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Introduction: Tracking the hidden states of dynamic systems is a fundamental

task in signal processing. Recursive Kalman Filters (KF) are widely regarded as

an e�cient solution for linear and Gaussian systems, o�ering low computational

complexity. However, real-world applications often involve non-linear dynamics,

making it challenging for traditional Kalman Filters to achieve accurate state

estimation. Additionally, the accurate modeling of system dynamics and noise

in practical scenarios is often di�cult. To address these limitations, we propose

the KalmanFormer, a hybrid model-driven and data-driven state estimator.

By leveraging data, the KalmanFormer promotes the performance of state

estimation under non-linear conditions and partial information scenarios.

Methods: The proposed KalmanFormer integrates classical Kalman Filter with

a Transformer framework. Specifically, it utilizes the Transformer to learn the

Kalman Gain directly from data without requiring prior knowledge of noise

parameters. The learned Kalman Gain is then incorporated into the standard

Kalman Filter workflow, enabling the system to better handle non-linearities and

model mismatches. The hybrid approach combines the strengths of data-driven

learning and model-driven methodologies to achieve robust state estimation.

Results and discussion: To evaluate the e�ectiveness of KalmanFormer, we

conducted numerical experiments in both synthetic and real-world dataset.

The results demonstrate that KalmanFormer outperforms the classical Extended

Kalman Filter (EKF) in the same settings. It achieves superior accuracy in tracking

hidden states, demonstrating resilience to non-linearities and imprecise system

models.

KEYWORDS

Kalman Filter, deep learning, transformer, Kalman Gain, supervised paradigm

1 Introduction

It is the most fundamental task to track the hidden state of a dynamical system by using

the noisy measurements in real-time in many fileds, including singal processing (Yadav

et al., 2023), navigation (Hu et al., 2003), information fusion (Xu et al., 2004), and

automation control (Menner et al., 2023; Mercorelli, 2012a). A large number of algorithms

were proposed to stress this issue, such as Bayesian estimation (Coué et al., 2003) and

particle filter (Hue et al., 2002).

Kalman Filter (KF) (Kalman, 1960) is also an efficient recursive filter that can track

the state of dynamic systems from a series of incomplete measurements with additive

white Gaussian noise (AWGN). Low complexity implementation of KF, combined with

theoretical foundation, resulted in it quickly becoming the popular method for state

estimation problems.

The original Kalman Filters perform well in linear and Gaussian systems. The reality

is that many nonlinear phenomena are encountered in real-world multi-sensor systems.

Therefore, several variants of Kalman Filters are available to meet the requirements of
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nonlinear dynamic systems, including Extended Kalman

Filters (Maybeck, 1982) (EKF) and Unscented Kalman Filters

(UKF) (Wan and Van Der Merwe, 2001).

There are still limitations associated with the application of

EKF and UKF in practical applications. Specifically, the Kalman

Filter is a model-based method, and the performance of state

estimation heavily depends on model accuracy. Furthermore, the

noise covariance matrix is determined by prior process noise and

measurement noise, which are assumed to be Additive White

Gaussian Noise (AWGN). Additionally, there is no guarantee that

the AWGN will accurately reflect the actual performance of the

information fusion.

Several variants of Kalman Filters were proposed to overcome

the above issue. For example, Huang et al. (2020) introduced a

sliding window variational adaptive Kalman filter to simultaneously

modify the state estimation and covariance matrix. Yu and Li

(2021) presented an adaptive Kalman Filter that concentrated

on unknown covariances of both dynamic multiplicative noise

and additive noises. Xiong et al. (2020) employed a parallel

adaptive Kalman Filter to estimate the attitude of the vehicle

based on the Inertial Measurement Unit (IMU). Paolo Mercorelli

introduced (Mercorelli, 2012b) a combination of the augmented

EKF and EKF for sensorless Valve Control which avoids

complicated observation.

Recent years have seen the application of deep learning

techniques to multiple real-world applications such as

computer vision (Voulodimos et al., 2018) and natural language

processing (Otter et al., 2020). Particularly, some Deep Neural

Networks (DNNs), such as the Recurrent Neural Network

(RNN) (Elman, 1990), Long Short-Term Memory Network

(LSTM) (Hochreiter and Schmidhuber, 1997), Gated Recurrent

Unit (GRU) (Chung et al., 2014), and Transformer (Vaswani et al.,

2017), have demonstrated excellent performance when it comes to

processing time series data. For example, Xia et al. (2021) presented

staked GRU and RNN to predict the payload of electricity. Zhang

et al. (2020) applied LSTM to estimate the battery’s state of health.

