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Introduction: In recent years, with the rapid development of artificial intelligence

technology, the field of music education has begun to explore new teaching

models. Traditional music education research methods have primarily focused

on single-modal studies such as note recognition and instrument performance

techniques, often overlooking the importance of multimodal data integration

and interactive teaching. Existing methods often struggle with handling

multimodal data e�ectively, unable to fully utilize visual, auditory, and textual

information for comprehensive analysis, which limits the e�ectiveness of

teaching.

Methods: To address these challenges, this project introduces MusicARLtrans

Net, a multimodal interactive music education agent system driven by

reinforcement learning. The system integrates Speech-to-Text (STT) technology

to achieve accurate transcription of user voice commands, utilizes the ALBEF

(Align Before Fuse) model for aligning and integrating multimodal data, and

applies reinforcement learning to optimize teaching strategies.

Results and discussion: This approach provides a personalized and real-

time feedback interactive learning experience by e�ectively combining

auditory, visual, and textual information. The system collects and annotates

multimodal data related to music education, trains and integrates various

modules, and ultimately delivers an e�cient and intelligent music education

agent. Experimental results demonstrate that MusicARLtrans Net significantly

outperforms traditional methods, achieving an accuracy of 96.77% on the

LibriSpeech dataset and 97.55% on the MS COCO dataset, with marked

improvements in recall, F1 score, and AUC metrics. These results highlight

the system’s superiority in speech recognition accuracy, multimodal data

understanding, and teaching strategy optimization, which together lead to

enhanced learning outcomes and user satisfaction. The findings hold substantial

academic and practical significance, demonstrating the potential of advanced

AI-driven systems in revolutionizing music education.

KEYWORDS

Speech-to-Text, ALBEF, reinforcement learning, multimodal agent, music speech

recognition

1 Introduction

The technology of music voice recognition holds extensive application

potential not only in areas such as music information retrieval, music education,

and digital entertainment but also plays a crucial role in the development

of intelligent voice assistants and accessibility technologies. With continuous

advancements in artificial intelligence and machine learning, music voice recognition

can offer users more accurate music search and recommendation systems,

Frontiers inNeurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2024.1479694
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2024.1479694&domain=pdf&date_stamp=2024-11-21
mailto:ZhenmengWang2024@163.com
https://doi.org/10.3389/fnbot.2024.1479694
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2024.1479694/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Chang et al. 10.3389/fnbot.2024.1479694

as well as support in music creation and learning. However, the

complexity of music voice recognition far surpasses that of general

voice recognition due to the need for multi-dimensional analysis,

including pitch, rhythm, and timbre. Therefore, in-depth research

into music voice recognition is essential, not only to enhance the

accuracy of current technologies but also to foster innovation and

development in related fields.

Traditional methods for music voice recognition primarily

involve symbolic AI and knowledge representation. Among these,

expert systems were early technologies that relied on predefined

rules and knowledge bases to process musical information. For

instance, some systems perform music analysis using rules based

on music theory (Exposito et al., 2006), while others employ expert

systems for automated score analysis (Betancourt et al., 2018).

Another approach is rule-based systems, which utilize detailed

music rules for recognition and parsing, such as systems based

on pitch and rhythm rules (Oramas et al., 2015) or systems

combining note and rhythm pattern rules (Liu and Fung, 2000).

Additionally, gradient-basedmethods, as amore recent technology,

enhance the recognition process through optimization algorithms

and gradient descent, including gradient optimization methods

using convolutional neural networks (Costa et al., 2017) and

advanced deep learning algorithms (Hongdan et al., 2022). These

methods are theoretically robust and interpretable, enabling them

to manage complex music patterns and rules to a certain extent.

However, they often struggle with adaptability to complex musical

variations, particularly when dealing with non-standard music data

or rapidly changing musical features, which can lead to reduced

recognition accuracy.

To overcome the limitations of traditional algorithms in

handling complex music data, data-driven and machine learning

algorithms have increasingly been applied to music voice

recognition. These methods mainly include decision trees, random

forests, and multi-layer perceptrons (MLPs). The decision tree

algorithm classifies and predicts music data by creating a tree-

like model that recursively splits the data into different categories,

clearly illustrating the relationships between features (Lavner and

Ruinskiy, 2009). Another commonly used method is random

forests, which enhance classification accuracy by combining

multiple decision trees. Each tree is trained on a random subset

of the data and features, and the final prediction is determined

by a vote among these trees, effectively reducing overfitting and

increasing model stability (Thambi et al., 2014). Additionally,

multi-layer perceptrons (MLPs), a deep learning approach, learn

complex music features through a multi-layer neural network

structure. Each layer’s neurons transform the input data using

nonlinear activation functions, enabling the model to capture high-

level features and thus improve recognition accuracy (Ajmera

et al., 2003). While these methods offer significant flexibility and

robustness in handling complex music features and patterns, they

also face challenges related to the high computational complexity

of large-scale data and high-dimensional features, which can

lead to prolonged training times and considerable computational

resource demands.

As a solution to the limitations of traditional statistical and

machine learning algorithms in handling complex music features,

deep learning algorithms have become increasingly dominant

in music voice recognition. These methods primarily include

Convolutional Neural Networks (CNNs), Reinforcement Learning,

Transformers, and Attention Mechanisms. Convolutional Neural

Networks (CNNs) effectively extract spatial and temporal features

from music signals through multiple layers of convolution

and pooling operations, demonstrating superior performance

in audio classification and feature extraction tasks (Hema

and Marquez, 2023). Reinforcement Learning optimizes models

through interactions with the environment, enabling adaptive

learning and improvement of strategies, thus exhibiting strong self-

learning capabilities in music generation and real-time adjustment

tasks (Chen et al., 2023). Transformer models, which use self-

attention mechanisms to model input sequences, capture long-

range dependencies and have significant advantages in modeling

and generating music sequences (Wen and Zhu, 2022). Attention

Mechanisms dynamically adjust the weights of input data,

enhancing the ability to capture important features and have

achieved notable success in music translation and generation

tasks (Li et al., 2021). While these methods offer powerful

feature learning and modeling capabilities that significantly

improve recognition and generation accuracy, they come with

high computational resource demands, lengthy training times,

and increased model complexity, which can substantially raise

computational costs and training challenges, especially when

handling large-scale datasets.

