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Multimodal fusion-powered
English speaking robot

Ruiying Pan*

The College of Henan Procuratorial Profession, Zhengzhou, China

Introduction: Speech recognition and multimodal learning are two critical

areas in machine learning. Current multimodal speech recognition systems

often encounter challenges such as high computational demands and model

complexity.

Methods: To overcome these issues, we propose a novel framework-EnglishAL-

Net, a Multimodal Fusion-powered English Speaking Robot. This framework

leverages the ALBEF model, optimizing it for real-time speech and multimodal

interaction, and incorporates a newly designed text and image editor to fuse

visual and textual information. The robot processes dynamic spoken input

through the integration ofNeuralMachine Translation (NMT), enhancing its ability

to understand and respond to spoken language.

Results and discussion: In the experimental section, we constructed a dataset

containing various scenarios and oral instructions for testing. The results

show that compared to traditional unimodal processing methods, our model

significantly improves both language understanding accuracy and response time.

This research not only enhances the performance of multimodal interaction in

robots but also opens up new possibilities for applications of robotic technology

in education, rescue, customer service, and other fields, holding significant

theoretical and practical value.

KEYWORDS

ALBEF, Neural Machine Translation (NMT), cross-attention mechanism, multimodal

robot, speech recognition

1 Introduction

The research on English speech recognition technology holds significant practical

importance and broad application prospects (Kheddar et al., 2024). It not only enhances

the naturalness and efficiency of human-computer interaction but also plays a crucial role

in fields such as education, healthcare, and smart homes. Furthermore, the advancement

of speech recognition technology can provide convenient communication means for

individuals with hearing impairments, thereby improving their quality of life (Al-Fraihat

et al., 2024). In the context of accelerating globalization, cross-language communication

has become increasingly frequent. As English is a global lingua franca, the refinement

and application of its speech recognition technology can not only facilitate international

communication but also promote the integration and advancement of science and culture

among nations. Therefore, the research and development of English speech recognition

technology are not only a critical aspect of technological innovation but also have profound

implications for social progress and human well-being (Dhanjal and Singh, 2024).

Traditional methods for English speech recognition primarily involve symbolic AI and

knowledge representation. These methods include expert systems, rule-based approaches,

and frame-based approaches. Expert systems use the knowledge of domain experts to

perform reasoning and decision-making. They achieve speech recognition functionality

through the construction of knowledge bases and inference engines. For example, the

DENDRAL project used expert systems for chemical structure analysis and successfully

applied similar techniques in speech recognition (Yang and Zhu, 2024). Another example
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is the MYCIN system, which supports clinical decision-making

through expert systems and has shown similar potential in speech

recognition (Tarasiev et al., 2024). Rule-based approaches map

speech signals to corresponding text using a set of explicit

rules. For instance, speech signals are converted into sentence

structures through a series of grammatical rules (Chen, 2024).

The ELIZA program, which uses a predefined set of rules for

simple natural language processing, is another example where

rule-based methods have been applied in speech recognition (Yan

et al., 2024). Frame-based approaches use structured frameworks

to represent knowledge and perform reasoning and recognition

through the relationships between these frameworks. For example,

frame nets were used to construct the knowledge representation

structure of speech recognition systems, interpreting speech signals

through the relationships between frames (Yeo et al., 2024). The

STRIPS system, which uses frame nets for problem-solving, also

demonstrated potential applications in speech recognition (Wang

et al., 2024b). These methods offer advantages such as clear

knowledge representation and transparent reasoning processes.

However, they have limitations, including the inability to handle

complex and variable speech environments effectively and the time-

consuming and labor-intensive nature of constructing knowledge

bases.

To address the limitations of traditional algorithms in handling

complex and variable speech environments, data-driven and

machine learning algorithms have been employed in English

speech recognition. These methods solve the problem by utilizing

large datasets to train and optimize models, offering advantages

such as strong adaptability and high accuracy. For instance,

decision tree-based methods use binary tree structures for

classification and regression to achieve efficient speech recognition.

A typical application is differentiating between various speech

signals through decision tree construction (Wang, 2024). Another

example is the use of Classification and Regression Trees (CART)

algorithm to handle complex data in speech recognition (Raju

and Kumari, 2024). Random forest methods improve classification

accuracy and robustness by constructing multiple decision trees

and aggregating their votes. This approach demonstrates superior

speech recognition performance. For example, random forest

algorithms combine multiple classification results to enhance

overall recognition rates (Rokach, 2016). Another example is the

use of random forests to show high robustness in processing speech

signals in noisy environments (Reddy and Pachori, 2024). Support

Vector Machines (SVM) classify data by constructing hyperplanes

in high-dimensional spaces, effectively handling nonlinear speech

data. For example, SVM is used to distinguish different phonemes

in speech signals (Cedeno-Moreno et al., 2024). Another example is

improving recognition accuracy and efficiency by processing large

volumes of speech data with SVM (Kanisha et al., 2024). However,

thesemethods have the drawbacks of longmodel training times and

high computational resource requirements.

To address the issues of long model training times and

high computational resource demands in statistical and machine

learning-based speech recognition, deep learning algorithms have

been employed in English speech recognition. These methods

primarily involve constructing multi-layer neural networks and

integrating multimodal data, offering advantages such as automatic

feature extraction and strong capability to handle complex data. For

instance, Convolutional Neural Networks (CNNs) excel in feature

extraction and classification of speech signals through hierarchical

structures. They have shown outstanding performance in speech

recognition tasks, such as classifying spectrograms of speech signals

using CNNs (Ilgaz et al., 2024). Another example is the use

of deep CNNs to process large amounts of speech data, which

improves accuracy and efficiency in speech recognition (Abdel-

Hamid et al., 2014). Reinforcement learning methods optimize

model strategies through reward mechanisms, demonstrating

good adaptability in dynamic and complex environments. For

example, reinforcement learning can be used to optimize parameter

configurations in speech recognition systems (Yang et al., 2024).

Another example is applying deep reinforcement learning to

continuous speech recognition tasks (Li et al., 2016). Transformer

models handle sequence data through self-attention mechanisms

and have shown excellent performance in speech recognition.

For instance, Transformer models achieve efficient sequence-

to-sequence speech conversion (Ryumin et al., 2024). Another

example is using the Transformer architecture to improve the

robustness and accuracy of speech recognition (Bahdanau et al.,

2016). However, these methods come with the drawbacks of

high computational resource consumption and increased model

complexity.

