVIDIA GeForce RTX 2060 GPU.

Since the experimental dataset is used for binary classification, the 
loss function of multi-classification is not adopted. Binary cross 
entropy (BCE), which does not perform any processing, measures the 
binary cross entropy function between the output and the target, and 
the binary cross entropy is set at [0.1]. Meanwhile, MSGU-Net uses 
the BCEWithLogitsLoss, which integrates the sigmoid layer with the 

BCELoss, which is more stable than simply adding the sigmoid layer 
with the BCELoss because the LogSumExp trick is used to obtain 
numerical stability.

3.2 Comparison on lesion boundary 
segmentation challenge

In order to further verify the effectiveness of the proposed 
network MSGU-Net, it is comprehensively compared with the typical 
methods in the field of medical image segmentation in recent years. 

FIGURE 7

Results of attention gate convolution.

FIGURE 8

Attention weight transformation diagram.
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TABLE 1 Performance comparison table between MSGU-Net and other 
networks.

Data Model Params GFLOPs mIoU DSC

U-Net 31.13 55.84 73.61 82.53

UNet++ 9.16 34.65 75.30 84.01

SegNet 17.94 22.35 69.63 82.14

ISIC2017
FAT-Net 28.23 42.83 76.52 85.05

UNeXt-L 3.80 1.08 75.43 84.02

Swin-UNet 25.86 5.86 76.71 85.03

TransUNet 105.32 38.52 77.53 84.74

MSGU-

Net(ours)
1.22 4.12 77.03 85.53

U-Net 31.13 55.84 74.55 84.03

UNet++ 9.16 34.65 76.12 84.96

Attention 

U-Net
8.73 16.74 76.63 86.11

ISIC2018
TransUNet 105.32 38.52 80.51 88.91

TransFuse 26.27 11.53 80.63 89.27

UTNetV2 12.80 15.50 78.97 88.25

SANet 23.90 5.99 79.52 88.59

MSGU-

Net(ours)
1.22 4.12 81.40 88.74

Bold values represent the emphasis on key data.

At the same time, in order to ensure the diversity of the network, 
U-Net (Ronneberger et al., 2015), UNet++, SegNet (Badrinarayanan 
et al., 2017), FAT-Net (Wu et al., 2022), UNeXT-L (Valanarasu and 
Patel, 2022), Swin-Unet (Cao et al., 2023), and TransUNet (Chen et al., 
2021) are selected for the comparison network of the ISIC2017 dataset. 
For the comparison network of the ISIC2018 dataset, U-Net 
(Ronneberger et al., 2015), UNet++, Attention U-Net (Jensen et al., 
2018), TransFuse (Zhang et al., 2021), UTNetV2 (Gao et al., 2022), 
and SANet (Hu et al., 2021) are selected.

The U-Net network framework is composed of an encoder and a 
decoder. In each layer of the encoder, maximum pooling is utilized to 
downscale the feature map dimensions and simultaneously double the 
number of channels. Conversely, in each layer of the decoder, bilinear 
interpolation is employed to upscale the feature map, thereby reducing 
the channel count and effectively restoring the dimensions of the 
lesion area. UNet++ reduces the semantic gap between encoder and 
decoder by using a series of nested and dense skip connections. The 
SegNet network structure aims to accurately extract pixel-level 
semantic information from images and accurately segment medical 
images. FAT-Net combines the feature pyramid network and attention 
mechanism to improve the performance of segmentation. Swin-UNet, 
TransUNet, and TransFuse improve the network’s ability to model 
global context information by introducing transformers into 
convolutional networks. UNeXT-L improves the attention mechanism 
to improve the efficiency of the network modeling long-term 
dependencies. Attention U-Net adds an attention module to U-Net, 
which is used to dynamically adjust the attention of the network to 
different regions to improve the performance and accuracy of the 
network. UTNetV2 separates semantic information from high-level 
and low-level features by using finder details of Hadamard 
multiplication captured in the features; these are integrated into each 
level of the feature map generated by the encoder. SANet improves the 
visual attention module (the SE module) to obtain the SA module, 
which captures global and local context information at the same time 
and constructs SANet to complete the semantic segmentation task. 
The above diversity network was experimented with in the same 
experimental environment, and the comparison results are shown in 
Table 1, where the test optimal performance index is indicated by bold.

