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Posture-invariant myoelectric
control with self-calibrating
random forests

Xinyu Jiang, Chenfei Ma and Kianoush Nazarpour*

School of Informatics, The University of Edinburgh, Edinburgh, United Kingdom

Introduction: Myoelectric control systems translate di�erent patterns of

electromyographic (EMG) signals into the control commands of diverse human-

machine interfaces via hand gesture recognition, enabling intuitive control of

prosthesis and immersive interactions in the metaverse. The e�ect of arm

position is a confounding factor leading to the variability of EMG characteristics.

Developing a model with its characteristics and performance invariant across

postures, could largely promote the translation of myoelectric control into real

world practice.

Methods: Here we propose a self-calibrating random forest (RF) model which

can (1) be pre-trained on data from many users, then one-shot calibrated on a

new user and (2) self-calibrate in an unsupervised and autonomous way to adapt

to varying arm positions.

Results: Analyses on data from 86 participants (66 for pre-training and 20 in

real-time evaluation experiments) demonstrate the high generalisability of the

proposed RF architecture to varying arm positions.

Discussion: Our work promotes the use of simple, explainable, e�cient and

parallelisable model for posture-invariant myoelectric control.
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1 Introduction

Myoelectric control has emerged as a promising approach in human-machine

interfaces. By recognizing different muscle activities (e.g., hand gestures) via

electromyographic (EMG) signals, users can intuitively control exoskeletons or prostheses

(Sun et al., 2024; Höhler et al., 2023; Simon et al., 2022; Mereu et al., 2023; Zhang et al.,

2023; Leone et al., 2023), and achieve immersive interactions in the metaverse (Lyu, 2023).

However, EMG signals show large variabilities due to various confounding factors such

as behavior variations, electrode drifting, noises and arm positions. The effect of arm

position has received less attentions in previous studies, but can affect real-life applicability

of myoelectric interfaces profoundly. In particular, the effect of arm position has been

demonstrated to substantially change EMG characteristics (Jiang et al., 2013; Stuttaford

et al., 2024) in the aspects of both separability and repeatability (Radmand et al., 2014a),

and significantly reduce the classification accuracy by up to∼40% (Fougner et al., 2011).

One approach that previous studies applied to mitigate the arm position effect is

involving data collected at multiple arm positions in the decoder training, such that a

generalised model can be achieved. This has been via pooling training data from different

positions together (Fougner et al., 2011), or developing multiple models at different

positions and integrating the parameters of different models (Yu et al., 2017). This category

of approaches largely increases the burden of data collection. Other studies aimed to
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develop a cascade or hierarchical model to first classify the arm

positions then adopted position-specific myoelectric control model

(Geng et al., 2012; Fougner et al., 2011), which required additional

information modalities for arm position recognition. Radmand

et al. (2014b) also demonstrated that unless trained in most of

possible positions, the integration of inertial data with EMG would

significantly degrade the model performance compared with using

EMG alone. Kyranou et al. (2024) applied unimodal EMG signals

to first estimate the arm position and then use the estimated arm

position as a feature in the following hand gesture decoding stage,

omitting additional supplementary modalities.

In another recent study, Stuttaford et al. (2024) took an

alternative approach to mitigate the arm position effect by

improving the consistency of muscle activities across arm positions

through user training. They found delayed feedback training

contributed to more consistent muscle activities, and such

learned motor capability could generalise to untrained positions.

In addition, deep neural networks has shown its impressive

generalisability in diverse applications. Mukhopadhyay and Samui

(2020) showed that a well-trained user-specific deep network can

generalise well to different arm positions. However, deep networks

are generally data-hungry, that is, they require a relatively large

number of samples from each user for model training. A recent

study from Meta also developed a large generic deep network-

based myoelectric control model (Ctrl-labs at Reality Labs et al.,

2024), with training data from 6,527 participants and a total of 60.2

million parameters. Such a large model can hardly be embedded

into low-cost mobile computing devices, e.g., microcontrollers.