Furthermore, deep learning techniques have been utilized by

some researchers to enhance the effects of the Kalman Filters. For

example, Rangapuram et al. (2018) introduced RNN to forecast

the state space parameters of linear systems. Coskun et al. (2017)

utilized LSTM to learn the noisy parameters and motion model of

the Kalman filters. EKFNet (Xu and Niu, 2021) used BPTT (Ruder,

2016) to learn the process and measurement noise from the

measurement. Bence Zsombor Hadlaczky applied neural networks

and EKF to estimate the wing shape (Hadlaczky et al., 2023).

Dahal et al. (2024) introduced RobustStateNet, which applied

RNN and Kalman Filters to perform ego vehicle state estimation.

Zhang et al. (2023) adopted the Transformer to pre-estimate the

vehicle mass, thus acting as an observation for EKF. Luttmann and

Mercorelli (2021) employed EKF to accelerate the convergence of

the learning system.

In this work, we present KalmanFormer, a hybrid data-

driven and model state estimator that can be used to perform

information fusion in multi-sensor systems. Our KalmanFormer

uses a Transformer framework to track the Kalman Gain instead

of computing it from the statistic moments.

The structure of this paper is organized as follows: Section

2 introduces the Kalman Filters and Transformer architecture.

Section 3 details the methodology of the proposed KalmanFormer.

Experiments will be discussed in Section 4. Section 5 concludes the

whole paper.

2 Preliminary knowledge

2.1 Kalman Filter

The Kalman Filter algorithm (KF) is a classic algorithm

of information fusion technology and is widely used to solve

various optimal estimation problems. The classic Kalman Filters are

composed of a state transition model and an observation model,

which are expressed as follows:



















xk = Fkxk−1 + Bkuk−1 + wk−1

zk = Hkxk + vk
wk−1 ∼ N(0,Qk)

vk ∼ N(0,Rk)

(1)

where xk is the state vector of the system, Fk represents the state

transition matrix, Bk is the control-input model which is applied

to the control vector uk−1, and Hk represents the observation

function, which maps the true state space into the observed space.

wk−1 and vk are process noise and observation noises respectively.

Process noise is assumed to be drawn from a zero multivariate

normal distribution N with covariance Qk. Observation noise is

assumed to be zero mean Gaussian white noise with covariance Rk.

In general, Recursive Kalman Filter can be divided into two

steps: Prediction and Updation. The information flow of the

Kalman Filter is shown in Figure 1. As shown in Figure 1, the

predict step uses the state estimate from the previous timestep to

produce an priori estimate of the state at the current timestep,

which is expressed as follows:

x̂k|k−1 = Fkx̂k−1|k−1 + Buk−1

Pk|k−1 = FkPk−1|k−1F
T
k
+Qk−1

(2)

In the update phase, the innovation between the current a priori

estimation and the current observation information, is multiplied

by the optimal Kalman gain and combined with the previous state

estimate to optimal the state estimate. This improved estimate

based on the current observation is termed a posteriori state

estimate, which is summarized as follows:

Kk =
Pk|k−1H

T
k

HkPk|k−1H
T
k
+Rk

x̂k|k = x̂k|k−1 + Kk(zk −Hkx̂k|k−1)

Pk|k = (I− KkHk)Pk|k−1

(3)

Noise has a significant impact on the performance of a

Kalman Filter system, as it directly affects the accuracy of the

estimation. A Kalman Filter is designed to optimally combine

observations and predictions in the presence of noise, which

controls how the Kalman filter weights the model predictions

versus the actual observations.

The process noise covariance Q represents the uncertainty in

the model of the system dynamics. Higher values of Q means

we have less reliability on the prediction and place more trust in

the observations.

The observation noise covariance R means the uncertainty

in the observations. Higher values of R suggest more noise in
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FIGURE 1

Information flow of the Kalman Filter.

the observation, so the Kalman Filter will pay more attention to

its predictions.

The following tuning steps are necessary before using the

Kalman Filters:

• Set initial state vector x̂0.

• Set initial noise values forQ and R.

• Tuning the Process Noise CovarianceQ.

• Tuning the Observation Noise Covariance R.

• Test the performance and adjustQ and R.