Table  1 presents a comparative analysis of the performance 
metrics, number of parameters (Params) and computational 
complexity (GFLOPs) for the MSGU-Net network and other 
networks on the ISIC2017 and ISIC2018 datasets. The experimental 
results show that MSGU-Net not only outperforms its counterparts 
but also demonstrates significant advantages in terms of 
computational complexity and the number of parameters required. 
Through a rough analysis of the evaluation indicators of the ISIC2017 
dataset, it is found that compared with the transformer-based 
network, the network parameters of MSGU-Net are 4.7% of that of 
Swin-UNet and 1.2% of that of TransUNet, and the computational 
complexity of MSGU-Net is significantly reduced, which shows that 
MSGU-Net is an effective improvement. Compared with the base 
CNN network (U-Net), MSGU-Net has obvious advantages in terms 
of segmentation performance, number of parameters and 
computational complexity, indicating that MSGU-Net has good 
segmentation results. The Dice-Sørensen coefficient (DSC) of the 
MSGU-Net network for the ISIC2017 dataset has reached the leading 
level among many networks. A detailed analysis of the evaluation 
metrics of the ISIC2018 dataset shows that MSGU-Net has obvious 

advantages over other improved CNN-type networks: the DSC 
co-efficient is 4.71% higher than that of U-Net, 3.78% higher than 
that of UNet++, and 2.63% higher than that of Attention U-Net, 
which also uses an attention gate in the up-sampling stage. Compared 
to transformer-based networks, MSGU-Net is able to match or even 
sur-pass the performance of TransUNet and TransFuse with a 
miniscule number of parameters.

In Figure 9, the DSC coefficient and Params (M) are plotted 
according to the effect of each network on the ISIC2018 dataset, 
and the size of the bubble circle in the figure is measured more by 
the GFLOPs (Giga floating point operations per second) of each 
network. It is easy to see that MSGU-Net and the family of 
networks that introduce trans-formers to convolutional networks—
TransFuse and TransUNet— are the best algorithms. However, 
MSGU-Net is significantly better than other network frameworks 
in terms of computational complexity and the number of 
parameters, which are important characteristics to consider when 
developing applications.

Embedded devices not only have certain requirements for the 
number of parameters and calculation, but also have strict 
requirements for the segmentation performance. The following is the 
segmentation results of different networks on the ISIC2017 and 
ISIC2018 datasets. From left to right are the segmentation results of 
original image, Ground Truth (GT), UNet, UNet ++, TransUNet, 
TransFuse, MedT, UNeXt, and MSGU-Net.

From the segmentation results shown in Figure 10, it is clear that 
MSGU-Net and the introduction of the transformer into the 
convolutional networks TransFuse and TransUNet demonstrate great 
advantage in dealing with image boundary details. In the four-image 
segmentation of ISIC2017, MSGU-Net processed the first, second, and 
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fourth images effectively, showing the ability to surpass most models 
in both content presentation and detail processing. However, due to 
the influence of hair in the third image, the processing of this image 
presented problems of varying degrees for each model. In four images 
from ISIC2018, MSGU-Net presents segmented skin images with 
near-perfect performance. In summary, MSGU-Net is able to deal 
with most skin images very well, partly because excessive hair 
occlusion will affect the segmentation effect, but it is still able to 
effectively segment the images with hair occlusion.

3.3 Ablation experiment

To understand the role of each module implemented in the network, 
separate ablation experiments were also conducted on the ISIC2018 
dataset. In Table 2, from top to bottom, MSGU-Net is composed of the 
SPP-Inception module, Ghost module, and ELA attention mechanism 
module, and I G C is composed of the SPP-Inception module, Ghost 
module, and CBAM attention mechanism module. C G E and C G C are 
the SPP-Inception module replaced by the regular convolution module, 
the Xception in X G E and X G C is the ap-plication of MobileNet’s depth 
wise separable convolution to the Inception module, and D G E and D 
G C are the superposition of the two-layer Ghost module. D I E and D 
I C are the superposition of two layers of SPP-Inception modules. In 
order to more accurately judge the role of the module, here are three 
additional performance metrics: accuracy (ACC), sensitivity (Sen), and 
specificity (Spe). ACC is the ratio of the number of samples correctly 
predicted by the classification model to the total number of samples, that 
is, the number of correctly classified samples divided by the total number 
of samples. The higher the accuracy, the better the prediction effect of the 
model as a whole. Sen is referred to as true positive rate (TPR) and is the 