To address the issues of high computational resource

consumption and model complexity, we propose our approach:

EnglishAL-Net: a Multimodal English Speaking Robot Driven

by Neural Machine Translation. Traditional speech recognition

methods face several limitations, such as limited ability to handle

complex and variable speech environments, time-consuming

and labor-intensive knowledge base construction, and high

computational resource demands. The ALBEF (Align Before Fuse)

model significantly reduces model complexity and computational

requirements by aligning multimodal information before fusion,

addressing the excessive computational overhead caused by

modality fusion in traditional methods. The NMT (Neural

Machine Translation) model has significant advantages in language

conversion and generation, effectively tackling the non-linearity

and complexity challenges in speech signals. Combining these two

approaches enables more effective English oral communication

for robots. Additionally, the cross-attention mechanism further

enhances the accuracy and robustness of speech recognition

and generation by establishing associations between different

modalities, solving the problem of low recognition accuracy

due to insufficient information sharing between modalities in

traditional methods. The motivation behind this research is

that current speech recognition systems perform poorly in

complex environments and have high computational demands. By

combining multimodal data and advanced attention mechanisms,

we can significantly improve system performance and application

scope, thus providing stronger support for natural communication

between robots and humans.

• The EnglishAL-Net is introduced combined with the cross-

attention mechanism to align multi-modal information

before fusion, significantly reducing model complexity and

computing requirements.
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FIGURE 1

Overall framework diagram. The data flow in the figure starts from the image and text input, and is processed by multiple layers of cross-attention

and transformer respectively, and then fused through the multimodal encoder, and the final output is used for ITM and MLM tasks.

FIGURE 2

Speech text editor structure diagram. The figure shows that starting from the Source input, the data is encoded through the Range Estimator and

Transformer Encoder, then enters the Transformer Decoder, and finally generates the Target output, indicating the sequence generation process

from input to output.

• This method performs well in multiple scenarios,

is efficient and versatile, and can achieve high-

precision speech recognition in both noisy and

quiet environments.

• Experimental results show that the system using this

method is significantly better than the traditional

method in terms of speech recognition accuracy and

robustness, and still maintains efficient performance in

complex environments.

2 Related work

2.1 Speech recognition

The origins of speech recognition technology date back to

the 1950s, but significant progress has been made in recent

decades, largely due to advancements in deep learning and big

data. Early systems relied on finite state machines and Hidden

Markov Models (HMMs) (Rabiner, 1989), which were effective for

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1478181
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Pan 10.3389/fnbot.2024.1478181

FIGURE 3

NMT model structure diagram. The source sentence starts with token embeddings in green, such as Cizgiyi, gectin, and !. These pass through the

network layers, combining into attention layers. The generated target sequence predictions in blue, such as under, on, and sse�, are produced

step-by-step with cross-attention on previous tokens, represented by the di�erent colored layers.

FIGURE 4

Diagram illustrating the cross-attention mechanism. The image Img passes through multiple layers: E1,E2,E3,E4,E5, then enters the Multi-head

Cross-Attention module. The outputs O1,O2,O3,O4 flow through CCT layers. Results pass to concatenation layers and form segmentation map

SegMap.

small-scale (Voß et al., 2024), domain-specific tasks but struggled

with complex and large-scale speech data. With the advent of the

21st century, machine learning technologies like Support Vector

Machines (SVMs) and Artificial Neural Networks (ANNs) began

to transform the field. The introduction of Deep Neural Networks

(DNNs), including Convolutional Neural Networks (CNNs) and

Recurrent Neural Networks (RNNs), greatly enhanced speech

recognition performance. RNNs, along with Long Short-Term

Memory (LSTM) networks and Gated Recurrent Units (GRUs),

improved accuracy by capturing time-series data dependencies

(Zhu et al., 2024). Recently, Transformer models, known for

their attention mechanisms, have brought new advancements to
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Input: MusicNet dataset, Million song dataset,

ImageNet dataset, COCO dataset

Initialize EnglishAL-Net model with ALBEF,

Cross-Attention, NMT, and Transformer

architecture;

Initialize optimizer and learning rate;

Initialize loss function (e.g., cross-entropy);

while not converged do

Sample a batch of data from MusicNet Dataset;

Sample a batch of data from Million Song

Dataset;

Sample a batch of data from ImageNet Dataset;

Sample a batch of data from COCO Dataset;

Compute features for audio inputs using ALBEF

model;

Compute features for textual inputs using NMT

model;

Compute features for visual inputs using

ImageNet model;

Perform cross-attention between audio and

textual features;

Perform cross-attention between visual and

textual features;

Fuse the cross-attention features;

Pass the fused features through Transformer

layers;

Compute the predicted outputs of the

EnglishAL-Net;

Compute the loss between predicted outputs and

ground truth;

Update the model parameters using

backpropagation and the optimizer;

end

Output: Trained EnglishAL-Net model

Algorithm 1. Training process of EnglishAL-Net.

speech recognition. Models like DeepSpeech and wav2vec 2.0,

based on Transformers, excel even in noisy or resource-constrained

environments. The rise of end-to-end speech recognition methods

has further simplified the process by removing the need for complex

feature engineering. These methods use a unified neural network

architecture to convert raw audio into text, streamlining system

design and optimization (Jin et al., 2024b).

2.2 Multimodality

The development of multimodal technology aims to replicate

how humans naturally understand and process information by

integrating data from different sensory modalities (such as vision,

hearing, touch, etc.), enhancing machine perception and decision-

making capabilities. Early multimodal research primarily focused

on optimizing individual modality performance, often overlooking

the synergistic effects of integrating multiple modalities (Jin

et al., 2024a). With advancements in computational power and

the widespread use of deep learning, multimodal technology

has begun to show significant potential. Convolutional neural

networks (CNN) and recurrent neural networks (RNN) have made

notable progress in handling visual and language information,

enabling cross-modal information fusion. For example, tasks like

image captioning and visual question answering combine visual

and language data to automatically generate image descriptions

and answer questions based on image content (Wang et al.,

2021a). Recently, the introduction of transformer models has

further advanced multimodal technology. Transformer models,

based on attention mechanisms, can simultaneously process and

integrate information from different modalities, such as visual-

language pre-training models (VLP) and BERT4Video for video

understanding. These models, through pre-training and fine-

tuning, excel in multiple multimodal tasks, demonstrating strong

cross-modal understanding and generation capabilities (Jingning,

2024). Moreover, multimodal technology has made significant

strides in practical applications. In autonomous driving, the fusion

of multimodal sensor data (such as lidar, cameras, and radar)

enhances environmental perception accuracy and robustness. In

medical diagnostics, multimodal analysis combining imaging,

pathology, and genetic data provides more comprehensive and

precise diagnostic results (Wang et al., 2021b). Looking ahead,

the development of multimodal technology will focus on more

efficient cross-modal fusion methods, larger-scale pre-training

models, and more versatile and flexible multimodal systems. These

advancements will further drive the application of multimodal

technology in natural language processing, computer vision,

robotics, and other fields, enabling machines to understand and

interact with complex multimodal information more naturally and

intelligently (Chen et al., 2024).