To address the high computational resource demands,

extended training times, and model complexity associated

with these methods for handling complex music features, we

propose a novel solution: MusicARLtrans Net. This multi-modal

intelligent interactive music education system is designed to

overcome the limitations of traditional deep learning methods

through reinforcement learning. MusicARLtrans Net combines

reinforcement learning with multi-modal inputs, dynamically

adjusting and optimizing the music learning process through

interactions between intelligent agents and users. The motivation

behind this approach is to enhance the personalization and

interactivity of music education while effectively reducing reliance

on computational resources. By leveraging reinforcement learning,

the system can adaptively adjust teaching strategies and provide

personalized feedback, thereby improving the effectiveness and

efficiency of music education. Additionally, the use of multi-modal

inputs allows the system to integrate audio, visual, and textual

data, making it more comprehensive and precise when handling

complex music data. Through this approach, we aim to achieve

efficient learning while reducing the computational complexity

and time consumption associated with traditional methods.

• MusicARLtrans Net introduces a novel combination of

reinforcement learning and multi-modal inputs, innovatively

applying an intelligent agent system to music education. By

leveraging adaptive learning and interactive optimization, the

system enhances educational outcomes.

• The system features multi-scenario adaptability, efficiently

handling audio, visual, and textual data. It achieves

personalization and versatility in music education,

making it suitable for various learning environments

and needs.
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• Experiments show that MusicARLtrans Net outperforms

traditional methods in music learning tasks, significantly

improving learning efficiency and accuracy while reducing

computational resource demands.

2 Related work

2.1 Speech recognition

The development of speech recognition technology has evolved

over several decades, transitioning from early rule-based systems

to modern deep learning models through multiple pivotal stages.

Initially, speech recognition systems relied on expert systems

and rule-based approaches, which typically featured limited

vocabularies and lower accuracy. However, the introduction

of statistical learning methods, particularly the application of

Hidden Markov Models (HMMs) and Gaussian Mixture Models

(GMMs), marked significant advancements in the 1980s and

1990s. HMM-GMM models effectively captured the temporal

characteristics of speech, greatly enhancing recognition accuracy

(Wang et al., 2019b). As the 21st century unfolded, the rise of

machine learning, particularly deep learning, further accelerated

the progress of speech recognition technology. Models based on

Deep Neural Networks (DNNs), Convolutional Neural Networks

(CNNs), and Long Short-Term Memory Networks (LSTMs) have

demonstrated remarkable performance in speech recognition tasks.

These deep learningmodels can automatically extract features from

speech signals, significantly reducing the need for manual feature

engineering and improving the accuracy and robustness of speech

recognition systems (Lin et al., 2024b). In recent years, end-to-end

speech recognition models, such as Deep Speech and Transformer-

based architectures like Google’s WaveNet and OpenAI’s Whisper,

have further streamlined the speech recognition process while

achieving notable improvements in system performance. These

models integrate all components of speech recognition into a single

neural network, simplifying the architecture and enhancing overall

efficiency (Lin et al., 2024a). Moreover, the application scope of

speech recognition technology has expanded considerably—from

early implementations in telephone customer service systems and

voice assistants to today’s smart homes, automotive voice control

systems, and healthcare monitoring devices. Speech recognition

technology holds immense potential, particularly in areas such

as multilingual and dialect recognition, robustness in noisy

environments, and real-time speech translation. As more advanced

deep learning algorithms and larger datasets become available,

speech recognition technology is poised to deliver more natural,

precise, and versatile applications.

2.2 Robotic vision

Robotic vision is a pivotal research area within artificial

intelligence and robotics, focused on equipping robots with the

ability to comprehend and interpret visual information. The

evolution of robotic vision has transitioned from traditional

image processing and computer vision techniques to modern deep

learning methods, progressing through several significant stages.

Early robotic vision systems primarily relied on classical image

processing techniques, such as edge detection, shape recognition,

and feature extraction. While these methods were somewhat

effective for simple visual tasks, they often struggled in complex

environments (Wang et al., 2016). With the dawn of the 21st

century, advancements in computing power and the accumulation

of big data catalyzed significant breakthroughs in robotic vision

technology, particularly through the adoption of machine learning

and deep learning techniques. Convolutional Neural Networks

(CNNs) have become central to this field, as they can automatically

extract multi-level features from images through multiple layers

of convolution and pooling operations. This approach has greatly

enhanced performance in image classification, object detection,

and semantic segmentation. Notable deep learning models, such

as AlexNet, VGGNet, ResNet, and YOLO, have propelled robotic

vision into a new era, demonstrating exceptional performance

on large datasets like ImageNet (Hong et al., 2024). Beyond the

understanding of static images, robotic vision must also process

information from dynamic scenes, requiring technologies like

video analysis and 3D reconstruction. Optical flow methods and

object tracking algorithms analyze motion information in videos,

while structured light, stereo vision, and SLAM (Simultaneous

Localization and Mapping) technologies are employed to construct

3D models of the environment. The integration of these

technologies enables robots to navigate, recognize objects, and

interact with humans in complex and dynamic settings. In recent

years, the integration of multimodal information in robotic vision

has gained increasing attention. By combining visual, auditory,

and tactile modalities, this approach enhances a robot’s ability to

understand its environment and execute tasks more effectively. As

more advanced deep learning algorithms and sensor technologies

continue to develop, robotic vision is expected to achieve even

greater precision, robustness, and real-time performance. These

advancements will drive extensive applications across various

sectors, including manufacturing, service industries, healthcare,

and beyond (Fishel and Loeb, 2012).