In this work, we aim to develop a simple, explainable, robust,

parallelisable, and computationally efficient model, which at the

same time, can generalise well to arm positions and requires

minimal training data from the target user. Our previous study

(Jiang et al., 2023) demonstrated the excellent explainability and

robustness of random forest (RF)-based model in myoelectric

control. We validated its robustness against strong noises and

corrupted EMG channels. An RFmodel is also generally considered

robust to small sample sizes (Qi, 2012) and easily parallelised

owing to the independence of the decision trees. Furthermore

in Jiang et al. (2024a), we demonstrated that an RF model

is pre-trainable and computationally efficient. In this work, we

first prove the inherent superior generalisability of a basic RF

model to various arm positions, compared with the benchmark

models. Built on our previous work, we then developed a self-

calibrating RF model (Jiang et al., 2024b) which can (1) be

pre-trained on data from other users, then one-shot calibrated

on a new user, and (2) self-calibrate in an unsupervised way

to adapt to varying arm positions. Based on our analyses

on data from 86 participants (66 for pre-training and 20 for

real-time testing), we for the first time demonstrate the high

generalisability of a basic RF model to different arm positions,

which is a new property of RF model and can advance our

understanding on the advantages of RF model in myoelectric

control applications. Importantly, we also for the first time prove

that the RF model can self-calibrate and progressively improve

its performance even during arm rotation, by learning generalised

knowledge from highly dynamic data distributions at varying arm

positions.

2 Materials

2.1 Ethical approval

All participants signed an informed consent form before taking

part in the experiment, which was approved by the local ethics

committee at the University of Edinburgh (ref: 2019/89177).

2.2 Pre-training dataset

We combined data that we had collected in three different

experiments. These datasets were collected from 66 participants.

For all datasets, EMG data was recorded using eight TrignoTM

electrodes (Delsys, Inc., USA), which were placed on participants’

right forearm with equal inter-electrode distances, as presented in

Figures 1A, B. EMG data was collected during six hand gestures, as

shown in Figure 1C.

Dataset 1 comprised data from 20 participants (22–43 years

old, 12 males, 8 females). Each participant performed 10 trials for

each hand gesture (4s valid duration each trial), with a 5s inter-trial

resting period.

Dataset 2 comprised data from 18 new participants (22–28 years

old, 11 males, 7 females). For each participant in dataset 2, EMG

signals with 51s duration were recorded for each hand gesture in 51

trials (1s signal duration each trial).

Dataset 3 was collected from 28 new participants (21–42 years

old, 13 males, 15 females) following a similar data collection

paradigm as dataset 2. For each participant in dataset 3, EMG

signals with 51s duration were recorded for each hand gesture in

51 trials (1s signal duration each trial).

Detailed descriptions of datasets can be found in Jiang et al.

(2024a,b). All pre-training data were collected with participants’

arm pointing vertically toward the ground, in an open-loop setting.

2.3 Real-time myoelectric control
experiment

The real-time myoelectric control experiment was designed to

test the performance of pre-trained and self-calibrating RF model.

We recruited 20 new participants (19–31 years old, 10 males,

10 females). The experiment for each participant consists of a

calibration session and a testing session. The calibration session

consists of only one 2s trial for each hand gesture. A 2s inter-trial

resting period was provided. The setting with only one calibration

trial per hand gesture was designed to validate the performance of

one-shot model training/calibration. In each 2s trial, participants

could react to the visual cue and shape their hand in one second,

and then hold the target hand gesture in the next second. Only

EMG signals recorded during the 1s gesture holding period were

used in following analyses (the same for the following parts of

the real-time experiment with a 2s trial duration). The collected

calibration data were used to calibrate pre-trained models. Then

the calibrated models were implemented in the following testing

session, outputting and saving the hand gesture decoding outcome

in real-time (every 100 ms). The experiment was conducted in
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FIGURE 1

Experiment setup. (A, B) EMG electrode positions. (C) All six hand gestures involved in our experiment.

an open-loop mode, in which the classification outcomes were

not presented to participants, so that our experiment did not

induce any motor learning. In this way, different models could

be implemented simultaneously and compared. Two models (with

and without self-calibration) were implemented. Details of self-

calibration will be introduced in the following section. The testing

session consists of 11 testing blocks, with 5 trials (2s trial duration)

per hand gesture (30 trials for all hand gestures) in each testing

block. The order of 30 trials for all hand gestures within a testing

block was generated randomly. Participants were provided with a

2s inter-trial and 5 minutes inter-block resting period.

Data in the calibration session was collected with participants’

elbow positioned at a angle of 90 degrees, defined as the position

5 (P5) in Figure 2A. The arm positions in the testing sessions were

fixed in a single block but varied in different blocks.

