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Combining item feature information helps extract comprehensive sequential

patterns, thereby improving the accuracy of sequential recommendations.

However, existing methods usually combine features of each item using a vanilla

attentionmechanism.We argue that such a combination ignores the interactions

between features and does not model integrated feature representations. In this

study, we propose a novel Feature Interaction Dual Self-attention network (FIDS)

model for sequential recommendation, which utilizes dual self-attention to

capture both feature interactions and sequential transition patterns. Specifically,

we first model the feature interactions for each item to form meaningful higher-

order feature representations using amulti-head attentionmechanism. Then, we

adopt two independent self-attention networks to capture the transition patterns

in both the item sequence and the integrated feature sequence, respectively.

Moreover, we stack multiple self-attention blocks and add residual connections

at each block for all self-attention networks. Finally, we combine the feature-

wise and item-wise sequential patterns into a fully connected layer for the next

item recommendation. We conduct experiments on two real-world datasets,

and our experimental results show that the proposed FIDS method outperforms

state-of-the-art recommendation models.

KEYWORDS

sequential recommendation, self-attention, feature interaction, dual self-attention,

sequential transition patterns

1 Introduction

With the development of the Internet, sequential recommendation has been widely

used in business scenarios (e.g., e-commerce recommendation, media recommendation,

and ad click prediction). In such scenarios, the user’s historical behaviors can be organized

as a chronological sequence of activities. Moreover, sequential recommendation aims to

recommend the next item that the user is likely to interact with in the near future based on

the user’s historical behaviors.

A large number of methods have been proposed for sequential recommendation.

Traditional sequential models are usually based on Markov Chain (MC) (Chen et al.,

2015; He and McAuley, 2016). A classic model, Factorizing Personalized Markov Chain

(FPMC) (Rendle et al., 2010), has been introduced to factorize user-specific transition

matrices over Markov Chain, which assumes that the next action is only related to the

previous one. However, with the Markov assumption, an independent combination of the

past interactions may limit the performance of recommendation (Xu et al., 2019). Recently,

with the success of deep learning, many methods based on Recurrent Neural Network

(RNN) have emerged (Hidasi et al., 2016; Zhu et al., 2017). These RNN-based methods

usually employ the last hidden state of RNN as the user representation, which is used
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to predict the next action. Despite the success, RNN models

are hard to preserve users’ long-term dependencies, even using

well-designed cell structures such as Long Short-Term Memory

(LSTM) and Gated Recurrent Unit (GRU). Khandelwal et al.

(2018) demonstrate that language models using LSTM can apply

approximately 200 context tokens on average. However, only 50

nearby tokens can be sharply distinguished, which reveals that

even LSTM has trouble in capturing long-range dependencies.

In addition, RNN-based methods need to propagate relevant

information step by step, which makes it hard to parallelize (Zhang

et al., 2019).

More recently, the self-attention mechanism has achieved

great success in natural language processing (Vaswani et al.,

2017), which also makes outstanding contributions to sequential

recommendation. Compared with RNN, self-attention is more

suitable for grasping and preserving the long-term dependencies

as it allows the model to interact with any step regardless of

distance. Kang and McAuley (2018) proposed the Self-Attentive

Sequential Recommendation model (SASRec) that applies a self-

attention mechanism to replace traditional RNNs for sequential

recommendation and achieves remarkable performance. However,

SASRec only considers the sequential patterns between items,

ignoring the sequential patterns between features, which is

incomplete. In actual scenarios, users’ behaviors usually also have

transition patterns at the item feature level. A very promising

idea to solve the problem is to introduce feature-wise into the

model to reduce the prediction space to improve recommendation

accuracy. Zhang et al. (2019) and its enhanced version Hao et al.

(2023) proposed the FDSA model to capture the full sequential

patterns from the item-wise and the feature-wise, where a simple

vanilla attention operation is used to obtain the integrated feature

representation. Though FDSA captures the feature-wise transition

patterns and achieves state-of-the-art performance, it generates the

feature combinations using the vanilla attention, which assumes

that features are independent of each other. This assumption is

obviously not realistic (Yun et al., 2019). For instance, women

like skirts, while men prefer pants, indicating there are certain

dependencies between gender and category. The vanilla attention

applied in FDSA (Zhang et al., 2019) and its enhanced version

(Hao et al., 2023) is not carefully designed for learning integration

features, and it cannot learn effective integrated features. Capturing

the dependencies between the features of an item can help learn

meaningful and integrated feature representations, and higher-

order feature combinations are crucial for good performance (Lian

et al., 2018).