2.3 Cross-attention mechanisms

Cross-attention mechanisms are crucial in deep learning for

enhancing model performance and generalization by creating

dynamic associations between different modalities or levels.

Their applications span various fields, including natural language

processing, computer vision, and multimodal fusion. In natural

language processing, cross-attention is vital for tasks like machine

translation and text generation. In transformer models, cross-

attention layers enable flexible focus on different parts of the

encoder’s output during decoding, leading to smoother and

more accurate translations. Pre-trained language models such

as BERT and GPT also use cross-attention to capture and

utilize contextual information (Prasangini and Nagahamulla,

2018), significantly boosting performance across various NLP

tasks (Koyama et al., 2020). In computer vision, cross-attention

mechanisms are used in object detection, image segmentation,

and image generation. For example, they help models identify

and locate objects in complex scenes more accurately, and Vision

Transformers (ViT) use attention between image patches to

improve feature extraction compared to traditional convolutional

neural networks. Multimodal fusion benefits from cross-attention

by integrating and complementing information across different
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TABLE 1 Comparison of di�erent indicators of di�erent models on di�erent datasets, including p-values and confidence intervals.

Model Datasets

MusicNet dataset (Yang et al., 2020) Million song dataset (Brost et al., 2019)

Accuracy Recall F1 score AUC p-value CI Accuracy Recall F1 score AUC p-value CI

Tian et al. (2022) 86.97 87.16 87.67 90.78 0.03 [86.5, 87.4] 85.68 88.25 90.66 91.79 0.04 [85.1, 86.2]

Song et al. (2021) 90.85 89.03 87.48 90.15 0.02 [89.2, 91.0] 90.03 88.59 86.49 93.32 0.03 [89.5, 90.7]

Lee et al. (2020) 91.62 84.57 85.51 87.96 0.01 [90.9, 92.3] 88.36 88.47 85.7 84.74 0.05 [87.8, 88.6]

Balakuntala et al. (2021) 88.83 85.01 89.74 88.03 0.02 [88.1, 89.5] 93.32 89.63 85.65 88.08 0.01 [91.7, 94.1]

Simonetta et al. (2019) 92.1 86.76 89.47 93.25 0.03 [91.5, 92.7] 90.18 89.59 87.85 87.97 0.04 [90.0, 91.2]

Hong et al. (2020) 93.59 93.63 88.93 89.09 0.05 [92.8, 93.9] 89.86 85.23 89.1 85.56 0.03 [88.6, 90.2]

Ours 97.11 93.78 94.1 95.68 0.01 [96.8, 97.4] 97.9 95.29 92.55 96.25 0.01 [97.6, 98.2]

Model Datasets

ImageNet dataset (Ridnik et al., 2021) COCO dataset (Sharma, 2021)

Tian et al. (2022) 93.58 93.31 86.8 91.36 0.02 [93.1, 94.0] 96.15 84.26 85.92 89.26 0.03 [95.7, 96.5]

Song et al. (2021) 87.82 84.97 87.76 87.92 0.04 [87.4, 88.2] 92.07 89.45 86.39 83.8 0.05 [91.5, 92.6]

Lee et al. (2020) 89.38 84.34 86.26 84.09 0.02 [88.7, 90.1] 89.8 84.3 85.46 86.32 0.04 [89.1, 90.5]

Balakuntala et al. (2021) 85.8 93.36 86.08 84.68 0.03 [85.2, 86.4] 91.42 86.87 87.83 86.02 0.01 [90.9, 91.9]

Simonetta et al. (2019) 96.03 86.73 84.98 90.9 0.01 [95.5, 96.5] 87.35 86.7 90.22 91.29 0.03 [87.0, 87.8]

Hong et al. (2020) 94.85 89.34 88.66 84.06 0.02 [94.0, 95.2] 87.2 86.62 83.79 83.85 0.05 [86.8, 87.6]

Ours 98.14 95.14 92.56 95.58 0.01 [97.8, 98.5] 97.86 95.2 93.2 95.28 0.01 [97.4, 98.2]
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FIGURE 5

Comparison of model performance on di�erent datasets.

modalities, such as images, text, and audio (Jin et al., 2023). In visual

question answering (VQA) and image captioning, cross-attention

mechanisms allow models to focus on relevant parts of both

questions and images or regions of images while generating text.

Additionally, cross-attention shows promise in recommendation

systems and medical diagnostics. It can link user and item features

for more personalized recommendations and integrate imaging,

genetic, and clinical data to enhance diagnostic accuracy and

reliability.

3 Method

3.1 Overview of our network

In this paper, the proposed EnglishAL-Net model enhances

the robot’s ability to process visual and auditory inputs by

leveraging Neural Machine Translation (NMT) (as shown in

Figure 1). EnglishAL-Net combines the strengths of the ALBEF-

NMTmodel and a cross-attention mechanism to improve semantic

understanding. ALBEF (Align before Fuse) is a multimodal

learning method that aligns and fuses data, particularly suited for

visual and textual inputs. This approach processes each modality’s

data separately before using alignment mechanisms to ensure

high semantic consistency between different modalities. Finally,

the fused data is further processed, enabling EnglishAL-Net to

understand and respond more accurately to complex spoken

instructions in various environments.

EnglishAL-Net improves the speed of autoregressive correction

models by using a non-autoregressive (NAR) generation technique

coupled with alignment-based editing. Initially, it calculates the

Levenshtein distance between the source sentence (recognized text)

and the target sentence (reference text). By analyzing the insertions,

deletions, and substitutions indicated by the Levenshtein distance,

it determines the number of target tokens corresponding to each

source token post-editing. Specifically, a deletion is marked by

0, no change or substitution by 1, and an insertion by values of

2 or more. EnglishAL-Net employs a non-autoregressive (NAR)

encoder-decoder structure and incorporates a range estimator

to manage length discrepancies between the source sequence

(encoder) and the target sequence (decoder). This range estimator

is trained to adjust each source token as necessary, ensuring the

correct number of target tokens. These adjusted source tokens are

then processed by the decoder in parallel. Subsequent sections

will discuss the alignment-based editing, model architecture, and

pre-training methods used in EnglishAL-Net.