fraction of all examples that are actually positive that the model 
successfully predicts to be positive. Sensitivity measures the ability of the 
model to identify positive examples, that is, the accuracy of the model to 
predict positive examples. Spe is the fraction of all samples that are 
actually negative that the model successfully predicts as negative. 
Specificity measures the ability of the model to identify negative 
examples, that is, the prediction accuracy of the model for 
negative examples.

By comparing MSGU-Net (I G E) and I G C, C G E and C G C, X 
G E and X G C, D G E and D G C, and D I E and D I C, it can 
be concluded that the performance improvement brought by the ELA 
attention mechanism far exceeds that of the CBAM attention 
mechanism. Through the comparative analysis of MSGU-Net (I G E), 
C G E, X G E, D G E, and D I E, it can be concluded that the multi-
scale feature extraction of the SPP-Inception module is very effective. 
The DSC brought by CGE conventional convolution is 87.05, and the 
DSC brought by the MSGU-Net (I G E) SPP-Inception module is 
88.74. Obviously, the SPP-Inception module brings more powerful 
feature extraction capabilities. By comparing the DSC results of 
MSGU-Net (I G E) and D I E, it can be concluded that using only the 
SPP-Inception module is not enough because the SPP-Inception 
module cannot provide long-distance dependencies. The comparison 
of DSC results between MSGU-Net (I G E) and D G E shows that it is 
also not enough to use the Ghost module only for feature ex-traction 
and to provide long-distance dependencies. Compared with the multi-
scale feature extraction and fusion of SPP-Inception, the feature 
extraction ability of the Ghost module is weak. Finally, it was 
determined that the Inception module and Ghost module should 
cooperate with each other to enhance multi-scale feature extraction 
and provide long-distance dependence; thus producing the 
MSGU-Net network architecture.

FIGURE 9

Bubble plots of individual network performance on the ISIC2018 dataset.

https://doi.org/10.3389/fnbot.2024.1480055
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Cheng et al. 10.3389/fnbot.2024.1480055

Frontiers in Neurorobotics 10 frontiersin.org

FIGURE 10

Comparison of segmentation results.

TABLE 2 Performance comparison table between MSGU-Net and other networks.

Net Conv Inc D-Inc Xce Ghost D-Ghost ELA CBAM mIoU DSC Acc Spe Sen

MSGU- 

Net(ours)
□ ☑ □ □ ☑ □ ☑ □ 81.40 88.74 94.86 97.13 90.05

I G C □ ☑ □ □ ☑ □ □ ☑ 81.02 88.34 94.79 96.91 90.01

C G E ☑ □ □ □ ☑ □ ☑ □ 78.97 87.05 93.25 95.84 88.60

C G C ☑ □ □ □ ☑ □ □ ☑ 78.43 86.53 93.00 96.92 86.85

X G E □ □ □ ☑ ☑ □ ☑ □ 79.16 87.29 93.38 95.53 89.34

X G C □ □ □ ☑ ☑ □ □ ☑ ☑ 78.76 86.86 93.17 96,47 88.16

D G E □ □ □ □ □ ☑ ☑ □ 79.15 87.22 93.47 95.85 89.47

D G C □ □ □ □ □ ☑ □ ☑ 78.99 87.01 93.31 95.61 89.17

D I E □ □ ☑ □ □ □ ☑ □ 78.75 86.83 93.21 95.10 89.42

D I C □ □ ☑ □ □ □ □ ☑ 78.46 86.52 93.10 95.13 89.00
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From Figure 11A, it can clearly be seen that the indicators of all 
aspects of the improved network have been significantly increased. 
MSGU-Net surpassed the baseline network, U-Net, in all aspects, with 
mIoU increased by 6.85% and DSC increased by 4.71%. Moreover, 
MSGU-Net out-performs.