In this study, we propose a novel Feature Interaction Dual Self-

Attention Network (FIDS) model for sequential recommendation,

which utilizes dual self-attention to capture feature interactions

and sequential transition patterns. Specifically, we first utilize

self-attention to model feature interactions for each item in

the sequence, in which each feature is allowed to interact with

all other features and is able to automatically identify relevant

features to form meaningful higher-order features using a multi-

head attention mechanism. Then, we adopt two independent

self-attention networks to capture the transition patterns of the

item sequence and the integrated feature sequence, respectively.

Moreover, we stack multiple self-attention blocks and add residual

connections at each block. For self-attention capturing feature

interactions, multiple blocks can model interactions at different

orders, and residual connections can combine interactions of

different orders. For self-attention capturing sequential patterns,

stacking multiple blocks can learn more complex item transitions,

and residual connections help propagate the visited items’

embedding (or integrated features’ embedding) to the final layer.

Finally, we conduct extensive experiments on two real-world

datasets. Our experimental results demonstrate that considering

feature interaction can significantly improve the accuracy of the

recommendation.

The main contributions of this study are summarized as

follows:

• To the best of our knowledge, this is the first study to learn

feature interactions and capture sequential patterns all in the

unified self-attention mechanism.

• We propose a novel Feature Interaction Dual Self-attention

network (FIDS) model for sequential recommendation, which

adopts dual self-attention to model the dependencies between

items and the dependencies between features, respectively.

Specifically, we first utilize self-attention to model the feature

interactions for each item to form meaningful higher-order

features. Then, we adopt two independent self-attention

networks to capture the transition patterns of the item

sequence and the integrated feature sequence. Finally, we

combine the feature-wise and item-wise sequential patterns to

a fully connected layer for the next item recommendation.

• We conduct extensive experiments on two real-world datasets

and demonstrate that our proposed method outperforms the

state-of-the-art methods.

2 Related work

In this section, we discuss related work from two aspects, which

are sequential recommendation and attention mechanism.

2.1 Sequential recommendation

Most of the existing sequential recommendation methods are

concentrated on Markov Chain-based models and neural network-

based models. In essence, the first-order Markov Chain captures

the transition relationship between the current action and the

previous action, while the higher-order Markov Chain assumes

that the next action is related to several previous actions. In

general, the users’ former behavior has a more significant impact

on the following action, so the first-order MC-based models can

still achieve excellent performance. He et al. (2017) proposed

TransRecmodel, considering the first-orderMarkov Chain. Rendle

et al. (2010) combined Matrix Factorization and Markov Chain

to model sequential patterns. He and McAuley (2016) dedicated

modeling sequential relationships using higher-order Markov

Chains and can make meaningful recommendations even in sparse

environments. However, models based on Markov Chains rely
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TABLE 1 Table of notations.

Notation Description

U , I, C Set of users, items and features

|U |, |I|, |C| The number of users, items and features

S Item sequence of user history interaction

A∗ Sets of features of an item

n Maximum sequence length

m Number of features of one item

nh Number of self-attention heads

b Number of self-attention blocks

d Latent vector dimension

U ∈ R
|U |×d User embedding matrix

I ∈ R
|I|×d Item embedding matrix

P ∈ R
n×d Position matrix

S ∈ R
n×d Input item embedding matrix

A∗ ∈ R
m×d Input feature latent matrice of an item

E∗ ∈ R
m×d

Output of self-attention in automatic feature

interaction layer

F ∈ R
n×d Integrated feature sequence matrix

O
(b)
f ∈ R

n×d
Feature embeddings after the feature-wise

self-attention layer

O(b)
s ∈ R

n×d
Item embeddings after the item-wise self-attention

layer

L The objective function

on strong assumptions, which may limit the recommendation

performance. Recently, with the advancement of deep learning,

many neural network-based sequential recommendation methods

have emerged. Hidasi et al. (2016) adopted GRU to model

transitions between items. Despite its success, RNN-based methods

still have problems in maintaining long-term user preferences and

parallel processing. Moreover, Lv et al. (2021), Manotumruksa

and Yilmaz (2020), and Ren et al. (2020) utilize the generative

adversarial network to assist sequential recommendation and

improve the model performance by enhancing the generalization

of the model. Tolstikhin et al. (2021) hope to capture sequence

information using a simple MLP structure which may facilitate

the simplification of computation. Recently, numerous studies

(Chen et al., 2022; Li et al., 2023; Qin et al., 2023) have suggested

employing contrastive learning in sequential recommendation

(SR) to enhance user representation. However, these sequential

recommenders focus only on item sequences and fail to utilize

valuable auxiliary information.