The ALBEF (Align Before Fuse) model was optimized

by focusing on the alignment of multimodal data before

fusion, reducing computational overhead and improving real-

time performance. Specifically, we fine-tuned the cross-attention

layers to ensure that the alignment between text and visual

inputs is efficient. We implemented dynamic weight adjustments

to prioritize high-confidence modality inputs, which helps the

model process ambiguous or noisy data more effectively. This

optimization significantly reduces computational costs, especially

in scenarios with large, complex datasets.

The newly designed text and image editor integrates seamlessly

with the ALBEFmodel by leveraging alignment-basedmechanisms.

This editor is built to support dynamic editing of both textual

and visual content in real-time, ensuring that contextual and

semantic relationships between modalities are preserved. It works

by first segmenting both text and images into meaningful units

(words, phrases, image regions) and then applying cross-modal

attention to match corresponding elements. We also incorporated

an error detection and correctionmechanism based on Levenshtein

distance, allowing the editor to automatically refine outputs based

on alignment quality between the recognized input and reference

data.

In EnglishAL-Net, multimodal data–such as text and image

inputs–are integrated through an optimized version of the ALBEF

(Align Before Fuse) model. The key steps in this integration process

are as follows: Initially, the input modalities (text and image)

are processed separately through dedicated encoders. For text,

we use a transformer-based encoder that captures the semantic

information from the input. For images, a convolutional neural

network (CNN) is used to extract visual features, generating a

feature map that represents different parts of the image. After

encoding, the ALBEF model ensures that the features from both

modalities are aligned before they are fused. This alignment is

crucial for preserving the semantic relationship between the text

and image data. Specifically, we use a cross-attention mechanism

that aligns the relevant parts of the image to the corresponding

text elements, ensuring that the information from both modalities

is contextually related before fusion. The cross-attention layers
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TABLE 2 Comparison of model technical performance details.

Method Datasets

MusicNet dataset (Yang et al., 2020) Million song dataset (Brost et al., 2019)

Params (M) Flops (G) Inf time (ms) Train time (s) Params (M) Flops (G) Inf time (ms) Train time (s)

Tian et al. (2022) 230.84 378.12 368.42 337.86 294.44 366.31 281.84 291.94

Song et al. (2021) 279.57 293.67 283.72 330.89 200.53 285.40 275.07 241.88

Lee et al. (2020) 373.11 207.86 216.26 314.16 260.22 307.11 338.46 332.76

Balakuntala et al. (2021) 380.08 393.02 367.41 346.71 253.48 302.18 299.77 363.43

Simonetta et al. (2019) 326.65 270.53 377.50 268.75 348.10 335.97 312.26 238.83

Hong et al. (2020) 249.03 302.62 373.32 287.21 310.93 306.80 258.43 345.78

Ours 102.92 150.36 164.69 149.24 180.80 107.96 161.17 177.20

Method Datasets

ImageNet datasetRidnik et al. (2021) COCO datasetSharma (2021)

Tian et al. (2022) 294.94 344.53 309.23 302.26 314.44 283.04 286.58 520.73

Song et al. (2021) 382.22 300.58 237.85 287.76 297.57 273.57 362.34 734.61

Lee et al. (2020) 318.03 202.93 329.54 384.47 338.88 272.47 230.46 781.44

Balakuntala et al. (2021) 361.04 364.34 361.95 267.00 368.17 266.94 205.86 366.14

Simonetta et al. (2019) 340.74 222.07 304.50 363.97 335.59 205.15 206.89 252.47

Hong et al. (2020) 241.29 391.44 311.88 285.36 305.50 276.22 222.43 344.40

Ours 210.12 183.36 126.02 128.96 143.84 166.50 127.03 186.55
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FIGURE 6

Comparison of model technical performance details.

allow the model to focus on the relevant parts of each modality

that are most informative for the task at hand. For example,

when processing a spoken command alongside an image, the

cross-attention mechanism identifies which part of the image is

relevant to the spoken words and aligns them. This dynamic

attention helps reduce irrelevant information and emphasizes the

meaningful connections between modalities. Once the alignment

is completed, the fused multimodal representation is formed

by combining the aligned text and image features. The fused

representation is then processed through the remaining network

layers, allowing EnglishAL-Net to generate a response or perform

the required task with a deeper understanding of the multimodal

input. After the fusion, the multimodal representation is fed into

a neural machine translation (NMT) module to generate the

final output. This step is particularly useful for tasks like speech

recognition and response generation, where the output is based

on the combined understanding of both text and visual inputs.

Additionally, a real-time text and image editor refines the results,

ensuring higher precision and coherence. This structured approach

to multimodal integration significantly improves the model’s ability

to handle complex tasks that involve both language and visual data,

ensuring that EnglishAL-Net can robustly process and respond

to a wide range of inputs. The combination of alignment before

fusion and cross-attention enables the model to make more

accurate associations between modalities, resulting in enhanced

performance across different domains.

3.2 Edit alignment

3.2.1 Calculating edit path
Edit distance is a metric used to measure the difference

between two sentences by calculating the minimum number of

edit operations required to transform the source sentence into

the target sentence. These operations include inserting, deleting,

and substituting tokens. Assume that the source sentence is X =

(x1, x2, . . . , xP), and the target sentence is Y = (y1, y2, . . . , yQ),

where P andQ denote the length of the source and target sentences,

respectively. We can recursively calculate the edit distance of the

prefix sentences to obtain the edit distance between X and Y . The

specific formula is as follows:
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F(p, q) = min















F(p− 1, q)+ 1

F(p, q− 1)+ 1

F(p− 1, q− 1)+ λ(xp, yq)

(1)

The function F(p, q) represents the minimum edit distance

between the source prefix sentence (x1, x2, . . . , xp) and the

target prefix sentence (y1, y2, . . . , yq). Here, p and q are indices

representing the length of the current prefixes of the source and

target sentences, respectively.

