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Learning-based object’s sti�ness
and shape estimation with
confidence level in
multi-fingered hand grasping

Kyo Kutsuzawa*, Minami Matsumoto, Dai Owaki and

Mitsuhiro Hayashibe

Neuro-Robotics Laboratory, Department of Robotics, Graduate School of Engineering, Tohoku

University, Sendai, Japan

Introduction: When humans grasp an object, they are capable of recognizing

its characteristics, such as its sti�ness and shape, through the sensation of their

hands. They can also determine their level of confidence in the estimated object

properties. In this study, we developed a method for multi-fingered hands to

estimate both physical and geometric properties, such as the sti�ness and shape

of an object. Their confidence levels weremeasured using proprioceptive signals,

such as joint angles and velocity.

Method: We have developed a learning framework based on probabilistic

inference that does not necessitate hyperparameters to maintain equilibrium

between the estimation of diverse types of properties. Using this framework,

we have implemented recurrent neural networks that estimate the sti�ness and

shape of grasped objects with their uncertainty in real time.

Results: We demonstrated that the trained neural networks are capable of

representing the confidence level of estimation that includes the degree of

uncertainty and task di�culty in the form of variance and entropy.

Discussion: We believe that this approach will contribute to reliable state

estimation. Our approach would also be able to combine with flexible object

manipulation and probabilistic inference-based decision making.

KEYWORDS

robotic hand, grasping, sti�ness estimation, shape estimation, probabilistic inference,

deep learning, proprioception

1 Introduction

Human beings possess a remarkable capacity to discern physical characteristics of

grasped objects, such as stiffness and shape, from the sensory signals of the handwith a high

degree of freedom. Furthermore, but they are also able to recognize their confidence in the

estimated object properties, which they use for manipulation and further exploration. For

example, humans are able to recognize the shape of an object by touching it. When the

shape is unclear at the first touch, they recognize it and touch the object again to make

sure where to grasp. When the grasped object is likely to be soft and fragile, humans would

grasp it conservatively based on the degree of uncertainty in the rigidity. These abilities

are essential to realize robotic hands that are capable of performing stable grasping and

manipulation.

Object properties can be classified into two distinct types of categories: geometric

properties and physical properties (Wang et al., 2020). The geometric properties include

the position, pose, shape, etc., whereas the physical properties include the mass, stiffness,

texture, etc. Estimating both types of properties is essential for proper object manipulation.

For example, the geometric properties provide the necessary posture of the hand necessary
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to grasp the object and maintain its form closure, which is crucial

for stable grasping, while the physical properties determine the

maximum amount of grasping force the robot can exert without

breaking the object. Robots need to know those properties from

sensory information unless those properties were given in advance.

However, puttingmultiple various sensors on the hand can increase

the cost. Thus, it is preferable to estimate the object properties from

proprioceptive information, such as finger joint angles, which can

be measured in most cases for joint control.

There are studies regarding the estimation of geometric

and physical properties with robotic hands (Wang et al., 2020;

Spiers et al., 2016; Gao et al., 2016). However, in contrast to

estimation of geometric properties. It has been widely researched

that the estimation of physical properties or combining them

with geometric-property estimation is not fully researched. There

exist numerous methods for estimating physical-property. The

estimation of stiffness necessitates the utilization of additional

sensors for force measurements (Kicki et al., 2019; Spiers et al.,

2016), resulting in an increase in costs and mechanical complexity.

Furthermore, it has been observed that stiffness estimation is

typically performed solely once at the terminal time step (Bednarek

et al., 2021). For adaptive grasping and dexterous manipulation,

robotic hands need to estimate both types of object properties in

real time in order to adjust grasping force.

When a robotic hand estimates object properties from

proprioception in real time, it is important to handle uncertainty

as this task requires to estimate from limited information. For

example, it is impossible to estimate the objects’ properties of

objects before contact, which results in the epistemic uncertainty,

which is caused by lack of knowledge. Furthermore, observation

noises in sensory signals degrade the quality of estimation, resulting

in the aleatoric uncertainty, which is due to randomness. Without

estimating those uncertainties, robots would make incorrect

decisions based on unreliable estimates that could have been

avoided with further exploration and conservative actions. Another

issue that arises when estimating object is the necessity of weight

parameters in the loss function to balance the scales of the multiple

properties, which that is a time-consuming process.