Although the noise parameters are tuned before using

the Kalman Filters. It is difficult to obtain an accurate state

transitionmodel and observationmodel, especially in the nonlinear

occasion, which results in a significant degradation of Kalman

Filter performance.

2.2 Extended Kalman Filters

Differentiable nonlinear functions may be used in place of the

state transition and observation models in the extended Kalman

Filter:


















x̂k|k−1 = f (x̂k−1|k−1, uk−1)+ wk−1

zk = h(xk)+ vk
wk−1 ∼ N(0,Qk)

vk−1 ∼ N(0,Rk)

(4)

Similar to the linear Kalman Filter, xk is the state vector

of the system, wk−1 and vk are process noise and observation

noises respectively. Process noise is assumed to be drawn from

a zero multivariate normal distribution N with covariance Qk.

Observation noise is assumed to be zeromean Gaussian white noise

with covariance Rk.

Function f is used to predict the state from the previous

estimation and function h is applied to produce the predicted

measurement form the predicted state. Different from the linear

Kalman Filter, the Jacobian of f and h are used to compute the

covariance matrix in extended Kalman Filters.

At timestamp k, the Jacobian is evaluated with the current

predicted states, thus it can be used in Kalman equations. The

prediction procedure of EKF is presented as follows:

x̂k|k−1 = f (x̂k−1|k−1, uk−1)

Pk|k−1 = FkPk−1|k−1F
T
k
+Qk−1

(5)

The update procedure of EKF is calculated as follows:

Kk =
Pk|k−1H

T
k

HkPk|k−1H
T
k
+Rk

x̂k|k = x̂k|k−1 + Kk(zk − h(x̂k|k−1))

Pk|k = (I− KkHk)Pk|k−1

(6)

where the state transition function and observation model are

defined as the following Jacobians:

Fk = ∂f
∂x

∣

∣

∣x̂k−1|k−1

Hk = ∂h
∂x

∣

∣

∣x̂k|k−1

(7)

2.3 Transformer

2.3.1 Transformer architecture
Transformer (Vaswani et al., 2017) was originally proposed in

natural language processing and it has been applied in various

sequence-to-sequence tasks. As shown in Figure 2, the Transformer

is mainly composed of encoders and decoders with several basic

transformer blocks. Transformer blocks inside the encoders and

decoders remain in the same structure.

Encoders produce encodings for the input sequence, while

the decoders take all the encodings from encoders and use

contextual information to generate the prediction results. Each

transformer block is composed of a multi-head attention layer, a

feed-forward neural network, a skip connection connection, and a

layer normalization operation.
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FIGURE 2

Architecture of the Transformer.

2.3.2 Self-attention mechanism
The Self-Attention Mechanism (SAM) is a core component of

Transformer architecture, which seeks to emphasize the correlation

between the input vector spaces.

As a first step, the input features are transformed into three

different vectors using matrix multiplication, which is expressed as

follows:










Q = FinWQ

K = FinWK

V = FinWV

(8)

where Q, K, V are Query matrix, Key matrix, and Value

matrix respectively. WQ, WK , WV are used to generate the above-

mentioned matrices. After that, attention map between different

input vectors is calculated as follows:

• Compute scores between different input vectors with:QKT.

• Normalize the scores to improve the stability with: QKT√
dk
.

• Transform the scores into probabilities with softmax function:

softmax(QKT√
dk
).

• Generate the weighted value matrix with: softmax(QKT√
dk
) · V.

The above process can be describe with a single function:

Attention(Q,K,V) = softmax(
QKT

√

dk
)V (9)

where dk means the dimension of the input. This procedure is

shown in Figure 3.

2.3.3 Position encoding
Transformer architecture can’t guarantee the order of objects

inside the sequence. Therefore, positional encoding is employed to

assign a unique representation to each position inside the sequence.

Cosine and sine functions are used to produce position encoding

for varying frequencies, which is calculated as follows:

P(k, 2i) = sin( k
n2i/d

)

P(k, 2i+ 1) = cos( k
n2i/d

)
(10)

where k is the position of an object inside the sequence, dmeans

dimensions of the output embedding space, P(k, j) is position

function, n is a predefine scalar, i is used to map column indices.

Using the position encoding, even positions correspond to a

sine function and odd positions correspond to cosine functions.