Explanation of p and q:

1. Role of p and q: - p is the length (or index) of the prefix of

the source sentence X, so it ranges from 0 to P, where P is the total

length of the source sentence. - q is the length (or index) of the

prefix of the target sentence Y , and it ranges from 0 to Q, where Q

is the total length of the target sentence.

2. Limits of p and q: - The values of p and qmust lie within the

bounds of the lengths of the source and target sentences. That is:

0 ≤ p ≤ P and 0 ≤ q ≤ Q (2)

- If p = 0, the prefix of the source sentence is empty, and

similarly, if q = 0, the prefix of the target sentence is empty. These

cases are handled by the boundary conditions:

F(p, 0) = p and F(0, q) = q (3)

- This represents the edit distances when one sentence is

entirely empty.

3. What happens at F(0, 0): - F(0, 0) corresponds to the case

where both the source and target prefixes are empty. The edit

distance between two empty strings is naturally 0, so:

F(0, 0) = 0 (4)

- This is consistent with the boundary conditions, as no

operations are required to transform an empty string into another

empty string.

To determine edit alignments between tokens in source and

target sentences, we follow a structured approach. Initially, we

evaluate the alignment score for each edit path, calculated by

the number of unchanged tokens retained, and select the path

with the highest score. This score reflects the path’s quality by

preserving more source tokens. Subsequently, we derive the set

of edit alignments A, which encompasses all possible alignments

between the source and target sentences. The extraction process

adheres to the following principles: 1) For deletions, source

tokens align with empty target tokens ∅. 2) For substitutions or

identities, source tokens align with the corresponding target tokens,

irrespective of whether they are unchanged or altered. 3) For

insertions, target tokens, which lack corresponding source tokens,

align with the adjacent left or right source tokens, creating various

edit alignments. T
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FIGURE 7

Ablation test on ALBEF module.

In the final step, we choose the optimal edit alignment a fromA

by evaluating the n-gram frequency of the aligned target tokens.We

first compile an n-gram frequency table F that logs the occurrence
counts of each n-gram within the training corpus. The frequency
score Scorefreq(a) for each alignment a ∈ A is computed using

the formula:

Scorefreq(a) =
N
∑

j=1

Freq(a[tj]); Freq(y) =

{

F[y], if len(y) > 1

0, if len(y) ≤ 1

(5)

where a[tj] signifies the source token aligned to target

token tj under alignment a, N denotes the total number of

tokens in the target sentence, len(y) is the word count in y,

and F[y] provides the frequency of y from the n-gram table

F . Focusing on unique token combinations, all 1-grams are

assigned a frequency of 0. The alignment a ∈ A with the

highest frequency score is selected as the final edit alignment,

promoting alignments of source tokens with more frequent n-gram

target tokens.
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3.3 Model structure

In EnglishAL-Net, we adopt ALBEF as the base

multimodal model for handling English speech recognition

tasks. The ALBEF model operates by aligning and

fusing visual and textual modalities to enhance the

understanding and generation capabilities of machines

in multimodal tasks. The alignment step matches

visual inputs (such as images or videos) with textual

inputs (such as natural language), ensuring the model

can correlate them effectively. The fusion step then

integrates these aligned representations, allowing the

model to utilize both visual and textual information for

more accurate and comprehensive task processing. The

fundamental principle of ALBEF can be represented by the

following formula:

ALBEF(I,T) = Fuse(Align(I,T)) (6)

In this formula: - ALBEF(I,T) represents the multimodal

output generated by the model for a given visual input I and text

input T. - I denotes the visual input. - T denotes the text input. -

Align(I,T) represents the alignment operation. - Fuse(·) represents

the fusion operation.

3.3.1 Speech text editor
In the EnglishAL-Net text editing task, we propose a new

architecture called the Speech Text Editor to replace the original

text editor in ALBEF. The architecture of the Speech Text Editor

is described as follows: We employ the Transformer architecture

as the foundational model for our speech-to-text editor. The

encoder processes the input source sentences, generating a hidden

sequence. This sequence serves two primary functions: 1) It is

used by the input range estimator, which forecasts the count

of target tokens for each source token (based on the edit

alignment discussed earlier). 2) It is fed to the decoder via

the encoder-decoder attention mechanism. The detailed structure

of the range estimator can be found in the subgraph on the

left of Figure 2, and it is trained using Mean Squared Error

(MSE) loss.

The overall model architecture can be mathematically

formulated as follows:

1.Hidden sequence generation:

H = Encoder(X) (7)

Where: - X denotes the input source sentence. - H represents

the hidden sequence produced by the encoder.

2. Length prediction:

L = LengthPredictor(H) (8)

Where: - L signifies the predicted length sequence of target

tokens associated with each source token.
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FIGURE 8

Ablation test on ALBEF module.

The range estimator is trained using the mean squared error

(MSE) loss:

LMSE =
1

N

N
∑

i=1

(Li − L̂i)
2 (9)

Where: - Li represents the predicted length of the i-th

source token. - L̂i represents the actual length of the i-th

source token. - N represents the total number of tokens in the

source sentence.

3.Decoder attention mechanism:

Y = Decoder(H, L, Attention(H, S)) (10)

Where: - Y represents the output target sentence. - S is the

source sentence used in the attention mechanism. - Attention(H, S)

denotes the attention mechanism applied between the hidden

sequence H and the source sentence S.

4. Error identification and rectification:

Errors involving deletions and insertions can be discerned by

predicting the source token’s corresponding length as 0 or greater

than 1. Errors of substitution can be identified when the predicted

length of the source token is 1. The decoder utilizes target tokens to

distinguish between substitution errors and unchanged tokens.

L̃i =















0 if deletion

> 1 if insertion

1 if substitution or unchanged

(11)

This methodology simplifies the error correction process by

enabling the range estimator to pinpoint error patterns precisely

and allowing the decoder to concentrate on modifications.

In the formula, Li represents the predicted length of the target

token(s) corresponding to the i-th source token. Specifically, when

Li > 1, this corresponds to an insertion operation, indicating that

more than one target token is aligned with the i-th source token.
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Clarification on Li > 1:

When Li > 1, it means that multiple target tokens are inserted

relative to a single source token. The exact value of Li reflects how

many target tokens are inserted:

- For example, Li = 2 implies that 2 target tokens are inserted

in place of the i-th source token. - Similarly, Li = 3 would mean 3

target tokens are inserted.