To address the above issues, this study introduces a method to

estimate both geometric and physical properties using confidence

factors, which measure uncertainty. We develop design a learning

framework based on probabilistic inference and apply the method

to neural networks with a robotic hand without tactile sensors in

simulation. In the framework, we utilized a loss function without

hyper-parameters and a time-series chunking technique that could

improve learning stability. Neural networks are implemented to

generate the variance of the estimated stiffness, which value can be

regarded as the confidence level of estimation. Although neural

networks outputting variance are not novel (Nix and Weigend,

1994), we apply this approach to object-property estimation with

a multi-fingered robotic hand and demonstrate its effectiveness to

this task. Contributions from of this study are listed below.

1. We have developed a framework that enables for robotic hands

to assess stiffness and shape of an object, incorporating their

uncertainty.

2. We designed a loss function without hyperparameters in order

to balance the scales between different properties.

3. We demonstrate that trained neural networks are capable of

estimating the stiffness and the shape by utilizing proprioceptive

signals, while also estimating the confidence level of estimation,

taking into account and task difficulty, such as variance and

entropy.

2 Materials and methods

2.1 Overview

We consider a situation where a robotic hand grasps an object

with pre-defined control commands and estimates the object’s

properties, particularly its stiffness and the shape. The robot hand

is capable of measuring joint angles and joint angular velocity, but

it does not have visual sensors, tactile sensors, or force sensors.

We finally develop neural networks that generate estimates of the

object’s properties sequentially.

We define mathematical symbols as follows. Let the stiffness be

expressed as a scalar value k > 0, and let the shape be expressed as

a discrete label s ∈ S , {S1, . . . , SC}, where C denotes the number

of classes. Furthermore, it is recommended that the joint angles,

joint angular velocities, and joint angle commands be designated

as q ∈ R
D, q̇ ∈ R

D, and qcmd ∈ R
D, respectively, where D

denoting the degrees of freedom (DoF). We occasionally refer to

observations as y ,

[

q, q̇, qcmd
]⊤

∈ R
3D for simplicity.

2.2 Training strategy

In many studies, the root mean square errors (RMSEs) are used

to estimate continuous values. However, there are a few that make

the object property estimation difficult:

1. It is impossible in principle to estimate the properties of an

object properties before contact with the object, resulting in the

epistemic uncertainty. RMSEs are unable to handle such kind of

uncertainty.

2. As neural networks are capable of estimating multiple types

of properties with varying units and different representations

(e.g., continuous values or discrete labels), such as weight

constants are typically required to balance the estimation errors

among various types of properties. The cost of designing

weight constants increases with the increase in the number of

properties.

To address the above issues, we designed the estimation task

as a probabilistic inference. Probabilistic inference can naturally

express the uncertainty of the object’s properties that happens

before touch. Furthermore, by considering the task as a likelihood

maximization problem, it can be transformed into probabilistic

inference of a single joint distribution of multiple properties, which

does not have weight constants.

Concretely, the object property estimation task is formulated as

the following optimization problem:

maximize
θkn ,θ

s
n

N−1
∏

n=0

p(kn, sn|θ
k
n , θ

s
n). (1)

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1466630
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Kutsuzawa et al. 10.3389/fnbot.2024.1466630

Here,N and n indicate the dataset size and the index of samples

in the dataset. θkn and θ sn indicate the parameters of the probabilistic

distributions of the stiffness and the shape, respectively. θkn and θ sn
can be regarded as estimation results of kn and sn in a statistic way.

We then consider its negative log-likelihood as follows:

− log

N−1
∏

n=0

p(kn, sn|θ
k
n , θ

s
n) =

N−1
∑

n=0

− log p(kn, sn|θ
k
n , θ

s
n). (2)

Thus, the optimization problem can be equivalently converted

as follows:

minimize
θkn ,θ

s
n

N−1
∑

n=0

[

− log p(kn, sn|θ
k
n , θ

s
n)
]

. (3)

We assume each negative log-likelihood term can be

decomposed as follows:

− log p(kn, sn|θ
k
n , θ

s
n) = − log

[

p(kn|θ
k
n )p(sn|θ

s
n)
]

= − log p(kn|θ
k
n )− log p(sn|θ

s
n) (4)

We also model the probabilistic distribution of the stiffness as a

Gaussian distribution as follows:

− log p(kn|θ
k
n ) = − log p(kn|µn, σ

2
n )

= − log

(

1
√

2πσ 2
n

exp

[

−
(kn − µn)

2

2σ 2
n

]

)

=
(kn − µn)

2

2σ 2
n

+ log σn +
1

2
log(2π) (5)

Here, the parameter is expressed as θkn , (µn, σ
2
n ), where µn

and σ 2
n indicate the mean and the variance. On the other hand,

the probabilistic distribution of the shape is modeled as a discrete

distribution obtained through the softmax function as follows:

− log p(sn = Sc|θ
s
n) = − log p

(

sn = Sc

∣

∣

∣
z(1)n , . . . , z(C)n

)

= − log
exp z

(c)
n

∑C
c′=1 exp z

(c′)
n

(6)

Here, the parameter is expressed as θ sn ,

(

z
(1)
n , . . . , z

(C)
n

)

, where

z
(c)
n ∈ R for all c = 1, . . . ,C. The above equation corresponds to

the cross-entropy. Hereinafter, we use zn , [z
(1)
n , . . . , z

(C)
n ]⊤ and

CE(sn, zn) , − log p(sn|θ
s
n).

Finally, the optimization problem is converted as follows:

minimize
µn ,σn ,zn

N−1
∑

n=0

[

(kn − µn)
2

2σ 2
n

+ log σn + CE(sn, zn)

]

. (7)

This can be computed by minimizing the following learning

loss:

L ,
1

N

N−1
∑

n=0

[

(kn − µn)
2

2σ 2
n

+ log σn + CE(sn, zn)

]

. (8)

It is noteworthy that the learning loss L lacks any hyper-

parameters, such as weight constants. Instead, σn behaves as a

FIGURE 1

Overview of time-series chunking. A recurrent neural network,

illustrated as blocks, receives ϒ[λ] that consists of K observations:
(

y[λK], y[λK + 1], . . . , y[(λ + 1)K − 1]
)

. θ [t] indicates the estimated

parameters of the sti�ness and the shape at the t-th time step, i.e.,

θ [t] = (θk[t], θ s[t]).

FIGURE 2

Allegro Hand and its joint definitions.

weight balancing the RMSE of the stiffness (kn − µn)
2 and the

classification errors of the shape CE(sn, zn). Unlike a constant

weight, σn itself is to be optimized by the term of log σn, resulting

in a statistically optimal value.

2.3 Estimation with neural networks

We develop a neural network architecture that estimates

parameters such as θkn and θ sn from a time series of observations.

A simple approach is to use recurrent neural networks that

receive observations y for each time step. However, it may

lead to too deep layers in time, which may result in unstable

learning, high computational cost, and slow inference.

Therefore, we treat a time series of raw observations with

a high sampling rate as a time series of chunks with a low

sampling rate (Kutsuzawa et al., 2017, 2018). Similar techniques
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FIGURE 3

Snapshots of the training data.

have also been employed in a Transformer-based model for

robotic imitation learning (Zhao et al., 2023). Concretely, we

transformed a time series (y[0], y[1], . . . , y[t], . . . , y[T − 1]) into

(ϒ[0],ϒ[1], . . . ,ϒ[λ], . . . ,ϒ[3 − 1]), where

ϒ[λ] ,
[

y⊤[λK], y⊤[λK + 1], . . . , y⊤[(λ + 1)K − 1]
]⊤

∈ R
3DK .

(9)

Here, K ∈ N indicates the chunk size. Finally, the time-

series length of T can be reduced to a shorter length 3 =
⌈

T
K

⌉

∈ N, where ⌈•⌉ indicates the ceiling function. This technique

can reduce the time-series length approximately K times shorter,

making learning more stable with a lower computational cost.

Although it also reduces the estimation frequency, it does not

matter in many cases as estimation usually does not require a high

update frequency. Although chunking may limit the representation

ability of the model, it would be better than down-sampling,

which is similar to chunking but decimates the data samples.

Thus, it is anticipated that this chunking technique yields more

advantages than disadvantages. This technique is graphically shown

in Figure 1.

A neural network generates the values of, µ, log σ 2, and z.

Here, we use log σ 2 instead of σ or σ 2 as a primitive term because

log σ 2 can take−∞ to∞, making it more manageable for a linear-

combination layer. Therefore, in practice, the learning loss defined

in Equation 8 is transformed as follows:

L =
1

N

N−1
∑

n=0

[

(kn − µn)
2

2 exp(log σ 2
n )

+
1

2
log σ 2

n + CE(sn, zn)

]

. (10)

TABLE 1 Profile of joint angle commands.

Time t Joint angle commands

0.0 – 0.2 s All commands are set to zero.

0.2– 0.4 s Constant commands with the following amplitude: 0.175 rad

for the thumb MP joint, 0.125 rad for the thumb DP

joint,0.05 rad for the thumb PIP joint, and 0.0625 rad for the

other joints.