3 Methodology

In this section, we present our KalmanFormer: a hybrid model

and data-driven Kalman Filter for estimating the state of dynamic

systems. Our KalmanFormer combines the model-based Kalman

Filters with Transformer (Vaswani et al., 2017) to tackle model
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FIGURE 3

Illustration of the self-attention mechanism.

mismatch and non-linearities. As a first step, the information

flow of our KalmanFormer will be presented. Subsequently, details

information about the inputs for our KalmanFormer will be

discussed. Following that, the architecture of the KalmanFormer

and the training strategy will be introduced at the end of

this section.

3.1 Information flow of KalmanFormer

In order to formulate our KalmanFormer, we identify the

specific computation process of linear Kalman Filters that are

based on unavailable knowledge. To be specific, the state transition

model Fk and observation model Hk are available (although

inaccurate), while the process noise Qk and observation noise Rk

are unavailable. As shown in Figure 1, unknown process noise

and observation noise are used in Kalman Filters only for the

purpose of calculating the Kalman Gain. To this end, we develop

the KalmanFormer that tracks the Kalman Gain from the data

and combines the learned Kalman Gain into the data flow of the

Kalman Filter. The architecture of our KalmanFormer is provided

in Figure 4. In the same manner as the model-based Kalman

Filters, our KalmanFormer outputs the state estimate through two

procedures: Prediction and Update.

1. In the prediction procedure, a prior state estimate of the current

moment x̂−
k|k−1

is obtained from the previous posterior estimate

x̂k−1|k−1.

2. In the update procedure, KalmanFormer uses the new observation

zk to compute the current state posterior x̂k|k from the previous

prior estimation x̂k|k−1, which is calculated in Equation 11.

FIGURE 4

Information flow of the KalmanFormer.

Instead of using the Kalman Gain matrix for the observation-

update in the traditional Kalman Filters, KalmanFormer produces

the Kalman Gain in a learned manner, denoted by KK(2), with

the trainable parameters 2:

x̂k|k = x̂k|k−1 +KK(2)(zk −Hkx̂k|k−1) (11)

3.2 Input features

The model-based Kalman Filters, including EKF, UKF, and

CKF compute the Kalman Gain from the known statistical

information. We use a Transformer to model the Kalman Gain

in a learned fashion in this paper. To calculate the Kalman Gain,

we have to provide the information to a deep neural network to

use the information to calculate the Kalman Gain. Inspired by

KalmanNet (Revach et al., 2022), we devise the following quantities,

which can be used for the input of the KalmanFormer:

• The observation difference:z̃k = zk − zk−1

• The innovation difference: zk = zk − ẑk|k−1

• The state evolution difference: x̃k = x̂k|k − x̂k−1|k−1, which

represents the difference between two consecutive posterior

state estimate.

• The state update difference: x̂k = x̂k|k − x̂k|k−1, which indicates

the difference between the posterior state estimate and the

prior state estimate.

Featurs x̃k and zk indicate the uncertainty of the state estimates,

while features zk and x̂k characterize the state transition and

observation update process. Features zk and z̃k contains the
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FIGURE 5

The details of the KalmanFormer.

observation information, while features xk and x̂k characterize the

states information of the system.

3.3 Details of the KalmanFormer

The internal of KalmanFormer uses the features discussed in

the previous section to compute the KalmanGain. As a first step, we

will introduce the input features of the Transformer. To be specific,

z̃k, zk, x̃k, and x̂k are used to construct our KalmanFormer. The data

flow of the input features inside our KalmanFormer is shown in

Figure 5.

Subsequently, the related observation features 1z̃k ∈ R
n and

zk ∈ R
n are concatenate together to the input Fin ∈ R

2n of the

Transformer encoders. And also, the related state features 1x̃k ∈
R
m and 1x̂k ∈ R

m are concatenated together to the input for the

Transformer decoders.

We devise three initial matrices WQ ∈ R
2m×2m, WK ∈

R
2m×2m, and WV ∈ R

2m×2m to generate the Q, K, and V

matrices, which is used to produce self-attention score described

in Section 2.3.2.

Following is the Add and Norm operation. To be specific, Layer

normalization is used to perform Add and Norm operation, which

is expressed as follows:

LayerNorm(X + attention) (12)

Then the feed forward neural network is used to generate

output, which is presented as:

FFN = ReLU(XW1 + b1)W2 + b2 (13)

The feed-forward neural network is composed of two layers of

the fully connected network. TheW1 andW2 are the weights for the

two layers of network. b1 and b2 are the bias. ReLU is the Rectified

Linear Unit activate function.
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Then the output of the Transformer encoder and the

concatenated state input features to produce the learned Kalman

Gain.