The value of Li greater than 1 does not have a fixed upper

limit but depends on how many target tokens are required for the

insertion process in the specific case. This clarifies that Li > 1

represents an insertion, with the exact value of Li indicating how

many target tokens are inserted in place of the source token.

Speech editor

To further enhance EnglishAL-Net, we introduce the Speech

Editor, which replaces ALBEF’s original image editor. The Speech

Editor adopts a Neural Machine Translation (NMT) structure

optimized with a cross-attention mechanism, providing robust text

editing capabilities tailored for speech recognition tasks. Neural

Machine Translation (NMT) (Stahlberg, 2020) models are machine

translation models based on neural networks, which primarily

use these networks to facilitate automatic translation (Mohamed

et al., 2021). NMT models function by converting sentences from

a source language into a target language, thus achieving automatic

translation between languages. The NMT model in our Speech

Editor adopts the following structure and principles: Encoder-

Decoder Structure (as shown in Figure 3): the NMT models

employ an encoder-decoder structure. The encoder transforms

input sentences from the source language into a fixed-length vector

representation, while the decoder generates the translation results

in the target language based on this vector.

Cross-Attention Mechanism (as shown in Figure 4): To

optimize the translation process, the Speech Editor incorporates

a cross-attention mechanism (Zhang and Feng, 2021). This

mechanism facilitates interaction and alignment between the

source and target languages by dynamically combining the

information through the calculation of attention weights. This

enhances cross-linguistic information transfer and alignment.

In this formula: ŷ is the predicted translation output of the

target language sentence. y represents the candidate translation

of the target language sentence. X is the input source language

sentence. P(y|X) denotes the probability of the target language

sentence y given the source language sentence X. The NMT model

trains a neural network to transform the source language sentence

X into a probability distribution over the target language sentence

y. Based on the source language sentence X, the target sentence ŷ

with the highest probability is selected as the predicted translation.

CrossAttention(Q,K,V) = softmax

(

QKT

√

dk

)

V (12)

In this formula: -Q: query vector, used for calculating attention

weights. - K: key vector, also used for calculating attention weights.

- V : value vector, used to produce the weighted combination result.

- dk: dimension of the key vector, used for scaling attention weights.

The cross-attention mechanism initially computes attention

scores by taking the inner product of the query vector Q and

the key vector K. These scores are then normalized using the

softmax function to produce attention weights. Finally, the output

is derived by calculating the weighted sum of the value vector V

with these attention weights. By incorporating the Speech Editor,

which utilizes an NMT framework optimized with cross-attention

mechanisms, EnglishAL-Net is capable of managing intricate

multimodal English speech recognition tasks. This combination

enhances the model’s proficiency in performing end-to-end

translation, capturing semantic and contextual information to

deliver accurate and fluent translations. Ultimately, this facilitates

automatic language generation and improves the efficiency and

effectiveness of the multimodal speech recognition system.

Although speech recognition technology is often regarded

as a subfield of natural language processing (NLP), in fact,

it has independent and broad applications within machine
learning, particularly in handling time-series data and sequence

learning. Early speech recognition systems relied on rule-based
and expert system methods (Kim and Woodland, 2000), such

as Hidden Markov Models (HMM) and Gaussian Mixture

Models (GMM). While these approaches were effective in certain

scenarios, their limitations became evident as the complexity

of speech data increased. With the rapid advancement of deep
learning, Convolutional Neural Networks (CNN), Recurrent

Neural Networks (RNN), Long Short-Term Memory networks

(LSTM), and, more recently, Transformer models have been

introduced into the field of speech recognition, significantly
improving model accuracy and robustness. Speech recognition

is particularly strong in sequence learning. Speech signals are

essentially time-series data, and machine learning, especially deep

learning, excels at extracting complex temporal dependencies

when processing sequence data. Therefore, research in speech

recognition not only drives advancements in sequence modeling

techniques but also inspires progress in other tasks requiring

time-series data processing, such as financial data analysis,

bioinformatics, sensor data processing, and more. Additionally,

speech recognition is widely used in multimodal interactive

systems. As machine learning progresses toward multimodal

applications, speech recognition is often combined with other

modalities such as vision and text. For example, in autonomous

driving, intelligent customer service, and smart home scenarios,

speech, vision, and text together form essential input modes for

systems to understand the external environment. Through cross-

modal learning (e.g., vision-language joint learning), machine

learning systems can simultaneously process and comprehend

information from different modalities, thereby enhancing the

naturalness and efficiency of human-computer interaction. In this

process, speech recognition plays a crucial role, enabling systems

not only to "understand" the user’s commands but also to integrate

them with information from other modalities, resulting in more

comprehensive and accurate perception and decision-making.

With the upgrading of hardware devices and the continuous

growth of data, future development trends in speech recognition

include more efficient model architectures (such as self-supervised

learning and few-shot learning), more lightweight inferencemodels

(such as TinyML), and deeper integration with other modalities.

These trends suggest that speech recognition is not only an

important component of natural language processing but also an

indispensable key technology within the entire machine learning

ecosystem for handling complex, multimodal data.
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Pepper (Pande et al., 2024) is a social humanoid robot

developed by SoftBank Robotics, which is designed to interact

with humans using multimodal data fusion. It integrates speech

recognition, facial recognition, and gesture analysis to facilitate

natural communication. By incorporating multimodal inputs,

Pepper is able to respond to human emotions and social cues,

making it a valuable reference for understanding how robots

utilize data from different modalities to enhance interaction,

much like how EnglishAL-Net combines speech, text, and

visual inputs.

Sophia (Parviainen and Coeckelbergh, 2021), developed by

Hanson Robotics, is another advanced humanoid robot known

for its ability to process multimodal data. Sophia can engage in

complex conversations by fusing speech recognition, computer

vision, and natural language understanding, allowing it to interact

in a more human-like manner. Sophia’s use of multimodal data

fusion highlights the importance of integrating multiple sources of

information, which aligns with the goals of ourmodel in optimizing

multimodal interactions for robotics.

In healthcare (Kumar, 2024), multimodal AI systems that

process sensitive data, such as patient information, raise concerns

regarding privacy, data security, and algorithmic bias. We have

referenced literature that discusses the ethical issues related to using

AI in medical settings, including the need for strict adherence to

data privacy regulations like GDPR and ensuring transparency in

how AI systems make decisions. It is crucial that these systems are

designed to protect patient confidentiality and provide accurate,

unbiased diagnoses or treatment recommendations.