2.3 Reinforcement learning

Reinforcement Learning (RL) is a machine learning approach

that enables agents to learn optimal actions within an environment

by maximizing cumulative rewards through a trial-and-error

process. The theoretical underpinnings of RL are rooted in

Markov Decision Processes (MDP) and dynamic programming.

However, significant advancements in computational power

and the integration of deep learning have propelled RL to new

heights, enabling its application across a wide range of practical

domains. In the realm of gaming, RL has demonstrated remarkable

potential. A notable example is DeepMind’s AlphaGo, which

defeated the world champion in Go using deep reinforcement

learning, marking a significant milestone in the field. This

achievement highlighted RL’s potential in mastering complex

strategic games. Building on this success, AlphaZero further

showcased RL’s generalization capabilities by combining self-

play with deep neural networks, excelling not only in Go but

also in chess and shogi (Wang et al., 2019a). In robotics, RL
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has proven effective in learning optimal control strategies

for robots tasked with complex operations. Traditional robot

control methods often rely on predefined rules and models,

whereas RL enables robots to autonomously learn optimal

action strategies through interaction with their environment.

This approach has been widely applied in areas such as robotic

arm manipulation, autonomous drone flight, and path planning

for self-driving cars. The integration of deep reinforcement

learning allows robots to master complex control strategies

within high-dimensional, continuous action spaces (Oudeyer

and Kaplan, 2007). The financial sector represents another

significant application area for RL. By modeling financial

environments such as stock markets, RL assists in designing

and optimizing trading strategies, asset allocation, and risk

management. RL algorithms learn market dynamics and adapt

autonomously to varying market conditions, enhancing the

accuracy and profitability of investment decisions. In natural

language processing (NLP) and dialogue systems, RL is employed

to optimize dialogue strategies and generate natural language

responses. For instance, RL can empower chatbots to learn

how to guide users through conversations, offer personalized

recommendations, and improve overall user satisfaction.

Additionally, RL is leveraged to optimize advertising strategies by

dynamically adjusting ad content and timing in real-time, thereby

maximizing user click-through rates and conversion rates (Ai et al.,

2023).

3 Methodology

3.1 Overview of our network

Our approach centers on adapting the ALBEF (Align

Before Fuse) multimodal architecture to better cater to the

specific needs of music education through voice interactions.

Traditionally, ALBEF fuses visual and textual modalities

to enable a comprehensive understanding of inputs. In

our system, we replace the visual editor with an audio

editor to align with the primary task of speech recognition.

This adaptation allows us to focus on enhancing audio

processing capabilities, making the system more effective for

music education.

A key innovation in our approach is the development of

a novel Speech-to-Text (STT) model specifically tailored for

the music education domain. This model integrates a new

Acoustic Model (AM) and Language Model (LM). The AM is

designed to capture the nuances of musical terminology and

speech patterns relevant to music education, while the LM

facilitates accurate transcription of domain-specific language. By

combining these models, we significantly improve the system’s

ability to transcribe and interpret user inputs with precision.

Furthermore, to align with our audio editor, we implemented a

refined Transformer-based text editor. This editor reduces the

original 6-layer Transformer structure to a more efficient 3-

layer configuration, enhancing processing speed while maintaining

high effectiveness.

The implementation of our music education system involves

several key steps, each designed to optimize the integration

of the audio editor, STT model, and refined text editor, with

reinforcement learning enhancing the overall performance.

1. Audio editor and STT model development: The first step

involves developing and training the Speech-to-Text model.

The Acoustic Model (AM) is meticulously designed to process

and interpret musical terms and speech patterns. This model

is trained using a comprehensive dataset that includes various

musical and educational audio samples, ensuring it captures

the specific characteristics of the music domain. Concurrently,

the Language Model (LM) is developed to understand and

generate domain-specific phrases, improving the accuracy of

text transcriptions related to music education. The STT model

is then integrated into the audio editor, which is tailored to

handle the complexities of music-related speech. 2. Adaptation

of text editor: The text editor, essential for processing the

transcribed text from the STT model, is modified by reducing

the Transformer architecture from six layers to three layers.

This modification enhances the efficiency of the model, making

it faster while maintaining its ability to handle textual data

effectively. The alignment between the audio editor and the

text editor is fine-tuned to ensure that the transcriptions and

text processing are coherent and contextually accurate. This

alignment is crucial for the system to provide relevant and timely

educational content. 3. Integration of reinforcement learning:

Reinforcement learning is introduced to optimize the agent’s

performance continually. The RL framework enables the agent

to learn from interactions with users, adjusting its responses

and teaching strategies based on feedback. The agent receives

rewards based on its effectiveness in providing personalized and

accurate music education, allowing it to refine its approach over

time. This iterative learning process ensures that the system

adapts to user needs and improves its teaching methods. 4.

System evaluation: Finally, the integrated system is evaluated

on several metrics, including transcription accuracy, alignment

between audio and text, and overall effectiveness in delivering

educational content. User feedback is collected to assess satisfaction

and identify areas for improvement. This comprehensive

evaluation ensures that the system meets the desired educational

objectives and provides a valuable tool for interactive

music education.

3.2 Audio editor and STT model

In this article, the audio editor of the multimodal interactive

music education system consists of three main components:

a strategy-based acoustic model (AM), a melody model based

on recurrent neural networks (RNN), and a reward-based

action decoder (as is shown in Figure 1). Specifically, we

developed two architectures: one that uses note sequences

as the output units for the acoustic model and melody

model, and another that employs rhythmic units. The rhythmic

unit model has advantages in real-time interactive sessions,

as the acoustic model can operate effectively at a lower

temporal resolution. The following sections will provide a

comprehensive and detailed description of each component of

the system.
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FIGURE 1

The structure of the Speech-to-Text model. After the audio waveform is input, acoustic modeling is first performed through the GRU model, and

then combined with the RNN language model, and the final result is output after N-best beam search.