Attention U-Net which also uses an attention gate in the 
up-sampling stage, with an increase of 4.77% in mIoU and 2.63% in 

DSC. These data are enough to prove the effectiveness of our 
improvement and can provide promotional information for the 
proposed network.

To further observe the role of different modules in the 
network, the changes of their evaluation metrics on the ISIC2018 
test set during the training process were visualized, and the curves 
are shown in Figure 11. From Figures 11B–D, it can be clearly seen 

FIGURE 11

Comparison graphs of different module combination networks in ISIC2018 dataset, (A) is a bar chart comparing the performance of the baseline 
network U-Net, Attention U-Net, and MSGU-Net, (B–F) represent the performance graphs of different module combination networks, respectively.
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that the combination of the SPP-Inception module and Ghost 
module is far ahead of other combinations in the three indicators 
DSC, ACC and mIoU, and the DSC coefficient is as high as 
89.37%, which means that they can better process the features of 
the image. The proposed method can effectively segment the 
image mask correctly. From Figures  11B–D, it can also clearly 
be seen that the positive effects of long-distance dependencies 
provided by the ELA attention mechanism: identifying and 
segmenting different structures in the image more accurately and 
handling noise and artifacts in the image, thus improving the 
accuracy of the segmentation results. The two figures in 
Figures 11E,F show that, compared with other combinations, the 
combination of the SPP-Inception module and Ghost module can 
identify regions of interest (such as lesions, organs, etc.) and 
distinguish non-interest regions (such as background, normal 
tissue, etc.) with more stability.

4 Conclusions and future works

In this paper, two advanced modules are introduced. The 
synergy between the SPP-Inception module and the ghost module 
integrates low-level and high-level features, achieving multi-scale 
information fusion within a pyramid structure. An efficient local 
attention (ELA) mechanism and an attention gate mechanism are 
employed to precisely identify the region of interest (ROI). 
Leveraging these modules and mechanisms, the MSGU-Net is 
developed for skin lesion segmentation tasks. The experimental 
results indicate that MSGU-Net can function as a lightweight deep 
neural network, suitable for deployment across various intelligent 
devices and mobile platforms, showing significant potential for 
broad adoption.

U-Net is a deep learning model originally designed to solve 
medical image segmentation problems. MSGU-Net, as a variant of it, 
can also achieve excellent results in the field of medical images, 
especially in tasks such as cell segmentation, organ localization and 
pathological image analysis. The structural characteristics of 
MSGU-Net make it perform better in processing small objects and 
details in images, which is particularly important in medical image 
analysis. Of course, the application of U-Net is not limited to medical 
images, it is also excellent in remote sensing image processing, 
autonomous driving technology, industrial inspection and other fields. 
The MSGU-Net of this paper, as mentioned above, has great potential 
in these aspects. Again, this paper focuses on significantly reducing 
the number of parameters and computational complexity while 
improving performance, and further research on mobile deployment 
and other applications of MSGU-Net will be done in the future.

At present, semi-supervised learning and self-supervised learning 
have already emerged as one of the mainstream research directions 
within the domain of medical images. They are committed to 
addressing the problem of limited labeled data, which differs to some 
degree from our main focus on optimizing the network architecture 
itself. Nevertheless, their approaches can act as valuable references in 
those situations where obtaining annotated data turns out to 
be extremely difficult. Additionally, there is a significant amount of 
work that aims to handle memory constraints when dealing with 
large biomedical images. Although our MSGU-Net is not specifically 

designed for processing large images, it might potentially derive 
benefits from the concepts and principles underlying such efforts. 
Considering the limitations of the algorithm as well as future research 
directions, on the one hand, this paper underlines the necessity of 
considerably reducing the number of parameters and computational 
complexity while also enhancing performance. As a result, we plan 
to deploy MSGU-Net in a real-world setting in our upcoming work. 
On the other hand, currently, MSGU-Net is solely tailored for skin 
lesion segmentation tasks. Hence, in the future, we aim to extend its 
lightweight design to other tasks.
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