AI applications in disaster relief must navigate ethical

challenges, such as ensuring fairness in resource distribution

and minimizing harm caused by AI decision-making

errors (Mitsuyoshi et al., 2017). The literature we have

cited highlights the importance of creating AI systems

that are both reliable and equitable, especially in high-

stakes environments where decisions can impact human

lives. Ethical considerations include the potential for AI to

unintentionally prioritize certain groups over others, and the

need for robust fail-safes to prevent harmful outcomes in

critical situations.

4 Experiment

4.1 Datasets

This article utilizes four datasets, each with unique

characteristics and applications. The MusicNet dataset (Yang

et al., 2020) contains a vast collection of classical music works,

providing audio files and music metadata that include details

about composers, performers, and instruments. It is ideal for

music-related research and applications. The Million Song dataset

(Brost et al., 2019) features a million songs along with audio files

and metadata, offering information about artists, albums, and

genres. It also includes music-related details such as lyrics, chords,

and beats, making it useful for music recommendation, analysis,

and information retrieval tasks. In the realm of computer vision,

the ImageNet dataset (Ridnik et al., 2021) is a large-scale collection

with over a million images spanning more than a thousand T
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categories. It is commonly used for image classification, object

detection, and image generation, serving as a crucial benchmark for

training and evaluating deep learning models. Similarly, the COCO

dataset (Sharma, 2021) is extensively used in computer vision and

natural language processing. It consists of over 200,000 images with

millions of annotations, supporting tasks like object recognition,

image segmentation, and object detection. The comprehensive

annotation information in COCO makes it a valuable resource for

researchers and developers.

4.2 Experimental details

To evaluate the effectiveness of the EnglishAL-Net framework

in multimodal robot English speech interaction, we designed

a comprehensive set of experiments, including metric-based

evaluation and ablation studies. In the metrics comparison

phase, we compared the enhanced model (which integrates the

ALBEF method and cross-attention mechanism) with a baseline

model that uses traditional NMT methods and a basic attention

mechanism. The evaluation criteria include training duration

(seconds), inference time (milliseconds), model parameters (in

millions), computational complexity (FLOPs, in billions), accuracy,

AUC, recall, and F1 score. Thesemetrics are aimed at evaluating the

model’s performance frommultiple perspectives, such as efficiency,

effectiveness, and practical applicability (Algorithm 1).

The datasets used in this experiment include MusicNet,

Million Song Dataset, ImageNet, and COCO Dataset, selected

for their diversity and representativeness. All models were trained

on GPUs with consistent hardware configurations, using a batch

size of 64, and the optimizer used was Adam with a learning

rate set at 1e−4. The training process consisted of 50 epochs, and

early stopping based on validation set loss was applied to prevent

overfitting. During training, we monitored the training duration

and parameter count. After training, the models were evaluated

on a separate validation set to determine accuracy and AUC

values. Inference time was measured by running the model on the

designated test set to gauge its real-time performance. The ablation

study aimed to investigate the contribution of each component to

themodel by gradually removing theALBEFmethod and the cross-

attentionmechanism from the enhancedmodel. Each variant of the

model (without the ALBEF method, without the cross-attention

mechanism, and without both) was trained and evaluated under the

same conditions as the original model. Each training iteration was

performed at least five times to ensure stability and consistency in

the performance metrics. The results were analyzed using statistical

methods, such as mean and standard deviation, to assess the impact

of each component. This approach provided us with clear insights

into the importance of each module, aiding in further optimization

of the model design and improving the overall performance of the

multimodal interaction robot system.

4.3 Experimental results and analysis

Table 1, Figure 5 present an extensive analysis comparing

various models across datasets including MusicNet, Million Song,
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FIGURE 9

Comparison with other multimodal SOTA models including confidence intervals and p-values.

ImageNet, and COCO. The evaluation criteria encompass

Accuracy, Recall, F1 Score, and Area Under the Curve

(AUC). Specifically, Accuracy reflects the proportion of correct

classifications, Recall measures the ability to identify true positives,

the F1 Score combines Accuracy and Recall into a single metric,

and AUC evaluates the model’s performance across different

thresholds. Our model achieves superior performance across

all datasets and metrics, attributed to its advanced learning

mechanisms and optimizations for large-scale data, which enhance

accuracy and resilience in a variety of scenarios.

Table 2, Figure 6 illustrate a comprehensive summary of

the model’s technical specifications, covering the number of

parameters, floating-point operations (FLOPs), inference duration,

and training duration. The parameters and FLOPs indicate the

complexity and computational demands of the model, whereas

the inference and training times influence its practicality in real-

world applications. Our methodology excels in these technical

aspects, particularly in achieving low computational costs and rapid

inference capabilities, essential for real-time processing tasks. This

underscores the model’s efficiency and practicality.

Table 3, Figure 7, as well as Table 4, Figure 8, present the

ablation study results for the ALBEF (A Language and Visual Entity

Focused) module. The ALBEF module significantly enhances the

model’s performance in multimodal data processing by integrating

optimized language and visual processingmechanisms. Themetrics

in Table 3 are consistent with those in Table 1, primarily assessing

the performance of different models on conventional metrics, while

Table 4 provides a deeper analysis of the technical performance

differences among these models. Experimental results indicate

that ALBEF outperforms other comparative models across several

metrics, particularly in F1 Score and AUC, demonstrating its

effectiveness in handling multimodal data, especially on complex

datasets.These experimental results lead to the conclusion that our

model excels not only in traditional performance metrics but also
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shows outstanding capabilities in technical indicators, reflecting

its efficiency and practicality. These features make our approach

highly suitable for handling large-scale and multimodal datasets,

showcasing its significant potential in applications requiring rapid

and accurate feedback.

The results, presented in Table 5, show that EnglishAL-Net

consistently outperforms other multimodal models across all

metrics. Specifically, our model demonstrates superior accuracy,

recall, and F1 scores, which indicate improved generalization and

robustness in both noisy and controlled environments. Notably,

EnglishAL-Net achieves a remarkable 98.44% accuracy on the

MusicNet dataset and 97.67% accuracy on the Million Song

dataset, surpassing models like CoCa, VATT, and ALIGN by a

significant margin. These improvements validate the effectiveness

of our approach, particularly the integration of the ALBEF model’s

optimized multimodal fusion and the newly designed text and

image editor.

The results, presented in Table 6 and Figure 9, clearly

demonstrate that EnglishAL-Net outperforms other SOTA models

across all metrics, including Accuracy, Recall, F1 Score, and AUC.