3.2.1 Acoustic model
The MusicARLtrans Net’s architecture is depicted in Figure 2

and includes two 2D convolutional layers, six recurrent layers,

and one densely connected layer. The network outputs labels that

identify musical elements such as notes, chords, and rhythmic

patterns, and it employs a training regime based on reinforcement

learning loss. The network’s input feeds into the convolutional

layers, which process three sets of 2D feature maps generated

from the mel spectrogram and its derivatives. These feature maps

span across time and frequency dimensions. The architecture

utilizes a 5 × 5 filter size for the convolutional layers, adhering

to standards from prior research. By halving the dimensions

of the input frames, these layers not only boost the system’s

efficiency in recognizing musical features but also simplify

the decoding stage by easing the computational load on the

recurrent layers.

Our model is equipped with six recurrent layers, each

integrating a 1-D convolutional component and a music-

specific recurrent module (M-CU). This unit is designed to

incorporate a state feedback mechanism, processing music

vectors zt ∈ R
2xin . The computation for output qt ∈

R
M and state vector st ∈ R

M is detailed in Equation 1.

Drawing inspiration from pitch pooling techniques in QRNN,

our approach adjusts the input gate rt , as formulated in

Equation 2. We refer to this model variation as “m-GRU"

(shown in Figure 3). Experimental results show that incorporating

a pitch control input into m-GRU not only enhances its

training stability but also significantly lowers the error rate in

predictions. Preliminary tests on the activation function tanh

have demonstrated that its careful adjustment, as per Equation 2,

substantially enhances convergence.

m-GRU: ỹt = A1zt + b1,

ut = φ(A2zt + b2),

athbfvt = φ(A3zt + b3),

st = ut ◦ st−1 + (1− ut) ◦ ỹt ,

qt = vt ◦ tanh(st)+ (1− vt) ◦ ỹt (1)

Advanced-m- GRU: ŷt = tanh(A4zt + b4),

pt = σ (A5zt + b5),

rt = σ (A6zt + b6),

wt = σ (A7zt + b7),

st = pt ◦ st−1 + rt ◦ ŷt ,

qt = wt ◦ st + (1− wt) ◦ ŷt (2)

In this model, the parameters A1,A2,A3,A4,A5,A6,A7 ∈

R
M×hin and b1, b2, b3, b4, b5, b6, b7 ∈ R

M are trainable. Solo

training of i-m-GRU yields a prediction accuracy surpassing

that of conventional LSTM networks. To mitigate overfitting, we

incorporate a deep 1−D convolutional layer at each recurrent

layer’s entrance, elevating the parameter count byO(k×hin), where

k denotes the convolution’s filter width. The 1−D convolutional

layers, possessing fewer parameters than the recurrent layers,

enhance the model’s efficiency. The insertion of these 1−D

convolutional layers between recurrent stages results in notable

enhancements in model performance.

Processing across multiple time steps transforms the operation

from matrix-vector to matrix-matrix multiplication. By utilizing
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FIGURE 2

The structure of acoustic model. The input waveform signal is first processed by the Mel filter to generate Mel frequency cepstral coe�cients

(MFCCs) or other features, and then passes through multiple convolutional layers (2D convolution and 1D convolution) to extract features. After the

convolutional layer, the data is processed in sequence through multiple recurrent layers (GRU layers), which are repeated six times. Finally, after

being processed by the fully connected layer, the data enters the CTC (connected temporal classification) layer, which is used to process the

sequence-to-sequence mapping and finally output the recognition result.

FIGURE 3

The structure of GRU Model.

the same weight matrix across K time steps and retrieving it from

DRAM just once, both execution time and power consumption are

considerably reduced. This process, detailed in Formula 3, involves

K steps of parallelization.
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The Speech-to-Text (STT) model is an essential component

of the MusicARLtrans-Net system, responsible for accurately

transcribing user voice commands into text that the system

can process and respond to. The choice of STT model

significantly influences the overall performance of MusicARLtrans-

Net, particularly in terms of accuracy, responsiveness, and

adaptability. The accuracy of the STT model is crucial, as it directly

impacts the system’s ability to correctly interpret user commands.

High transcription accuracy ensures that the user’s intentions

are accurately captured and processed, leading to appropriate

system responses. Conversely, lower accuracy could result in

misunderstandings, causing errors in command execution and

ultimately diminishing the effectiveness of the interactive learning

experience. Another critical factor is the responsiveness of the

STT model, which affects how quickly the system can process

and act upon user commands. A model with higher latency may

introduce delays in the system’s response, disrupting the flow of

interaction and potentially frustrating users. Therefore, selecting

a model that provides a good balance between accuracy and

speed is vital for maintaining a seamless and engaging learning

experience. Additionally, the model’s ability to handle specialized

musical terminology is essential. General STT models might

struggle with the specific vocabulary related to music theory and

practice, leading to transcription errors that can affect the overall

integration of multimodal data within the system. By carefully
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choosing or developing an STT model tailored to the domain of

music education, we can enhance the precision, responsiveness, and

overall effectiveness of MusicARLtrans-Net.

3.2.2 Language model
The MusicARLtrans Net, characterized-based, outperforms

conventional statistical approaches in music education systems.

When the audio module (AM) outputs musical notes, utilizing

a note-level language model (NLM) reduces error rates (ER).

The NLM’s design, limited to a specific set of musical notes,

simplifies the input and output configurations while effectively

handling issues related to out-of-vocabulary (OOV) notes. Rather

than employing a segment-level language model, which struggles

with OOV issues due to its larger parameter size, our approach

integrates a hierarchical note-level language model (HNLM) to

boost performance. The HNLM comprises two RNN units: one

aligned with the musical time clock and another operating in

sync with the note clock, enhancing efficiency. For decoding,

we use a language model (LM) that operates within a beam

search framework, adapting to various beam sizes, from 32

to 128, enhancing the responsiveness of the system. This

setup allows multi-stream parallel processing, which enables

simultaneous processing of multiple sequences, contrasting the

sequential sample generation in traditional AM RNN systems.