The 20 participants were separated into two groups: group A

and group B, with participants in group A rotating their arm first

clockwise and then counterclockwise while participants in group

B rotating their arm first counterclockwise and then clockwise, as

presented in Figure 2B. The postures with different arm positions

are presented in Figure 2A. Such experiment design generates a

symmetrical arm position sequence for each group. For example,

the arm position sequence for group A in 11 testing blocks

was: P5-P4-P2-P6-P8-P5-P8-P6-P2-P4-P5, symmetrical around

the middle block. The symmetrical sequence in each group and

the combination of two sequences in both groups, can to the

large extent remove the time factors when comparing the average

decoding accuracy at different arm positions.

3 Methods

3.1 Feature extraction

Features were extracted from EMG signals in each channel via a

200ms sliding window at a 100 ms sliding step. In each window and

each channel, first, mean absolute value (MAV), waveform length

(WL), root mean square (RMS), slope sign changes (SSC), and

zero crossings (ZC) were extracted as energy features (Englehart

and Hudgins, 2003). These energy features are the most commonly

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1462023
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Jiang et al. 10.3389/fnbot.2024.1462023

FIGURE 2

The paradigm of the real-time experiment during which we tested the e�cacy of a self-calibrating RF model to account for EMG distribution shift

because of varying arm positions. (A) Postures with di�erent arm positions. Both front and side views are presented. (B) The sequences of arm

positions in blocks 1–11 in group A and group B. Red and blue colors correspond to rotating arm clockwise and counterclockwise, respectively.

used ones in previous studies and their effectiveness has been

validated in diversemyoelectric control applications (Englehart and

Hudgins, 2003; Ye et al., 2021; Hudgins et al., 1993). Second, the

skewness was extracted as a distribution feature (Nazarpour et al.,

2007). Third, the peak frequency (PKF), median frequency (MDF),

mean frequency (MNF), and variance of central frequency (VCF)

were extracted as spectrum features (Phinyomark et al., 2012). The

above energy, distribution, and spectrum descriptors represent the

EMG signals from different aspects and their complementary roles

have been validated in previous work (Jiang et al., 2024a). All

features form a 80-length feature vector for the 8-channel EMG

within each window.

3.2 RF model pre-training and fine-tuning

Data from 66 participants were used to pre-train a RF

model. EMG features were first normalised separately for different

participants via z-score. To encourage diversity among decision

trees and at the same time constraining the number of nodes, only

2% samples were randomly picked via bootstrapping to build each

decision tree. The pre-trained RF model comprised 200 decision

trees.

We further performed 2 operations to fine-tune the pre-

trained RF model, namely decision tree pruning and decision tree

appending. To prune a pre-trained decision tree, the calibration

data collected from a new target participant were used as a

validation dataset to remove unnecessary and inaccurate nodes. For

each decision tree, the pruning operation was first performed on

the leaf nodes with the longest distance away from the root node.

A node together with its children nodes would be removed if the

validation performance without these nodes would not degrade.

We then inspected all nodes upwards until the root node was

also inspected. Details on the decision tree pruning operation were

reported in Jiang et al. (2024a).

In addition, we appended another 200 participant-specific

decision trees trained from scratch using only the calibration data

(1 repetition per hand gesture) from the target participant. The 200

pre-trained and pruned decision trees and 200 appended decision

trees together form a fine-tuned RF model with 400 decision trees.

3.3 RF model self-calibration

With the pre-trained and fine-tuned RF model, we enabled

an unsupervised self-calibration for the RF model after each

testing block. This features augmented the RF model to adapt

to the varying data distribution due to the arm position

effects autonomously. The core framework of our self-calibration

approach is presented in Figure 3. During each testing block, a

data buffer was used to store testing data. The data buffer could

store up to 1,500 testing samples (features extracted in each sliding

window), equivalent to∼500 KB storage size if using 32-bit floating

point data format. If the number of stored testing samples reached

the upper bound of the buffer, the oldest stored sample belonging

to the class category with the most samples were removed from

the buffer, and replaced by the latest one. After each testing

block, all data in the data buffer were first mapped into a 3-

dimensional subspace with a more simple distribution via manifold

learning using t-Distributed Stochastic Neighbor Embedding (t-

SNE) (Maaten and Hinton, 2008). Then, the K-Means method

was applied to assign pseudo-labels to all stored samples. The

initialisation of K-Means labels was set as the predicted labels

of the current model. The final number of samples in the data
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FIGURE 3

The framework of self-calibrating RF common model.

buffer with different hand gesture pseudo-labels might be different.