In our implementation, the input dimension is set to 4, the

feed-forward dimension is set to 64, and 2 heads are employed in

the Multi-head Self Attention Mechanism (MHSA). Furthermore,

we stack the encoder and decoder 2 times to produce the learned

Kalman Gain.

The information flow of the KalmanFormer is illustrated in

Figure 5.

3.4 Training algorithm

A supervised learning paradigm is used to train the

KalmanFormer using the available labeled data. Instead of

producing the posterior estimate state, our KalmanFormer

produces the Kalman Gain. Consequently, we define

(Equation 21) to backpropagate the loss of Kalman Gain to

train our KalmanFormer:

∂L

∂Kk
= ∂||Kk1zk − 1xk||2

∂Kk
= 2 · (Kk1zk − 1xk) · 1zTk (14)

where 1xk = xk − x̂k|k−1. The Equation 14 indicates that

we can learn the computation of the Kalman Gain by training

KalmanFormer end-to-end using the squared-error loss.

In general, the dataset used for training the KalmanFormer

consists of N length Ttrajectories. Let T denote the length of i-th

training trajectory inside the dataset. The dataset can be expressed

byD = {(Zi,Xi)}N1 , where

Zi = [z
(i)
1 , z

(i)
2 ..., z

(i)
T ],Xi = [x

(i)
0 , x

(i)
1 ..., x

(i)
T ] (15)

The empirical loss function for the i-th trajectory training

inside the dataset is defined as follows:

li(2) = 1

Ti

Ti
∑

k=1

||92(x̂
i
k−1,z

(i)
k
)− x

(i)
k
||2 + ξ · ||2||2 (16)

where 92 represents the output of our KalmanFormer, 2

is the trainable parameters inside the KalmanFormer, and ξ is

regularization coefficient. Let 1x
(k)
k

= x
(k)
k

− x̂
(k)
k|k−1

and 1z
(k)
k

=
z
(k)
k

− ẑ
(k)
k|k−1

be the state prediction error and the measurement

innovation at timestamp k. The partial derivative of the loss

function respective to the Kalman gain matrix is:

∂ l(2)

∂Kk(2)
= 1

LTk

L
∑

k=1

Tk
∑

k=1

∂||1x
(k)
k

− Kk(2)1z
(k)
k
||22

∂Kk(2)
(17)

By plugging into the chain rule:

∂ l(2)

∂(2)
= ∂ l(2)

∂Kk(2)

∂Kk(2)

∂(2)
(18)

We can adopt a stochastic gradient descent algorithm to

optimize 2 by using ∂ l(2∗)
∂(2∗) = 0.

4 Numerical experiments

In this section, we design a series of experiments to evaluate

the performance of our proposed KalmanFormer and compare it to

some other benchmarks. As a first step, we make a brief description

of the training setup of our KalmanFormer. Following that, we

conduct the simulation experiments including nonlinear cases to

evaluate the performance of our proposed method. At the end of

this section, IMU and GPS information are employed to investigate

the effectiveness of our proposed method.

4.1 Implement details

To be specific, the dimensions of concatenated observation

difference and innovation difference are 8, which is the input to the

encoder for the transformer. Also, the dimensions of state evolution

difference and state update difference are 4, which is the input to the

decoders of Transformer. The feed-forward dimension inside the

encoder and decoder is 64, and 2 heads are employed in the multi-

head attention mechanism. Furthermore, we stack the encoder and

decoder 2 times to produce the output. After the output is obtained,

a fully connected layer is used to generate the learned Kalman Gain.

Furthermore, we conduct all of our training and validation

experiments on the Pytorch (Paszke et al., 2019) platform using

a single RTX 3090 GPU card, CUDA11.6, and cuDNN version 8.

Furthermore, the Cosine Annealing Schedule is employed to adjust

the learning rate in the training procedure, which can be expressed

as follows:

ηt = ηmin +
1

2
(ηmax − ηmin)(1+ cos

(

Tcur

Tmax
π

)

) (19)

where ηt represents the learning rate of the current iteration,

ηmin and ηmax mean the predefined minimum and maximum

learning rate respectively. Tcur and Tmax are the current iteration

and maximum iterations respectively.