0.4 – 1.8 s Sinusoidal commands with the following amplitude: 0.84 rad

for the thumb MP joint, 0.6 rad for the thumb DP joint,

0.24 rad for the thumb PIP joint, and 0.3 rad for the other

joints.

1.8 – 2.2 s All commands are set to zero.

2.4 Evaluation setup

We used a MuJoCo (Todorov et al., 2012) implementation

of Allegro Hand, implemented by Zakka et al. (2022), as

shown in Figure 2. We controlled flexion motion at the joints;

11 degrees of freedom were obtained. The entire process

is controlled.

We employed three distinct categories of target objects:

cylinder-shaped objects, box-shaped objects, namely sphere-shaped

objects, as shown in Figure 3. An object wasmodeled as a composite

of small capsule elements connected by springs each other. The

object stiffness was determined by specifying the spring stiffness

connecting the elements. Objects were fixed to the space to avoid

falling out of the hand. Note that this study focuses on the object

property estimation.

For data collection, we controlled the robotic hand with a

PD positional controller for 2.2 s with predefined joint angle

commands as described in Table 1. For each episode, we recorded
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FIGURE 4

Examples of collected data with di�erent shapes and sti�ness. The top eleven plots show the finger joint angles and the commands, whereas the

bottom eleven plots show the angular velocity of the joints. Three types of objects with the smallest (1 N/m) and highest (197 N/m) sti�ness are

shown.

a time series of 33-dimensional data that consists of joint angles,

joint velocity, and joint angle commands. The observation was

measured. The delay is set to 1 ms. Examples of data are shown

in Figure 4.

We collected data with the three types of objects, while varying

the stiffness with the range from 1 to 197 N/m in 4 N/m increments

and varying the position and the orientation in 10 random values

in the range of ±5 mm and ±5 deg, respectively; 1,500 data

were collected in total. We call this dataset the standard dataset;

we use this dataset for training unless otherwise specified. Seventy

percentage of the dataset was used for training, and the remaining

30% were used for validation. During the course of training, we

introduced Gaussian noises ε ∼ N (ε; 0, σ ) to q and q̇, while

varying σ as log10 σ ∼ U(log10 σ ;−4,−1) for each mini-batch;

here,U(x; a, b) denotes a uniform distribution of xwithin the range

of a ≤ x < b.
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FIGURE 5

Neural network architecture.

TABLE 2 Hyper-parameters for training.

Item Value

Optimizer Adam

Learning rate 10−4

Weight decay 10−3

#Epochs 50,000

Mini-batch size 64

In order to evaluate the model’s ability to handle diverse data,

we prepared another training dataset with varying object sizes

and positions/orientations. In addition to the configuration of the

standard dataset, objects of varying sizes are incorporated. This

dataset comprises of 4,500 data points (1,500 data points each

for the normal, bigger, and smaller sizes). We refer to it as a

full dataset.

We used a neural network architecture as illustrated in Figure 5.

It consists of a recurrent layer with long short-term memories

(LSTMs) with 256 units, followed by a dropout layer with a dropout

rate of 0.5 and a full-connection layer. For learning stability, we

calculate µ as follows:

µ = 200 ·
µ̃ + 1

2
, (11)

where µ̃ denotes the output of a neural-network output. It

should be noted that the above scaling is different from the scaling

of loss function terms that keep the balance between the gradient of

each term; the latter one is difficult to design. The hyperparameters

utilized for training are listed in Table 2.

3 Results

3.1 Estimation results with i.i.d. data

We first evaluated the proposed method with objects with

stiffness that were unlearned but within the range of the training

dataset. Precisely, the range of stiffness varied with the range

from 3 to 195 N/m in 32 N/m increments. Additionally, the

position/orientation was varied in 10 random values, resulting in a

total of 210 data points. As these test data are almost independent

and identically distributed (so-called i.i.d.) to the standard dataset,

we will call them the i.i.d. dataset.

Figure 6 shows the estimation results. Before touching the

object (approximately before 0.5 s), the estimated mean stiffness

was around 100 N/m with a large standard deviation in all cases.

Additionally, the shape estimation was almost even (≈ 33%) for all

classes. After touching the object, the estimated values converged

close to near the true values. The standard deviations were also

reduced, as the mean values converged to the true values. The

entropy of shape estimation was also decreased a similar manner.

At this juncture, the entropy H was calculated from the estimated

probabilities of the shape as follows:

H , −

C
∑

c=1

p(s = Sc) logC p(s = Sc), (12)

where p(s = Sc) indicates the estimated probability that the

grasped object belongs to the class Sc.