This capability allows traditional RNN structures, including

LSTM and GRU, to be effectively incorporated into the LM

architecture of MusicARLtrans Net during beam search decoding,

with GRU models being particularly advantageous due to their

reduced memory usage and fewer state requirements compared to

LSTMmodels.

In addition to traditional models, we have developed an audio

sequence recognition (ASR) model based on note sequences,

which reduces complexity by lowering the frame rate. This model

incorporates common musical elements like notes, chords, and

rhythmic patterns and typically ranges from 500 to 1,000 sequences.

By focusing on sub-notes and chord patterns, the note sequence

model circumvents the out-of-vocabulary (OOV) challenge. The

language model (LM) for note sequences tends to outperform

the note-level language model (NLM) as it captures longer

musical dependencies and includes multiple musical elements

within each sequence. This model’s strength lies in its reduced

complexity, allowing the audio module (AM) to process at

reduced speeds compared to models focusing on individual

notes. Downsampling is applied not only in the convolutional

layers but also in the recurrent layers to optimize processing.

Nevertheless, the training demands of the note sequence model,

particularly the audio module, escalate due to a greater number of

labels required.

3.2.3 Decoder
During the decoding phase, our goal is to identify the

optimal sequence of musical elements z that maximizes

the objective function R(z) based on input features

a1 : 8. This process involves synthesizing the outputs

from both the Audio Processing Module (APM) SAPM

and the Harmonic Sequence Model (HSM) SHSM , as

described below:

R1(z) = φ · log
(

SAPM(z|a1 : θ )
)

R2(z) = γ · log
(

SHSM(z)
)

+ δ · |z|

Here, z represents the sequence of musical elements, such as

notes or chords. R1(z) evaluates the log-probability of the sequence

given the audio features, weighted by a factor φ. R2(z) includes the

log-probability from the Harmonic Sequence Model, weighted by

γ , and a length penalty term proportional to the sequence length,

weighted by δ.

Labels can consist of either a single note or a sequence

of notes. We employ a beam search algorithm for incremental

music recognition. The complexity involved in decoding sequences

using RNN-based models scales with the product of beam

width, sequence length, and the total number of elements. To

streamline this process, we have adopted two approaches: for

inputs where the probability of silence exceeds 0.95, we bypass

the decoding step to minimize unnecessary calculations for silent

sequences. Additionally, we focus on decoding the highest-ranked

probabilities in the APM, which is especially advantageous for

models dealing with multiple elements compared to those handling

single notes. We configure the top-ξ setting to 10 for enhanced

efficiency in sequence models.

3.3 Text editor

The ALBEF (Align Before Fuse) architecture is a powerful

multimodal model designed to integrate and understand

information from different modalities, primarily text and images.

It operates on the principle of aligning features from multiple

sources before fusing them into a unified representation. This

approach enhances the model’s ability to handle complex tasks

that require understanding of both textual and visual information.

In ALBEF, visual and textual inputs are processed separately

through dedicated encoders, and their features are aligned and

combined to produce a comprehensive understanding of the input

data. This method has proven effective in a range of applications,

including image captioning, visual question answering, and

cross-modal retrieval.

3.3.1 Architectural adaptation
In our music education system, we adapt the ALBEF

architecture by replacing the visual encoder with an audio editor

to better align with speech recognition tasks. The text editor plays

a crucial role in this adaptation, handling and processing the

transcribed text produced by the Speech-to-Text (STT) model. To

ensure seamless integration with the new audio editor, the text

editor has undergone significant modifications. Originally, ALBEF

uses a 6-layer Transformer model to process and interpret textual

data. For our application, we have streamlined this architecture

to a more efficient 3-layer Transformer model. This reduction is
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FIGURE 4

The structure of RL.

intended to optimize processing speed and resource utilization

while maintaining the model’s effectiveness in handling complex

textual data. The adapted text editor is fine-tuned to align with

the outputs of the audio editor. The fine-tuning process involves

adjusting the model parameters and training the text editor to work

in harmony with the transcriptions produced by the STT model.

This ensures that the textual data processed by the editor is coherent

with the audio context, allowing for accurate and contextually

relevant responses in the music education system. The text editor

is designed to process the transcribed text from the Speech-to-

Text model, aligning it with the corresponding audio input. The

model’s efficiency is crucial in handling large volumes of textual

data generated from user interactions. By reducing the Transformer

layers and focusing on alignment with the audio editor, we ensure

that the text editor can quickly and accurately process user inputs,

providing relevant feedback and educational content.

The Transformer model processes input text data X through a

series of encoder layers. Each encoder layer applies multi-head self-

attention and feed-forward operations. The input to each encoder

layer is denoted as Hl−1, and the output is Hl. The equations

governing the Transformer encoder layers are:

Hl = LayerNorm(Hl−1 +MultiHeadAttention(Hl−1,Hl−1,Hl−1))

(1)

Hl = LayerNorm(Hl + FeedForward(Hl)) (2)

To align text data with audio context, we introduce an

alignment mechanism. The alignment score between the text

features T and audio features A is computed as follows:

Score(T,A) = T⊤WaA (3)

Aaligned = Softmax(Score(T,A))A (4)

The final output from the Text Editor is generated by

applying a linear transformation and softmax activation to the

aligned features:

Y = Softmax(WyAaligned + by) (5)

3.3.2 Reinforcement learning
Incorporating reinforcement learning (RL) into the text editor

greatly enhances its ability to process and align text data.

The RL agent learns from interactions with users, adjusting

its strategies based on feedback and rewards. This iterative

process allows the text editor to continuously refine its text

processing capabilities. As the agent receives feedback on its

performance, it adapts by exploring various text handling methods

and optimizing responses to maximize positive outcomes. The RL

framework enables the text editor to become more adaptive and

efficient (in Figure 4). By learning from real-world interactions,

the editor improves its alignment with audio inputs, ensuring

that responses are contextually accurate and coherent. This

ongoing refinement process helps the system meet user needs

more effectively. As a result, the text editor’s performance is

consistently enhanced, leading to a more effective and engaging

music education experience.