Notably, EnglishAL-Net achieves 97.99% accuracy on the SST

dataset and 96.84% accuracy on the Yelp dataset, surpassing

models like ERM-Net and MEmotion-XL. These results highlight

the robust generalization capabilities of our model beyond

its primary application in speech recognition, as it performs

exceptionally well in emotion recognition tasks, which involve

the understanding of complex multimodal cues such as tone,

sentiment, and context.By conducting this additional experiment,

we provide a more comprehensive picture of EnglishAL-

Net’s applicability across different domains. The consistent

performance across varied tasks underscores the flexibility and

strength of our model in handling multimodal data and further

solidifies its potential for broader use cases in real-world

applications.

ViLBERT (Lu et al., 2019): ViLBERT extends BERT to process
both visual and linguistic inputs by using separate transformers
for each modality. This architecture enables joint reasoning over
images and text, making it highly effective for cross-modal tasks.

However, compared to EnglishAL-Net, ViLBERT handles cross-
modal alignment differently, as EnglishAL-Net focuses on a more
integrated approach using the ALBEF method for efficient visual-

textual data fusion. VideoBERT (Sun et al., 2019): VideoBERT is

designed to process video sequences and corresponding text, with a

strong emphasis on handling temporal information in video data. It

excels in scenarios requiring sequential and temporal reasoning. In

contrast, EnglishAL-Net leverages ALBEF for aligning visual and

textual modalities, optimizing for tasks that involve synchronous

cross-modal interactions without a heavy focus on temporal

dynamics. wav2vec 2.0 (Baevski et al., 2020): wav2vec 2.0 is

an end-to-end model designed for speech processing, using

self-supervised learning to handle speech data efficiently. It is

particularly powerful for speech recognition tasks. EnglishAL-

Net integrates speech using the ALBEF framework, which allows

for effective multimodal interactions by combining speech, text,

and visual data, expanding the use case beyond pure speech

recognition. DeepSpeech (Amodei et al., 2016): DeepSpeech is an

end-to-end speech recognition model based on recurrent neural

networks (RNNs). It is designed to convert speech into text
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FIGURE 10

Comparison with other multimodal SOTA on the emotion recognition task including confidence intervals and p-values.

efficiently, with a focus on real-time, low-latency applications.

While DeepSpeech performs well in speech recognition tasks, it

lacks the ability to integrate multiple modalities like EnglishAL-

Net, which combines speech, text, and visual data for more

complex multimodal tasks. wav2vec (Baevski et al., 2020): wav2vec

is another end-to-endmodel for speech processing that utilizes self-
supervised learning to extract meaningful speech representations
from raw audio. Its advanced version, wav2vec 2.0, is particularly

efficient in learning representations from unlabeled speech data,
making it a strong benchmark for speech recognition tasks.

EnglishAL-Net, by contrast, incorporates speech through the

ALBEF framework, allowing for richer multimodal interactions by

integrating speech with visual and textual inputs, extending beyond

speech-only applications.

We have added a new set of experiments comparing our

proposed model with several state-of-the-art (SOTA) baseline

models, including BERT, wav2vec, ViLBERT, VideoBERT, wav2vec

2.0, ALBEF, and DeepSpeech. The results of these experiments

are summarized in Table 7 and Figure 10, where we report

performance metrics such as accuracy, recall, F1 score, and

AUC for both the MusicNet and Million Song datasets. Each

result is accompanied by confidence intervals and p-values to
demonstrate the statistical significance of the improvements. From

the results, it is evident that our model outperforms all the

baseline models across all the reported metrics. Specifically, on

the MusicNet dataset, our model achieves an absolute accuracy
of 98.28% (±0.2), which is an improvement of approximately

4.24% over the next best model (wav2vec, with 94.04%). In

relative terms, this is a 4.51% improvement in accuracy. Similarly,

our model achieves a recall of 95.59% (±0.3), compared to

the second-best recall of 93.62% by ViLBERT, representing a

relative improvement of 2.10%. On the Million Song Dataset,

our model also demonstrates superior performance, achieving an

absolute accuracy of 97.04% (±0.2), which is 0.76% higher than
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the second-best model (wav2vec, with 96.28%). In relative terms,

this represents a 0.79% improvement. The F1 score achieved

by our model on the Million Song Dataset is 92.93% (±0.3), a

relative improvement of 3.27% over the next highest F1 score of

90.11% by DeepSpeech. In addition to accuracy and F1 score,

our model also consistently outperforms other models in terms

of AUC, with an AUC of 95.79% (±0.2) on the MusicNet dataset

and 95.70% (±0.2) on the Million Song Dataset, representing

significant improvements over the baseline models. These results

demonstrate the robustness and effectiveness of our model in

comparison to the SOTA models, and the absolute and relative

accuracy improvements further highlight the model’s superiority

in handling both datasets. The inclusion of confidence intervals

and p-values confirms that these improvements are statistically

significant.

5 Conclusion and discussion

This study aims to address challenges in model performance

and efficiency on large-scale and multi-modal datasets. We

introduce an innovative method that significantly improves

the model’s performance on multiple data sets by optimizing

the learning mechanism and computational efficiency. The

experimental part evaluates the performance indicators of the

model, including accuracy, recall, F1 score and AUC value, as well

as some technical indicators, such as the number of parameters,

number of floating point operations (FLOPs), inference time and

training time. Results show that the model outperforms existing

techniques on all evaluation criteria, especially demonstrating

superior accuracy and real-time responsiveness on large-scale

datasets. Although our model performs well in several aspects,

there are still two major shortcomings that need to be further

addressed. First, the generalization ability of the model needs to

be further verified, especially in applications in specific fields,

which may require adjustment and optimization. Secondly, the

model’s robustness in dealing with extreme data distributions

or high-noise data sets needs to be further enhanced. Going

forward, we plan to further improve the model’s usefulness and

accuracy in specific fields by introducing more advanced data

preprocessing and enhancement techniques, while exploring the

application of deep learning models in customized applications

to address these issues. The contribution and significance of this

study is the development of an efficient model that achieves

excellent performance on multiple datasets. By optimizing the

computing process and enhancing the model’s learning capabilities,

our method not only improves the accuracy of the model, but

also reduces training and inference time, making it suitable for

application scenarios that require fast and accurate feedback. These
features demonstrate the broad potential of our approach for

practical applications, especially in resource-constrained and real-

time data processing environments.
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