Figure 7 picks up the case of k = 99 N/m of the box-shaped

object among Figure 6. The mean values were nearly constant

throughout the episode, whereas the standard deviation drastically

changed before and after the hand touched the object.

We also compared the proposed model trained with the

standard dataset with baseline models that did not generate the

stiffness variance. The baseline models were trained using the

identical training dataset and identical hyper-parameters, with the

exception of the following loss function:

Lbaseline =
1

N

N−1
∑

n=0

[

α(kn − µn)
2 + CE(sn, zn)

]

, (13)

where α indicates the weight coefficient of the stiffness errors.

Figure 8 shows the performance comparison between the proposed

model and baseline models with varying performance of α. In

the baseline models, a low α resulted in large errors in stiffness

estimation, whereas a high α resulted in low performance in shape

estimation. The proposed model achieved the highest estimate

estimation performance compared to the baseline models.

3.2 Estimation results with bigger objects

To evaluate how neural networks respond to novel objects, we

evaluated the proposed method with objects with larger sizes than

those in the training dataset. We shall refer to them as the bigger

dataset.

Figure 9 shows the estimation results. It can be observed that

the estimation errors were larger than those in Figure 6, i.e., the

i.i.d. dataset. Also, the estimated values were largely fluctuated at

the beginning of grasping (around 1.0 s).

In order to demonstrate the capability of our method for more

diverse data, we also trained the same architecture using the full

dataset, which contains objects with varying sizes. Please note that

training on a full dataset brings the bigger dataset within the learned

range. Figure 10 shows the estimation outcomes. Compared to

Figure 9, the model trained with the full dataset correctly estimated

the object’s properties.
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FIGURE 6

Estimation results with the i.i.d. dataset. The sti�ness and shape estimation results are shown at the top and middle rows, respectively. For the

sti�ness estimation results, dashed lines indicate the true sti�ness, and solid curves and filled areas indicate µ and σ . For the shape estimation results,

only the estimated probabilities of the true shape classes are shown. The bottom-left graph shows the correspondence between the estimated mean

sti�ness at the final time step and the true sti�ness, where the black line is y = x. The bottom-middle and bottom-right graphs show the mean

standard deviations in sti�ness estimation and the mean entropy in shape estimation, respectively.

3.3 Estimation results under observation
noises

Subsequently, we assessed the efficacy of the proposed

methodology in estimating object properties in the presence of

observation noise. In this case, the setup other than observation

noises was the same as in Section 3.1. We added two datasets with

different observation noises to each dataset. One is achieved with

the following noise applied:

εq ∼ N
(

εq; 0 rad, 2× 10−4 (rad)2
)

, (14)

εq̇ ∼ N
(

εq̇; 0 rad/s, 2× 10−4 (rad/s)2
)

. (15)

This dataset is often referred to as the small noise dataset. Here,

εq and εq̇ denote the noise applied to the joint angles q and the joint

angular velocity q̇, respectively. Noises were incorporated for each

time step and each degree of freedom autonomously. Another one

has the following noise applied:

εq ∼ N
(

εq; 0 rad, 8× 10−4 (rad)2
)

, (16)

εq̇ ∼ N
(

εq̇; 0 rad/s, 8× 10−4 (rad/s)2
)

. (17)

This dataset is often referred to as the large noise dataset.

Figure 11 shows the estimation outcomes. In contrast to

Figure 6, the estimated values showed significant variation.

Additionally, it can be observed that the estimated values fluctuated

even before touch (before around 0.5 s).

FIGURE 7

An estimation result with k = 99 N/m of the box-shaped object

from the i.i.d. dataset. Dashed lines indicate the true sti�ness, and

solid curves and filled areas indicate µ and σ .

3.4 Comparison of estimated variance

In the previous subsections, we tested trained neural networks

with four test datasets: the i.i.d., bigger, smaller, and large noise

datasets. In this section, we further analyze the estimated variance

(standard deviation).
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FIGURE 8

Comparison with baseline models. Each bar indicates the mean of

the values at the final time step when evaluated on the i.i.d. dataset.

The orange bars correspond to the proposed model, and the blue

bars correspond to the baseline models, where the label values

indicate α.

Figure 12 shows the relationship between the estimated

standard deviation and the estimation errors for stiffness. It can be

observed that the model trained on the standard dataset predicted

significant high standard deviations when significant errors were

detected in the i.i.d. dataset. In contrast, the model trained on

the full dataset exhibited similar behavior on the bigger dataset in

addition to the i.i.d. dataset. The correlation coefficients between

the standard deviation and the errors are described in Table 3.