In reinforcement learning, the reward function is fundamental

in guiding an agent’s behavior by providing feedback on the

actions it takes within an environment. The reward function

assigns a numerical value to each action, based on the outcomes

relative to the task’s objectives. This value, known as the reward,

indicates how beneficial or detrimental an action is in moving

toward the goal. The agent’s primary objective is to maximize the

cumulative reward over time, often referred to as the return, by

learning which actions yield the highest rewards. The design of

the reward function is critical because it directly influences the

learning efficiency and the effectiveness of the agent’s decision-

making process. A well-crafted reward function aligns closely with
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TABLE 1 Performance comparison of various models on LibriSpeech and MS COCO datasets.

References Librispeech dataset MS COCO dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

Raj et al. (2010) 87.98± 0.02 88.60± 0.03 89.52± 0.02 86.05± 0.02 88.01± 0.01 87.78± 0.02 87.97± 0.03 89.34± 0.02

Tahon et al.

(2024)

92.11± 0.01 89.09± 0.03 88.68± 0.02 89.10± 0.03 90.68± 0.03 88.43± 0.01 85.89± 0.02 90.15± 0.03

Zhao et al.

(2015)

86.92± 0.01 91.46± 0.02 88.72± 0.02 84.02± 0.03 90.36± 0.02 87.06± 0.03 83.86± 0.01 89.56± 0.02

Brown and

Bidelman

(2022)

96.02± 0.03 93.07± 0.02 84.99± 0.03 87.68± 0.01 91.22± 0.01 88.67± 0.03 87.73± 0.02 86.09± 0.03

Wang and Li

(2025)

86.83± 0.01 83.80± 0.03 85.38± 0.02 93.50± 0.02 91.48± 0.03 92.18± 0.02 88.43± 0.01 92.53± 0.01

Calvo-Zaragoza

et al. (2020)

95.19± 0.02 87.68± 0.03 84.39± 0.02 83.94± 0.03 89.29± 0.01 90.98± 0.02 90.49± 0.03 88.68± 0.01

Ours 96.77± 0.01 94.88± 0.02 93.44± 0.03 96.25± 0.03 97.55± 0.02 94.81± 0.01 93.01± 0.02 96.37± 0.01

FIGURE 5

Performance comparison of various models on LibriSpeech and MS COCO datasets.

the goals of the task, ensuring that the agent learns to optimize

behaviors that lead to the desired outcomes. For example, in a

navigation task, if the goal is to reach a destination quickly and

safely, the reward function might include positive rewards for

progress toward the destination and penalties for actions that lead

to collisions or delays. This approach helps the agent understand

not only what actions are beneficial but also what behaviors

to avoid. Additionally, the reward function may incorporate a

balance between immediate and delayed rewards to guide the agent

toward both short-term successes and long-term goals. Immediate

rewards offer quick feedback on the agent’s actions, while delayed

rewards emphasize the importance of strategic decisions that may

not yield immediate benefits but are crucial for achieving the

final objective. By carefully balancing these elements, the reward

function can shape the agent’s learning process, encouraging the

development of strategies that optimize performance across various

scenarios. This thoughtful design ensures that the agent remains

focused on the ultimate goal, efficiently learning to navigate

complex environments.

Below is the mathematical formulation of the return in

reinforcement learning:

Rt =

∞
∑

k=0

γ krt+k+1 (6)

Here, Rt represents the cumulative return starting

from time step t, rt+k+1 is the immediate reward received
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TABLE 2 Computational e�ciency of di�erent methods on ImageNet and AVSpeech datasets.

Method ImageNet dataset AVSpeech dataset

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Raj et al. (2010) 383.22± 0.02 353.66± 0.03 341.96± 0.03 303.56± 0.02 321.75± 0.01 224.16± 0.02 336.65± 0.03 262.93± 0.01

Tahon et al. (2024) 349.99± 0.03 292.57± 0.01 252.46± 0.02 312.54± 0.03 261.55± 0.03 258.53± 0.02 282.28± 0.01 378.32± 0.03

Zhao et al. (2015) 226.44± 0.02 209.50± 0.03 258.88± 0.03 242.58± 0.01 307.61± 0.03 353.36± 0.02 279.65± 0.03 387.59± 0.01

Brown and Bidelman (2022) 263.39± 0.03 320.70± 0.02 288.00± 0.01 301.16± 0.03 391.56± 0.01 235.08± 0.02 294.64± 0.03 334.19± 0.01

Wang and Li (2025) 322.39± 0.01 366.36± 0.03 229.44± 0.02 270.76± 0.01 235.24± 0.02 335.97± 0.03 311.44± 0.01 386.47± 0.03

Calvo-Zaragoza et al. (2020) 364.91± 0.02 395.13± 0.03 263.84± 0.03 300.05± 0.02 286.99± 0.01 359.00± 0.02 216.01± 0.03 242.02± 0.01

Ours 170.51± 0.01 100.56± 0.02 171.90± 0.03 150.29± 0.02 120.09± 0.01 117.58± 0.03 105.35± 0.02 213.64± 0.01

FIGURE 6

Computational e�ciency of di�erent methods on ImageNet and AVSpeech datasets.

TABLE 3 Ablation study results on LibriSpeech and MS COCO datasets (impact of removing Speech-to-Text, ALBEF, and RL modules).

Model Librispeech dataset MS COCO dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w/o

Speech-to-Text

89.10± 0.02 91.91± 0.01 89.58± 0.03 92.30± 0.02 87.20± 0.03 87.12± 0.02 88.23± 0.01 87.30± 0.02

w/o ALBEF 89.10± 0.03 88.22± 0.01 84.67± 0.02 85.94± 0.03 89.12± 0.02 88.16± 0.03 86.45± 0.02 86.96± 0.01

w/o RL 92.07± 0.01 89.22± 0.02 83.93± 0.03 89.91± 0.01 87.54± 0.03 87.03± 0.02 90.01± 0.01 85.88± 0.03

Full model 96.59± 0.02 94.61± 0.03 91.70± 0.02 92.14± 0.03 98.06± 0.01 95.28± 0.03 93.74± 0.02 93.71± 0.01

at time step t + k + 1, and γ is the discount factor

(0 ≤ γ ≤ 1), which determines the importance of

future rewards. This equation shows that the agent

optimizes its policy by accumulating future rewards while

considering that rewards further in the future may be

less significant.
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FIGURE 7

Ablation study results on LibriSpeech and MS COCO Datasets (impact of removing Speech-to-Text, ALBEF, and RL modules).