Adam (Kingma and Ba, 2014) optimizer is used to train

the KalmanFormer. Different hyper parameters are performed on

the simulation and multi-sensor fusion experiments. The specific

information about the hyperparameters is shown in Table 1.

4.2 Simulation experiments

In this section, a series of simulation experiments are designed

to demonstrate the effort of our proposed KalmanFormer. We

make a comparison with EKF and KalmanNet (Revach et al., 2021).

4.2.1 Test metric
Mean Square Error (MSE) is used to evaluate the effect of our

proposed KalmanFormer, which is computed as follows:

MSE = 1

N

N
∑

j=1

T
∑

i=1

|(xest − xtrue)i|2 (20)

Frontiers inNeurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1460255
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Shen et al. 10.3389/fnbot.2024.1460255

TABLE 1 Details information about the hyperparameters.

Experiment type Epochs Batch size Learning rate Weight decay

Simulation 200 30 1e-3 1e-3

Multi-sensor fusion 100 10 1e-3 1e-4

FIGURE 6

Illustration of trajectories.

where xest means the output from our KalmanFormer, xtrue
represents corresponding ground-truth. N means the number of

the testing trajectories. T is the length of current trajectory.

4.2.2 Non-linear Lorenz attractors
The Lorenz attractor (Tucker, 1999) describes a non-linear

chaotic system used for atmospheric convection. The Lorenz

system is expressed by following three differential equations that

define the convection rate, the horizontal temperature variation,

and the vertical temperature variation of a fluid:

∂z1

∂t
= 10(z2−z1),

∂z2

∂t
= z1(28−z3)−z2,

∂z3

∂t
= z1z2−

8

3
z3, (21)

In order to generate the simulated trajectories, we run the

Lorenz equations described at Equation 21 with a time step of

1t = 0.05 and add Gaussian noise of standard deviation σ = 0.05

to the results. The noisy data is considered as the measurements

while the decimated data is regarded as the ground truth trajectory

for our experiments. The trajectories of ground truth and noisy

observations are shown in Figure 6.

Assuming a three-dimensional vector x = [z1, z2, z3]
T ∈ R, the

dynamic matrix A(x) of the system from Equation 21 is expressed

as follows:

A(x) =







−10 10 0

28− z3 −1 0

z2 0 − 8
3













z1
z2
z3






(22)

After that, Taylor expansion is used to obtain the state transition

function:

Fk(xk) = I+
J

∑

j=1

(A(xk)k)
j

j!
(23)

where I represents the identity matrix and Jmeans the number

of Taylor expansion. We set J = 5 in our experiments. For the

TABLE 2 Origin point information for NED frame.

Latitude origin 42.29322deg

Longitude origin –83.709657 deg

Altitude origin 270 m

measurement model, we set H = I. For the noise parameters, we

setQ = q2I,R = r2I, where q=0.8, r=1.

4.3 Multi-sensor information fusion

We further evaluate the effectiveness of the proposed

KalmanFormer in multi-sensor fusion. We employ the Michigan

NCLT dataset (Carlevaris-Bianco et al., 2016) with different types

of sensors to perform our experiments.

The NCLT dataset was obtained from a mobile robot platform

equipped with various sensors, including Real Time Kinematic

GPS, IMU, Consumer-grade GPS, etc. In our experiments, IMU is

employed to provide angular speed information and acceleration

information, which is used to design the state transition function.

The consumer-grade GPS is applied to provide the observation

of the displacement. The Real-Time Kinematic GPS is used to

generate a more accurate state of the system, which is used to

evaluate the effectiveness of the proposed method.

4.3.1 Coordinates definition
A North-East-Down (NED) frame is employed to describe the

robot’s pose and position. Furthermore, the fixed origin point of the

NED frame is shown in Table 2.

The angular and acceleration information from the IMU is

measured in the IMU’s reference frame, which closely aligns with

the robot’s reference coordinate. It is necessary to transform the

IMU reading from IMU’s frame into a global frame.
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FIGURE 7

Transformation between IMU frame and Global Frame (NED).

As shown in Figure 7, we can obtain the transformation

between the IMU frame and the global frame, which is calculated

as:

{

agx = ax cos(−θ)− ay sin(−θ)

agy = ax sin(−θ)− ay + cos(−θ)
(24)

4.3.2 State transition model
The state vector of the system in the global coordinate is defined

as:

xk=[x, y, vx, vy, θ ,ω] (25)

where xk, yk represent the position of the robot in the global

frame. vk and vy represent the velocities. θ and ω mean the heading

angle and angular velocities respectively.