Figure 13 shows variations in the estimated standard deviation

of stiffness estimation and the entropy of shape estimation in

relation to the authentic stiffness for the test datasets. The standard

deviations generally increased with increasing stiffness, whereas the

entropy decreased with increasing stiffness. For the bigger dataset,

the proposed model trained with the standard dataset produced

higher standard deviations and entropy compared to other datasets.

In contrast, the proposed model was trained with the full dataset,

which contains data with bigger objects, and resulted in compatible

entropy and even lower standard deviations than the i.i.d. dataset.

4 Discussion

4.1 Discussions and conclusions

The proposed model was trained on the standard dataset and

was able to estimate the stiffness and the shape from proprioception

signals, i.e., joint angle and joint angular velocity. As shown in

Figure 6, the trained neural network was capable of accurately

estimating object properties from the i.i.d. dataset. In the other

datasets, although the accuracy decreased, the stiffness was

generally estimated using the correct large and small relationships.

Furthermore, the shape was accurately estimated in the majority of

instances. The capability of the model can be improved by using

a more diverse dataset, as shown in Figure 9. The proposed model

that was trained with the full dataset was able to perform well in the

bigger dataset.

One of the primary objectives of this study is to generate the

variance of stiffness estimation. The estimated variance can be

regarded as the confidence level of estimation, including aleatoric

and epistemic uncertainty. Variance as epistemic uncertainty can

be clearly observed from Figure 7. In that result, the mean stiffness

µ was almost constant throughout the episode. However, the

standard deviation remarkably changed before and after touching

the object. Before touch, the robot cannot estimate the stiffness, as it

lacks information about the stiffness. This results in a high variance,

which means high epistemic uncertainty. After touch, a wealth of

information is provided. The robot is provided with information

about the physical properties of the object is provided to the robot

through proprioception signals, which allow the robot to decrease

the variance. This fundamental change can be found in all cases in

Figures 6–11. Moreover, as observed in Figure 13A, the variance

was estimated to be larger for the bigger, small noise, and large

noise datasets in comparison to the i.i.d. dataset. In contrast, in

the model trained on the full dataset, the variance in the bigger

dataset decreased (Figure 13B). This implies that the variance that

could be reduced by incorporating additional training data appears

to be a reflection of the degree of epistemic uncertainty. Based on

these factors, it we can be inferred that the proposed models can

explicitly indicate their level of confidence in the estimated values in

the form of variance. This ability is very helpful when the robot will

use the estimated values for motion planning and decision making.

The entropy of shape estimation displayed a resemblance to

that observed in the standard deviations of stiffness. The entropy

was high prior to contact, indicating a high degree of epistemic

uncertainty. Also, the large noise dataset resulted in higher entropy

than those in the small noise dataset, which would mean aleatoric

uncertainty. Similar to stiffness estimation, the disparity in the

bigger dataset between the two models can also be observed in

shape estimation. The entropy of the bigger dataset was higher

in the model trained on the standard dataset, whereas it was

similar to the other test datasets in the model trained on the full

dataset. Therefore, the models provide a confidence level for shape

estimation based on uncertainty as the entropy, which would also

help subsequent decision making.

A comparison between the proposed and baseline models

suggests the superiority of the proposed methodology. As shown

in Figure 8, the baseline models resulted in varying performance

based on the weight coefficient, α. A low α resulted in a low

performance in stiffness estimation, whereas a high α resulted

in low performance in shape estimation. Therefore, the baseline

model necessitates the appropriate value of α to attain satisfactory

performance. It will be more difficult as the number of variables to

be estimated increases since the number of weight coefficients to be
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FIGURE 9

Estimation results with bigger objects. The sti�ness and shape estimation results are shown at the top and middle rows, respectively. For the sti�ness

estimation results, dashed lines indicate the true sti�ness, and solid curves and filled areas indicate µ and σ . For the shape estimation results, only

estimates of the true shape classes are shown. The bottom-left graph shows the correlation between the estimated mean sti�ness at the final time

step and the actual sti�ness, wherein the black line is y = x. The bottom-middle and bottom-right graphs show the mean standard deviations for

sti�ness estimation and the mean entropy for shape estimation, respectively.