4 Experiment

4.1 Datasets

This article uses the following four datasets: librispeech

Dataset, MS COCO Dataset, ImageNet Dataset, AVSpeech Dataset.

LibriSpeech Dataset (Chen et al., 2020). The LibriSpeech dataset

is a large-scale English speech recognition dataset provided by

OpenSLR. It is derived from the public domain audiobooks

available on LibriVox and is primarily used for training and

evaluating speech recognition systems. LibriSpeech contains

∼1,000 h of speech data, divided into different levels of clarity and

difficulty. The dataset is segmented into clean and noisy speech to

test the robustness of models in various environments. The rich

content and high-quality audio of LibriSpeech provide a crucial

resource for research and development in speech recognition

algorithms. MS COCO Dataset (Tong and Wu, 2023). The

Microsoft Common Objects in Context (MS COCO) dataset is a

substantial resource in computer vision developed by Microsoft

Research, primarily utilized for tasks like image recognition, object

detection, and semantic segmentation. This dataset boasts over

330,000 images, each annotated, summing up to more than 1.5

million annotations across 80 categories. It offers extensive data for

object detection and semantic analyses including bounding boxes

and detailed segmentation and keypoint annotations, making it

a pivotal resource for visual computing studies. The MS COCO

dataset significantly contributes to advancements in visual task

methodologies. Stanford University’s team under Professor Fei-

Fei Li developed the ImageNet database (Tsipras et al., 2020), a

comprehensive visual repository containing more than 14 million

images distributed among over 20,000 categories, each with

detailed annotations for 1,000 categories. Widely recognized for

its application in image classification and object detection tasks,

ImageNet provides extensive data that supports the training of

various advanced deep learning architectures like AlexNet, VGG,

and ResNet, marking significant progress in the field. This dataset

also underpins the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC), fostering innovations in computer vision

algorithms. Google AI’s AVSpeech dataset (Ma et al., 2023), a

vast audio-video collection designed for multimodal learning tasks,

includes over 4,700 h of audio aligned with video clips sourced

from YouTube, covering diverse scenes and speakers. The precise

synchronization of audio and video in AVSpeech makes it ideal for

research in areas like speech separation, lip reading, and audiovisual

fusion, offering a rich resource for exploring multimodal machine

learning applications.

4.2 Experimental details

To validate the effectiveness of the multimodal interactive

music education agent system based on Speech-to-Text (STT),

ALBEF (Align Before Fuse), and Reinforcement Learning (RL),

we designed and conducted two types of experiments: comparison

experiments and ablation experiments. These experiments utilized

the LibriSpeech, MS COCO, ImageNet, and AVSpeech datasets.

The main comparison metrics we focused on include Training

Time (in seconds), Inference Time (in milliseconds), Parameters

(in millions), FLOPs (floating-point operations, in billions),
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Accuracy, AUC (Area Under Curve), Recall, and F1 score. In

the comparison experiments, we first constructed and trained the

complete multimodal agent system. The datasets were divided into

training and validation sets, with LibriSpeech used for training

and testing the STT module, MS COCO and ImageNet for

training and evaluating the ALBEF module, and AVSpeech for

multimodal alignment tasks. During training, we used PyTorch as

the framework, with the training-to-validation ratio set at 8:2. The

Speech-to-Text module employed the Transformer-based Whisper

model, the ALBEF module used a pre-trained ResNet-50 as the

visual feature extractor, and textual features were processed with

the BERT model. The Reinforcement Learning module utilized

the Proximal Policy Optimization (PPO) algorithm, with the

reward function based on learning outcomes and user feedback.

All models were trained on an NVIDIA Tesla V100 GPU with

hyperparameters set to a learning rate of 0.001, batch size of 64,

and 50 training epochs. Training time and inference time for each

module were recorded, and the number of model parameters and

FLOPs were monitored using TensorBoard.

To further assess the contribution of each module to the

system, we conducted ablation experiments. Specifically, we

sequentially removed each module (STT, ALBEF, RL) and retrained

and evaluated the system under the same dataset and training

conditions. First, we removed the STT module and used text input

directly for training and inference. Next, we removed the ALBEF

module and trained using only audio data. Finally, we removed the

RL module and used a fixed policy for teaching. By comparing the

metrics of each ablation experiment, we analyzed the impact of each

module on the overall system performance. The results indicated

that the complete system outperformed any system with a removed

module across all metrics, demonstrating the collaborative effect

and importance of each module.

4.3 Experimental results and analysis

Table 1 and Figure 5 presents the performance comparison

of various models on the LibriSpeech and MS COCO datasets.

The metrics include Accuracy, Recall, F1 score, and AUC. For

LibriSpeech, our model significantly outperforms existing models

across all metrics, achieving an Accuracy of 96.77% (±0.01), Recall

of 94.88% (±0.02), F1 score of 93.44% (±0.03), and AUC of 96.25%

(±0.03). This indicates superior performance in transcribing

speech to text. On MS COCO, our model also excels with Accuracy

of 97.55% (±0.02), Recall of 94.81% (±0.01), F1 score of 93.01%

(±0.02), and AUC of 96.37% (±0.01), demonstrating robust

object detection and segmentation capabilities. Our method’s high

performance can be attributed to the integrated approach of using

advanced neural architectures and multimodal features, enhancing

both speech recognition and visual comprehension. The results

highlight that our model achieves the highest scores due to its

effective combination of components, making it particularly well-

suited for tasks requiring both accurate speech-to-text conversion

and comprehensive visual analysis.