In the global coordinate system, the state transitionmodel takes

the IMU’s readings, including heading θ , angular velocityω, and the

accelerations as the control input. The state transitionmodel (in the

NED frame) is then:

x̂k|k−1 = Fk(xk−1, uk−1) =



















xk−1 + vx1k+ 1
2agx1k2

yk−1 + vy1k+ 1
2agy1k2

vx−1 + agx1k

vy−1 + agy1k

θk

ωK



















(26)

4.3.3 Observation model
The GPS observation model produces a prediction of the

expected GPS observation based on the predicted state. Here we

use the consumer-grade GPS to produce the observation of the

displacement. The observation model is expressed as follows:

zk|k−1 = Hkx̂k|k−1 =
[

1 0 0 0 0 0

0 1 0 0 0 0

]

x̂k|k−1 (27)

4.3.4 Noise setting
The initial process noise Qk and measurement noise Rk

matrices of the EKF are expressed in Equations 2, 3. These Qk

and Rk matrices are determined using empirical data as well as

completing experimental tuning. The initial Qk and Rk matrices

used in our experiments are developed as follows:

Qk =



















1 0 0 0 0 0

0 1 0 0 0 0

0 0 10000 0 0 0

0 0 0 10000 0 0

0 0 0 0 0.001 0

0 0 0 0 0 0.01



















(28)

Rk =
[

100 0

0 100

]

(29)

4.4 Model mismatch

4.4.1 State transition model mismatch
We devise experiments to investigate the robustness of the

KalmanFormer when the state transition model is mismatched.

This is achieved by using three 3-dimensional rotation matrices:

RZ =







cos(yaw) − sin(yaw) 0

sin(yaw) cos(yaw) 0

0 0 1






(30)

RY =







cos(pitch) 0 sin(pitch)

0 1 0

− sin(pitch) 0 cos(pitch)






(31)

RX =







1 0 0

0 cos(roll) − sin(roll)

0 sin(roll) cos(roll)






(32)

yaw = roll = pitch = 1◦, 5◦ (33)

We evaluate the performance in the condition of model

mismatch real-word NCLT datasets. The mismatched state

transition real-world is expressed as follows:

Frotated
real

= RX • RY • RZ •







1 1k 1
21k2

0 1 1k

0 0 1







(34)

where Frotated
real

is the mismatched state transition model for the

real-world experiments. In our experiments, the rotation angle is

set to 1◦ and 5◦to verify the model performance.
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FIGURE 8

MSE comparison results with KalmanNet and EKF on synthetic dataset.

FIGURE 9

MSE comparison results with EKF when the observation is mismatched.

4.4.2 Observation model mismatch
Additionally, we investigate the performance of our proposed

KalmanFormer with EKF when the observation function is

mismatched. The mismatched observation function is expressed

as follows:

Hrotated = H • RX • RY • RZ (35)

We set the rotation angle to 10◦ to validate the effectiveness on
the simulation dataset.

Furthermore, we transform the observation in Cartesian

coordinates into Spherical coordinates using the equation and

compare the performance.











r =
√

z21 + z22 + z23
θ = cos−1( z3r )

φ = tan−1( z2z1 )

(36)
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FIGURE 10

MSE comparison results with EKF when the observation is in spherical coordinate.

4.5 Evaluation results

In this section, we will discuss the performance of our proposed

KalmanFormer with EKF and KalmanNet for both linear and non-

linear systems. Furthermore, we will investigate the performance of

the proposed KalmanFormer using the NCLT dataset.

4.5.1 Simulation results
MSE metric is used to demonstrate the effectiveness of the

proposed KalmanFormer in non-linear Lorenz attractors. As

shown in Figure 8, our KalmanFormer achieves a higherMSE result

in the first 30 points of the Test sequence when compared to

KalmanNet and EKF. However, after the 40 points, the MSE of our

KalmanFormer is much lower than EKF and KalmanNet.

Besides that, Euclidean Distance is used to evaluate the

effectiveness of our methodology over the whole test trajectories.

Euclidean Distance is expressed as follows:

distance =
N

∑

i=1

√

√

√

√

√

T
∑

j=1

(x
j
est − x

j
true)

2
(37)

where xtrue ∈ [ z1 z2 z3]
T ∈ R means the ground truth of

the state vector. xest ∈ [ z1 z2 z3]
T ∈ R represents the estimation

from our KalmanFormer. N is the number of the trajectories. T is

the length for each trajectory.