To built a balanced self-calibration dataset, the number of latest

samples for each hand gesture used in the following step was set

as the lowest number of samples for each hand gesture. The stored

testing samples with pseudo-labels and the calibration samples

with ground-truth labels (already used in the fine-tuning stage)

were mixed together as a self-calibration dataset. Then, 40% of

the appended decision trees were randomly selected, and replaced

by new appended decision trees trained using the latest self-

calibration dataset. The self-calibrated RF model, together with

the fixed fine-tuned RF model, were implemented in the next

testing block.

3.4 Ablation experiment

To evaluate the contributions of different components in

the framework of our method, the ablation experiment was

performed by quantifying the reduction in accuracy with

each component removed from the framework. The ablation

experiment was run offline by replaying exactly the same

testing data collected from 20 participants in our real-time

experiment. These components comprise: the energy features,

the distribution features, the spectrum features, the K-Means

clustering, and the t-SNE manifold learning. Note that when

removing the t-SNE manifold learning, the pseudo-labels were

assigned by performing K-Means on the original high-dimensional

feature space. When removing K-Means, the pseudo-labels

were assigned simply as the output labels of the current

model (t-SNE was also removed in this case as it was

not necessary without the following clustering-based pseudo-

label assignment).

3.5 Baseline models

First, the standard participant-specific RF model (400 decision

trees) trained using only the calibration data (one repetition

per hand gesture) from the target participant was implemented

offline. In addition, as one important purpose of our work is

to provide a computationally efficient alternative for myoelectric

control applications, the participant-specific linear discriminant

analysis (LDA) and support vector machine (SVM) models, were

implemented offline as efficient benchmark models, due to their

effectiveness and computational efficiency on mobile computing

devices.

3.6 Validation methods

Pre-training data from the 66 participants were used offline

to pre-train a RF model. Data from the calibration session

of the target testing participant in our real-time experiment

were used to fine-tune the pre-trained RF model, or train a

standard RF, LDA, and SVM baseline models from scratch. All

RF models in our work consist of 400 decision trees as further

increasing the number of decision trees would not contribute

to a substantially improved accuracy but increase the model

complexity. For SVM, linear kernel was used due to its simplicity

and better classification performance. All hyper-parameters were

determined using data from pre-training dataset (66 participants)

and directly applied on data from the 20 testing participants,

so that the obtained model performance was not over-estimated.

Note that the pre-trained and fine-tuned RF model and the self-

calibrating RF model were implemented in real time, while the

performances of baseline models were evaluated offline on the
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same testing data collected in real-time experiment. All accuracies

were calculated by comparing the model-predicted label and

the ground-truth label on EMG within each sliding window

during the gesture holding period (the last 1 s period of a

trial).

3.7 Statistical analyses

Considering multiple arm positions were involved in our

evaluation, the Friedman test was first applied to verify the global

significance among all groups. Then the Nemenyi test, a post-hoc

test was applied to find the pairwise significance of each two groups.

Significance was claimed for p < 0.05.

4 Results

4.1 The e�ect of arm position on EMG
characteristics

To better and intuitively illustrate the effect of arm position

on EMG characteristics, we first visualise the distribution of EMG

features in a 2-dimensional space obtained by t-SNE, as presented

in Figure 4. The arm position effect leads to the shift of distribution

for the same hand gesture, particularly for tripod, pointer and rest

hand gestures. We further zoomed on the distribution of the same

hand gesture (rest) at all 5 arm positions. According to the right

panel of Figure 4, the arm position effect leads to variability of

baseline muscle activity of the “rest” hand gesture.

With the intuitive visualisation of the arm position effect on

the overall feature distribution, we wondered if we can see the

change across a specific feature as well at the electrodes. Figure 5

presents the variability of muscle activity (represented by RMS)

with varying arm positions. Overall, arm positions P2 and P6

contribute to relatively more muscle activities, while P4 and P8

help participants save muscle efforts. In addition to average muscle

activities, the variation level of muscle activity changes measured

by the standard deviation (STD) also vary with different electrodes

and arm positions. Specifically, electrodes 4 and 5 contribute to a

lower STD but electrodes 6 and 8 contribute to a higher STD.