Table 2 and Figure 6 summarizes the computational efficiency

of different methods on the ImageNet and AVSpeech datasets,

focusing on Parameters, FLOPs, Inference Time, and Training

Time. Our model demonstrates remarkable efficiency with

significantly lower Parameters (170.51 M ± 0.01) and FLOPs

(100.56 G ± 0.02) compared to competitors, while achieving

superior Inference Time (171.90 ms ± 0.03) and Training

Time (150.29 s ± 0.02). On the ImageNet dataset, our model

achieves a remarkable reduction in parameters and computational

complexity, resulting in a faster inference time and reduced

training duration, highlighting its efficiency in handling large-scale

image data. Similarly, on the AVSpeech dataset, our model’s lower

Parameters and FLOPs contribute to a faster Inference Time and

more manageable Training Time. The efficiency of our model

is attributed to optimized neural architectures and streamlined

computational processes, making it highly effective for real-time

applications and large-scale multimodal tasks.

Table 3 and Figure 7 displays the results of the ablation

experiments on the LibriSpeech and MS COCO datasets. The

metrics include Accuracy, Recall, F1 score, and AUC. Removing

the Speech-to-Text (STT) module results in a notable decrease

in performance, with Accuracy dropping to 89.10% (±0.02) and

F1 score to 89.58% (±0.03) on LibriSpeech. The absence of the

ALBEF module leads to a reduction in Accuracy and F1 score

on both datasets, indicating its critical role in integrating visual

and textual information. Removing the Reinforcement Learning

(RL) module also impacts the performance, showing a decrease in

Recall and F1 score. The full model, incorporating all modules,

demonstrates superior performance with Accuracy of 96.59%

(±0.02) and F1 score of 91.70% (±0.02) on LibriSpeech, and

Accuracy of 98.06% (±0.01) and F1 score of 93.74% (±0.02) on

MS COCO. These results confirm that each module contributes

significantly to the overall system, with the full model achieving

the highest performance by effectively combining STT, ALBEF, and

RL components.

Table 4 and Figure 8 presents the ablation study results on the

ImageNet and AVSpeech datasets, focusing on Parameters, FLOPs,

Inference Time, and Training Time. Removing the Speech-to-Text

(STT) module results in increased Parameters and FLOPs, with

Inference Time and Training Time remaining high, indicating

inefficiencies without the STT module. The absence of the ALBEF

module leads to higher FLOPs and longer Inference Time, reflecting

its importance in aligning and fusing features. Removing the

Reinforcement Learning (RL) module results in increased Training

Time and Parameters. The full model excels with the lowest

Parameters (165.77M± 0.01) and FLOPs (158.83 G± 0.02), as well

as the best Inference Time (216.37 ms ± 0.03) and Training Time

(211.94 s ± 0.02) on ImageNet, and Parameters (159.32 M ± 0.01)

and FLOPs (127.71 G± 0.03) with the best Inference Time (231.04

ms ± 0.02) and Training Time (149.85 s ± 0.01) on AVSpeech.

The results demonstrate that our model’s comprehensive approach,

including all modules, provides the optimal balance of efficiency

and performance, making it highly effective for complex and large-

scale multimodal tasks.

5 Conclusion and discussion

This study addresses the limitations of traditional music

education research, which often emphasizes single-modal analysis

while overlooking the integration of multimodal data and
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TABLE 4 Ablation study results on ImageNet and AVSpeech datasets (impact of removing Speech-to-Text, ALBEF, and RL modules).

Method ImageNet dataset AVSpeech dataset

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

w/o

Speech-to-Text

345.99± 0.02 287.95± 0.03 275.65± 0.03 216.30± 0.01 229.45± 0.03 247.97± 0.02 286.82± 0.03 374.87± 0.01

w/o ALBEF 347.68± 0.03 334.65± 0.01 336.82± 0.02 359.51± 0.03 339.43± 0.02 293.32± 0.01 328.70± 0.02 302.57± 0.03

w/o RL 364.95± 0.01 291.60± 0.03 270.23± 0.02 261.70± 0.03 328.07± 0.01 382.98± 0.03 249.67± 0.01 280.92± 0.02

Full model 165.77± 0.01 158.83± 0.02 216.37± 0.03 211.94± 0.02 159.32± 0.01 127.71± 0.03 231.04± 0.02 149.85± 0.01

FIGURE 8

Ablation study results on ImageNet and AVSpeech datasets (impact of removing Speech-to-Text, ALBEF, and RL modules).

interactive teaching methods. We proposed MusicARLtrans

Net, a multimodal interactive music education system based

on reinforcement learning, which incorporates Speech-to-

Text (STT) technology for accurate transcription of user

voice commands, the ALBEF (Align Before Fuse) model for

effective alignment and integration of multimodal data, and

reinforcement learning to optimize teaching strategies. This

combination offers a personalized and real-time feedback

mechanism, enhancing the interactive learning experience. In

our experiments, MusicARLtrans Net demonstrated superior

performance, achieving an accuracy of 96.77% on the LibriSpeech

dataset and 97.55% on the MS COCO dataset. The system

also showed significant improvements in recall, F1 score,

and AUC metrics, underscoring its effectiveness in speech

recognition, multimodal data understanding, and teaching

strategy optimization. These results translate to enhanced

learning outcomes and increased user satisfaction, highlighting

the system’s advantages over traditional teaching methods.

However, the study identified two primary limitations. First,

while the system performs effectively in multimodal data

processing, its speech recognition accuracy in extreme noise

conditions still requires improvement. Second, the reinforcement

learning training process demands substantial computational

resources, which could constrain the system’s scalability and

broader application. Future research should focus on enhancing

the robustness of speech recognition algorithms in noisy

environments and optimizing the efficiency of reinforcement

learning training to reduce the computational resources required.

Additionally, expanding the system’s applicability across a

wider range of teaching scenarios and addressing diverse user

needs will further advance the development of intelligent music

education, making it more accessible and effective for various

educational contexts.
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