FIGURE 10

Estimation results with bigger objects by the proposed model trained with the full dataset. The sti�ness and shape estimation results are shown at the

top and middle rows, respectively. For the sti�ness estimation results, dashed lines indicates the true sti�ness, and solid curves and filled areas

indicate µ and σ . For the shape estimation outcomes, solely the estimated probabilities of the true shape classes are shown. The bottom-left graph

shows the correspondence between the estimated mean sti�ness at the final time step and the true sti�ness, where the black line is y = x. The

bottom-middle and bottom-right graphs show the mean standard deviations in sti�ness estimation and the mean entropy in shape estimation,

respectively.
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A

B

FIGURE 11

Estimation results with observation noises. The sti�ness and shape estimation results are shown at the top and middle rows, respectively. For the

sti�ness estimation outcomes, dashed lines indicate the true sti�ness, and solid curves and filled areas indicate µ and σ . For the shape estimation

results, only the estimated probabilities of the true shape classes are shown. The bottom-left graph shows the correlation between the estimated

mean sti�ness at the final time step and the true sti�ness, where the black line is y = x. The bottom-middle and bottom-right graphs show the mean

standard deviations for sti�ness estimation and the mean entropy for shape estimation, respectively. (A) Small noise. (B) Large noise.

adjusted also increases. In contrast, the proposed model performed

the best both in stiffness and shape estimation without any weight

coefficient to be adjusted. The balance between the two estimation

tasks is automatically taken by the estimation of stiffness variance.

As shown in Figure 13, the estimated variance increased and

the entropy slightly decreased with the increasing stiffness. The first

reason would be due to the fact that the robot estimates the stiffness

based on the deformation of the object through proprioception.

Frontiers inNeurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1466630
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Kutsuzawa et al. 10.3389/fnbot.2024.1466630

A

B

FIGURE 12

Comparison between errors and standard deviations. Here, the errors are the mean deviations between the true sti�ness k and the estimated mean

sti�ness µ. Each point indicates an estimated value at each time step. Note that values after 0.75 s were shown to exclude values before touch.

Colors correspond to the true sti�ness; same as those in Figures 6–11. The black lines indicate that y = x. (A) The proposed model trained with the

standard dataset. (B) The proposed model trained with the full dataset.

According to Hooke’s law, the stiffness k can be computed from the

displacement δx and contact force f in the following manner:

k =
f

δx
. (18)

From the above relationship, it is clear that the amount of

displacement is inversely proportional to the increase in stiffness.

Therefore, in a high-stiffness object, it is imperative for the robot

needs to assess its stiffness based on minimal displacements. This

task is comparatively more challenging than estimating an object

with low-stiffness. The reduction in variance for the bigger dataset

in Figure 13B is explained by the fact that larger objects deform

more significantly for the same stiffness, resulting in an easier task.

On the other hand, the diminution in entropy may be attributed to

the ease with which soft objects can deform. The large deformation

will it difficult for the robotic hand to determine the original shape

from finger joint angles. In the rigid objects, in contrast, the fingers

can bend to follow the object’s shape, resulting in an easier shape

estimation. Results in Figure 13 may reflect those facts, suggesting

that the neural networks could also estimate the confidence level

according to the difficulty of the task.

Future work is to combine this strategy with control. Our

method, neural networks can represent the confidence level of

estimation, including uncertainty and task difficulty, as well as

variance and entropy. This aids a task planner in determining

the balance between exploration and exploitation. Recent studies

have focused on approaches for modeling decision making through

probabilistic inference, such as control as inference (Levine, 2018)

and active inference (Friston et al., 2016). Our method, which

is based on probabilistic inference, can be combined with other

methods into a single probabilistic inference.

TABLE 3 Correlation coe�cient between the standard deviation and the

errors.

Training
dataset

I.i.d. Bigger Small
noise

Large
noise

The standard

dataset

0.659 0.322 0.308 0.176

The full

dataset

0.712 0.661 0.457 0.286

4.2 Related works

The measurement and estimation of stiffness holds significant

importance in engineering. Thus, stiffnessmeasurements have been

made in some area. For example, Wang et al. (2016) summarized

stiffness measurement methods for train areas. Marter et al. (2018)

measured the stiffness of polymer foams using dot markers on the

objects. Hattori and Serpa (2015) estimated the normal stiffness

of the objects using a neural network. For robotic grasping and

manipulation, Kicki et al. (2019) estimated object stiffness by

measuring the contact force and the finger distance with varying

grasping force. Spiers et al. (2016) combined tactile and actuator

signals to assess the stiffness and the posture of the objects. For

stiffness measurement, those methods use both contact force and

displacement information. This is intuitive, since the Hooke’s law

argues that the stiffness k is a ratio of the displacement δx and

contact force f , i.e., k =
f
δx . On the other hand, in fact, it is

also possible to estimate stiffness without directly measuring of

force. For example, a reaction force observer (Murakami et al.,

1993; Ohnishi et al., 1996) facilitates the estimation of external
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A B

FIGURE 13

Comparison of the magnitude of estimation uncertainty between di�erent test datasets. Each point indicates the mean standard deviation or the

mean entropy after 0.75 s. (A) The proposed model trained with the standard dataset. (B) The proposed model trained with the full dataset.

force in the absence of force sensors. Coutinho and Cortesão (2014)

proposed a method for stiffness estimation method based on two

force observers with different stiffness candidates. Also, Bednarek

et al. (2021) estimated the stiffness of the grasped objects using a soft

gripper with internal measurement units (IMUs) through learning.