4.2 The robustness of di�erent models
against arm positions

Figures 6A, B present intuitive visualisation of and quantitative

comparison between the classification performances of different

models, respectively. By comparing the classification performances

between LDA, SVM, and standard RF in Figure 6B, we can find that

all models contribute to a similar level of accuracy when trained and

tested at the same arm position (P5), with an average accuracy of

76.0 ± 9.3%, 76.7% ± 9.3%, and 77.6 ± 9.6% achieved by LDA,

SVM, and RF, respectively. However, if tested at a different arm

positions (other than P5), the classification accuracy of LDA would

substantially reduced, by 6.4% at P2, 5.8% at P4, 4.5% at P6, and

2.9% at P8, with a statistical significance observed at P2, P4, and

P6. Likewise, the accuracy of SVM would decreased by 5.1% at P2,

2.9% at P4, 2.8% at P6, and 1.2% at P8, with the accuracy at P2

significantly lower than P5 and P8. However, standard RF shows a

small reduction in classification accuracy (<1.5%) when tested at

a arm position different with that during model training. Overall,

the standard RF model does not result in significantly different

accuracy at different arm positions, demonstrating its inherent

generalisability and robustness to the arm position effect.

With the inherent robustness to arm position effect, the

additional pre-training and then fine-tuning process can improve

the accuracy by 2.5% at P2, 3.5% at P4, 4.2% at P5, 2.6% at P6,

and 3.1% at P8. Moreover, the self-calibration module can further

improve the classification accuracy by 3.3% at P2, 4.2% at P4, 3.7%

at P5, 5.0% at P6, and 4.1% at P8. The progressively improved

performance of RF-based models with pre-training, fine-tuning

and self-calibration demonstrates the effectiveness of the whole

framework of our self-calibrating RF common model.

4.3 E�ects of the accuracy of
pseudo-labels

We also evaluated the average accuracy of pseudo-labels of

data samples used to self-calibrate the model after each testing

block, with an average accuracy of 80.1% achieved. Figure 7

presents the variation of both the accuracy of self-calibrating RF

and the accuracy improvement by self-calibration, with varying

accuracy of pseudo-labels. According to Figure 7A, the accuracy

of pseudo-labels is positively correlated with the accuracy of self-

calibrating RF (linear correlation coefficient: 0.8055; p < 0.01).

To better illustrate the effect of pseudo-label accuracy, we then

quantified the accuracy improvement of the self-calibrating model

compared with the pre-trained and fine-tuned (fixed) RF model,

with varying accuracy of pseudo-labels. According to Figure 7B,

generally, more accurate pseudo-labels tend to improve model

performance to a higher degree, but without significance (linear

correlation coefficient: 0.2481; p= 0.2915).

4.4 Results of the ablation experiment

To evaluate the contribution of each component in the

framework of our method, we performed an ablation experiment

with results presented in Table 1. Among all features, removing

energy features contributes to the most substantial accuracy

reduction (p < 0.05), demonstrating the great contribution of

energy features in the framework. Removing distribution features

or spectrum features also slightly degrade the model performance

(without significance), demonstrating that these features would to a

certain degree further refine the decision making logic of the model

on the basis of energy features. Additionally, assigning pseudo-

labels without t-SNE manifold learning or K-Means results in

degraded model performance (without significance). Even though

the contribution of an individual component might not be obvious,

their joint contribution results in a highly effective, robust, and

generalisable model.
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FIGURE 4

The visualisation of EMG feature distribution from one representative participant in a 2-dimensional space obtained by t-SNE. Left: Data from all

hand gestures at two positions, namely P2 and P5; Right: EMG feature distribution of the Rest class at all five arm positions.

FIGURE 5

The E�ect of arm position on muscle activity. The presented RMS values are changes relative to P5. Red and blue colors represent increased and

decreased muscle activities, respectively.