Using Equation 37, the distance of our proposed method is 136.

While the distance of KalmanNet is 209, which demonstrates the

superiority of our KalmanFormer. In conclusion, KalmanFormer

achieves more accurate performance on the Simulation Test set.

Additionally, Figure 9 reports the experiment results when the

observation model is mismatched.

TABLE 3 The complexity comparison results on simulation experiments.

Method Parameters Storage
(KB)

Inference
time (s)

KalmanFormer 8,081 66 21

KalmanNet 23,928 46 19

EKF \ \ 20

We can observe that the proposed KalmanFormer achieves

lower MSE performance than EKF in the same experiment setup

when the observation model is disturbed by the rotation matrix.

Figure 10 reports the results when the observation in

transformed into spherical coordinates. We can see that

our proposed KalmanFormer achieves the best performance

compared to KalmanNet and EKF in the condition of the

mismatched observation.

Finally, we compare the time complexity of the KalmanFormer

compared to EKF and KalmanNet through simulation experiments.

Parameters, storage space, and inference time are adopted to verify

the computational complexity of the KalmanFormer, KalmanNet,

and EKF. The inference time is computed on the simulation

experiments. The comparison results are shown in Table 3.

As shown in Table 3, the KalmanNet and the KalmanFormer

have similar space demand and the similar running speeds on the

simulation experiments. To be specific, the KalmanNet needs 44

KB harddisk space to store while the KalmanFormer 66KB needs

disk space. Furthermore, we compare the inference time on the

whole dataset. The inference time of the EKF is about 20s while the

KalmanFormer runs about 21s. We can conclude that the proposed

KalmanFormer has a similar time complexity with the EKF and

KalmanNet and it can be further used in real-world applications.
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FIGURE 11

Trajectory comparison results with KalmanNet and EKF.

FIGURE 12

MSE performance with KalmanNet and EKF on NCLT dataset.

4.5.2 Multi-sensor information fusion
The trajectory we used for training and validating

KalmanFormer and KalmanNet are obtained from the date

of 2012-01-22 within the NCLT datasets. Furthermore, a date of

2012-04-29 trajectory is used to test the performance. The sample

rate of the training, validation, and test is 1 HZ. The trajectory

comparison result is shown in Figure 11.

As shown in Figure 11, our KalmanFormer performs better

than EKF and KalmanNet. In order to evaluate the property

of our KalmanFormer, we make a comparison with EKF and

KalmanNet in terms of MSE using the same data in Figure 11.

The result is shown in Figure 12. According to Figure 12,

our KalmanFormer achieves similar accuracy at the first 500

points of the testing set. However, in the last 1,500 points,

our method achieves better performance in MSE compared

to KalmanNet.

Additionally, Equation 37 is used to evaluate the validity

over the whole test trajectory quantitatively. The distance of

KalmanFormer is 19 m, the distance of KalmanNet is 30 m, and

the distance of EKF is 316 m, which proves the superiority of

the KalmanFormer.

Finally, we investigate the results using the mismatched state

transition function with the rotation angles of 1◦ and 5◦. Figure 13
reports the results when the state transition function ismismatched.
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FIGURE 13

MSE performance when the state transition model is mismatched.

We can observe that when the state transitionmodel is disturbed by

the rotation matrix with a rotation angle of 1◦, our KalmanFormer

has a similar performance to the KalmanNet and outperforms the

EKF. When the rotation angle is set to 5◦, the performance of

EKF degrades significantly. And the KalmanFormer outperforms

the KalamNet and EKF. Even our KalmanFormer achieves lower

MSE than KalmanNet.

5 Conclusion

In this paper, we proposed KalmanFormer, which is a hybrid

of data-driven and model-driven implementation of the Kalman

Filters. KalmanFormer incorporates a Transformer architecture

within the learning process of computing the Kalman Gain (KG)

and combines the learned KG into a traditional Kalman Filter. The

proposed KalmanFormer uses the Kalman Filter without requiring

any prior knowledge of process statistics or measurement noise

statistics, even if the system model is mismatched. It has been

demonstrated through numerical experiments that KalmanFormer

is capable of achieving the minimum MSE when properly trained.

It has also been proven that KalmanFormer is more robust to

inaccurate knowledge of state space parameters in multi-sensor

information fusion.
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