These studies support the possibility of stiffness estimation from

proprioception signals. However, this is yet to be fully evaluated in

the context of multi-finger robotic hands.

The estimate of object shape by contact has been investigated.

Tsujimura and Yabuta (1989) proposed a method for object-shape

detection by using a probe with a six-axis force/torque sensor.

Mimura and Funahashi (1994) classified tools based on their

contact state, which can be identified by force/torque signals. Also,

the force signal-based object-shape estimation is often realized

using particle filters (von Drigalski et al., 2020; Kutsuzawa et al.,

2020; Bimbo et al., 2022). Drimus et al. (2014) developed a novel

approach. The tactile array sensor utilizes piezoresistive rubber and

thread electrodes for object classification, coupled with a gripper.

Gao et al. (2016) used convolutional neural networks to associate

haptic and visual measurements with haptic adjectives, such as

rough, hairy, and soft. There are also methods to estimate the

object shape by using a particle filter (Behbahani et al., 2015) and a

Gaussian process (Khadivar et al., 2023), both of which are based on

probabilistic inference. According to those methods, probabilistic

inference is effective for geometric-property estimation. Based on

this fact, we also evaluate geometric properties using a probabilistic

way unified with stiffness estimation in this study.

There are numerous robotic hands with tactile sensors (Dahiya

et al., 2010; Narita et al., 2020; Cirillo et al., 2022; Spiers et al., 2016).

Although tactile sensors and their applications are undergoing

development, they are still in their infancy. First, high-precision

tactile sensors are expensive; this is a problem when considering

mass production and industrial applications. Second, sensors are

often sensitive to external disturbances such as temperature, light,

or electromagnetic fields. Given their cost and robustness against

the external environment, the primary use of proprioception

sensors is effective. Robotic hands can have the ability to handle

contact even without tactile sensors. The robotic hand developed

by Ajoudani et al. (2013) does not have force sensors, but instead

estimates contact force by using interaction torque observers.

Xu et al. (2021) developed a soft gripper with a grasping force

estimation method using a neural network based on the amount

of deformation captured by a camera. Nagabandi et al. (2020)

and Andrychowicz et al. (2020) used a robotic hand with a 24

degrees-of-freedom robotic hand for dexterous manipulation with

reinforcement learning.

Handling uncertainty is an important topic inmachine learning

field. Uncertainties are sometimes classified into aleatoric and

epistemic uncertainty with the former referring to uncertainty due

to randomness, and the latter referring to uncertainty caused by

lack of knowledge (Hora, 1996; Hüllermeier andWaegeman, 2021).

A common approach to uncertainty is probabilistic inference,

such as the Gaussian process, Kalman filter, and Monte Carlo

methods, but these methods have limited representation ability or

are often computationally expensive in high-dimensional signal

processing. For methods based on neural networks, Bayesian

neural networks can naturally perform Bayesian inference (Denker

and LeCun, 1990), but the naive way can also be computationally

expensive. Nix andWeigend (1994) first proposed a neural network

that could generate the mean and variance of the target-data

distribution. This method is often used because it is simple

to implement and calculate. As per recent well-known models,

variational auto-encoders (Kingma and Welling, 2013) utilize

neural networks to generate the mean and variance to represent

a Gaussian distribution of latent variables. Deep reinforcement

learning methods also incorporate policy neural networks that

generate variance of actions (Haarnoja et al., 2018). More details

can be figured out in Gawlikowski et al. (2023). As robotic

applications of variance-output neural networks, Ding et al. (2021)

developed neural networksmodel for soft actuators that predict the
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actuator’s position, contact location, and contact force, including

their variance. Also, Takahashi et al. (2021) used neural networks

treats estimate estimation errors and treat the estimated estimation

errors as the actual amount of epistemic uncertainty. We adopted

the approach of Nix and Weigend (1994) for stiffness estimation

due to its simplicity, while addressing the shape classification task

together. We will demonstrate that this approach can not only

can quantify estimation uncertainty, but also eliminate hyper-

parameters from the training loss function.
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