5 Discussion

In this work, we showed the excellent generalisability of RF

models to different arm positions, and demonstrate a substantial

accuracy improvement achieved via RF pre-training, fine-tuning,

and self-calibration. The effect of arm position is a multi-faceted

problem. First, different arm positions contribute to different

baseline muscle activity, validated by the feasibility to classify

different arm positions using EMG with a relaxed hand gesture

(Asghar et al., 2022). Second, in addition to the effect on

baseline muscle activity, the user behaviours to perform different

hand gestures may vary at different arm positions, supported by

the fact that motor learning with delayed feedback to improve

the behaviour consistency can mitigate the arm position effect
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FIGURE 6

Classification results of di�erent models. (A) Intuitive visualisation of performances of di�erent models. The circle size refers to the accuracy (linearly

correlated). The average accuracy in the clockwise and counterclockwise conditions are presented separately. (B) The classification accuracy of

di�erent models, where “*” denotes a significant di�erence.

FIGURE 7

The relation between the accuracy of pseudo-labels, the accuracy of self-calibrating RF and the accuracy improvement by self-calibration. (A) The

relation between the accuracy of pseudo-labels and the accuracy of self-calibrating RF. (B) The relation between the accuracy of pseudo-labels and

the accuracy improvement by self-calibration (i.e., the accuracy of self-calibrating RF minus the accuracy of pre-trained and fine-tuned RF). Each

data point refers to the overall average results of a specific subject. The plotted straight line is the linear fit of all data points.

(Stuttaford et al., 2024). The above effects of arm positions

may also partly result from changes in load applied to muscle

tendons due to gravity (Jiang et al., 2013). Changes in gravity

load at different arm positions further lead to different levels of

gravity-compensatory muscle activity. Additionally, diverse muscle

groups locate at the forearm, the relative positions of which

may change considerably during arm movement. The shift of the

relative positions of muscle with respect to each EMG electrode

may also change with varying arm positions (Jiang et al., 2013).

All above factors explain the effect of arm position on EMG

characteristics.

The arm position effect is considered as one of the confounding

factors that lead to the variability of EMG and its distribution

shift. It is not realistic to collect and include EMG data from

all possible arm positions in the training dataset. Our work

validated the inherent superior generalisability of a basic RF

model to various arm positions. Such generalisation might results

from the “divide and conquer” training strategy of a RF model.

First, each decision tree selects only a small subset of features,

and the overall feature distribution can be learned through an

ensemble of all decision trees. Additionally, different arm positions

contribute to the shift of certain but not all features, evidenced
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TABLE 1 Results of the ablation experiment.

Energy features Distribution
features

Spectrum
features

K-MeansClustering t-SNE manifold
learning

Accuracy (%)

✗ ✓ ✓ ✓ ✓ 71.4± 8.1

✓ ✗ ✓ ✓ ✓ 83.9± 8.7

✓ ✓ ✗ ✓ ✓ 84.2± 8.6

✓ ✓ ✓ ✗ ✗ 82.7± 9.4

✓ ✓ ✓ ✓ ✗ 81.0± 9.3

✓ ✓ ✓ ✓ ✓ 84.6 ± 8.5

All results in this table were obtained offline by replaying exactly the same testing data collected from 20 participants in our real-time experiment. Note that when removing K-Means, the

pseudo-labels were assigned simply as the output labels of the current model (t-SNE was not applicable in this case so it was removed together with K-Means). The bold value represents the

best performance.

by the nearly zero muscle activity changes at certain channels

in Figure 5. Therefore, the variation of a subset of features

would only degrade the performance of a small proportion of

decision trees, with the overall performance of the RF model

kept at a relatively stable level. Furthermore, in the inference

process of each decision tree, the value of each feature is used

to simply compare with a threshold, without complex calculation

to enlarge and propagate the error in the slightly shifted feature.

By contrast, for LDA, all model parameters are dependent with

each other. The shift on a specific feature due to the arm

position effect would be enlarged by the calculation operations

in the inference process using all LDA parameters and all EMG

features. Moreover, the self-calibrating model proposed in this

work can automatically adapt to and, most importantly, learn

extra knowledge from new arm positions. Moreover, the initial

model parameters can be determined by only one repetition (1s

signal duration) at only one arm position (P5) for each hand

gesture from each new target user. Together with the work of

Stuttaford et al. (2024), it is evident that the combination of an

adaptive decoder and user adaptation canmitigate the arm position

effect.

Previous studies have proposed diverse transfer learning

algorithms to improve the generalisability of myoelectric control

models, e.g. by supervised model fine-tuning (Cŏté-Allard et al.,

2019) or unsupervised domain adaptation (Liu et al., 2024;

Shi et al., 2024). These transfer learning algorithms have been

proved effective in mitigating the confounding factors such as

the inter-user (Cŏté-Allard et al., 2019) and inter-day EMG

variabilities (Shi et al., 2022), electrode shift (Chan et al., 2022)

etc. Transfer learning methods have been proved effective in

addressing above factors by performing one-timemodel calibration

before each use, because once the model is calibrated, such

factors remain relatively stable in each setup. By contrast, the

effect of arm position is more dynamic and unstable in practical

applications. The arm position may change dramatically within

a short period of time. Therefore, one-time model calibration

methods cannot adaptively track the shift of data distributions

during each use. Accordingly, in previous studies, the most

effective way to address such dynamic arm position effect is

to develop a model robust to arm positions, using training

data collected at most of possible arm positions. In this work,

we first prove that, a basic RF model is inherently robust

to arm positions even if the model is trained on a small

dataset at a fixed arm position. Then, we demonstrate that

unsupervised model self-calibration can adaptively track the

dynamic data distributions at varying arm positions, and can

even improve the model performance automatically during arm

rotation.

Previous studies on unsupervised model calibration mainly

performed offline validations by pooling all testing data together,

instead of considering the confounding factors (e.g., arm position)

as a dynamic effect which can change within a short period of

time. This is the first study to conduct a real time experiment

to validate the performance of our self-calibrating model with

dynamic varying arm positions. Both the supervised one-shot

model fine-tuning and the unsupervised model self-calibration

in our work are implemented on a simple RF model, which is

parallelisable and robust to small sample size (Qi, 2012), providing

an simple but effective alternative in practice. All these conclusions

can advance our understanding on the advantages of a simple RF

model in myoelectric control applications.

In practical myoelectric control applications, users need to

bear the weight of prosthetic devices. At different arm positions,

users need different levels of extra muscle efforts to support the

prosthetic devices. Arm position would become a more important

confounding factor in prosthetic control applications. In this case,

the developed model robust to arm positions would show higher

significance. Moreover, prosthetic devices are usually applied

in mobile scenarios with constrained computing resources. The

developed RFmodel comprisesmultiple independent decision trees

which are easily parallelisable, and thereby is easily implemented in

a computationally efficiency way.

As for the technical details of our self-calibration module, we

assign pseudo-labels on testing samples by jointly considering the

knowledge learned by the current model (for label initialisation in

clustering) and the overall distribution of stored testing samples

(via manifold learning and clustering). By contrast, directly

assigning pseudo-labels as the output labels of the current model

without manifold learning and clustering, may likely lead to a

loop of learning biased knowledge given by the model itself. The

clustering-based pseudo-label assignment serves as a biased-error

correction mechanism in the pseudo-labeling process. As for the

one-shot fine-tuning process, the pruning operation performed

on pre-trained decision trees could integrate both the generalised

information from many users in the database and the specific

information from the target user. The decision tree appending
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operation further augments the contributions of the personalised,

but scarce, fine-tuning data from the target user. The supervised

one-shot fine-tuning and the unsupervised self-calibrationmodules

progressively improve the model performances.

Note that the proposed model is validated on limb-

intact subjects. Performance validations with people with

limb difference are required in future studies. We assume

that, the EMG characteristics of people with limb difference

and limb-intact people share certain similarities. Previous

studies (Fan et al., 2023; Lin et al., 2023) have shown that

a myoelectric control model can learn useful knowledge

from the data of limb-intact subjects, to help improve the

model performance on amputees. Accordingly, we expect our

proposed method validated on limb-intact subjects would, to

some extent, also contribute to more robust prosthetic devices

for amputees.

6 Conclusion

In this work, we demonstrated the inherent generalisability

and robustness of standard RF model to varying arm positions.

Moreover, we developed a self-calibrating RF model which

can be pre-trained on data from other users, and conveniently

personalised on a new user using only one repetition per hand

gesture with only 1s of signal. During the testing phase, the

model calibrated at a fixed arm position can autonomously

track the varying data distribution at different unseen arm

positions, and even improve the classification accuracy, unlike

the performance degradation that previous static models

suffered from. Together with the inherent explainability,

parallelisability, computational efficiency, and robustness

to noises of RF, we expect our self-calibrating RF model

largely benefit the translation of myoelectric control into real

world practice.
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