2.2 Attention mechanism

In recent years, attention mechanism has been widely used in

various tasks, including machine translation (Huang et al., 2016;

Miculicich et al., 2018; Zhang J. et al., 2018), computer vision

(Jaderberg et al., 2015; Wang et al., 2017; Hu et al., 2018), and

recommendation system (Zhang S. et al., 2018). The success of

the Transformer (Vaswani et al., 2017) and BERT (Devlin et al.,

2019), which can model syntactic and semantic patterns between

words in a sentence very efficiently, stimulates the development

of the self-attention mechanism in sequential recommendation.

Kang and McAuley (2018) and Sun et al. (2019) employed

the self-attention mechanism to model sequential patterns and

proved that the self-attention network is superior to RNN/CNN-

based models. Zhou et al. (2018) proposed an attention-based

user behavior modeling framework, which projects heterogeneous

user behaviors into multiple potential semantic spaces, where the

influence between behaviors is captured by self-attention. Huang

et al. (2018) also captured the polymorphism of user behaviors

through a feature-wise self-attention network and dynamically

modeled the contextual dependency via the forward and backward

position encoding matrices. Lately, Zhang et al. (2019) focused on

conducting the feature sequence via vanilla attention and modeling

sequence transition patterns from the feature-wise and item-wise.

2.2.1 Di�erence
The methods mentioned above either only model sequential

patterns from a single level (i.e., item-wise) or coarsely integrate

feature representations with vanilla attention, which cannot

model accurate integrated features and may limit the accuracy

of recommendations. Inspired by Song et al. (2019), who

adopted a multi-head self-attention to capture feature interactions

automatically for Click-Through Rate (CTR) prediction. In this

study, we learn feature interactions and capture item-wise and

feature-wise sequential patterns under a unified self-attention

framework.

3 Proposed model

In this section, we introduce the Feature Interaction Dual Self-

attention network (FIDS) model. We first formulate the problem

definition and then present the architecture and the details of our

proposed model.

3.1 Problem statement

Sequential recommendation aims to predict the next item that

the user interacts with, based on his/her historical interaction

sequence. We formulate the sequential recommendation

before introducing our proposed model details. We let

U = {u1, u2, ..., u|U |} denote the set of users and I = {i1, i2, ..., i|I|}
represent the set of items, where |U | and |I| represent the number

of users and items, respectively. We use S = {s1, s2, ..., s|S|} to

represent the sequence of items that the user has interacted with

in a chronological order, where si ∈ I . In addition, item si ∈ S

corresponds to a set of features Ai = {ai1, ai2, ..., aim}, where m

represents the number of features of each item in the dataset. The

goal is to recommend the next item i ∈ I that user u ∈ U might

interact with. For clarity, Table 1 lists the symbols involved and

their definitions.
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FIGURE 1

Framework of feature interaction dual self-attention network.

3.2 The architecture of FIDS

We propose a novel Feature Interaction Dual Self-

Attention Network, the basic idea of adopting a dual

self-attention network to generate an accurate feature sequence

by considering feature interactions and capturing the full

sequential patterns from item-wise and feature-wise. We mainly

consider the following characteristics of users’ sequential

behaviors.

1) The users’ sequential behavior is not only related to the item

sequence but also closely related to the feature-wise sequential

pattern.

2) For each item, feature interaction can capture a more

comprehensive integrated feature, thereby enhancing

the expressive ability of feature-wise modeling sequential

dependencies.

3.2.1 Automatic feature interaction
Modeling feature interactions with the self-attention

mechanism has proven effective in click-through rate (CTR)

prediction tasks (Song et al., 2019; Yun et al., 2019). Inspired

by them, we use n self-attention modules to model the

interaction between the features corresponding to n items

automatically in the automatic feature interaction layer,

where n represents the historical interaction number of

the input sequence. Each self-attention module acts on

one item’s features and generates integrated higher-level

features. Then, we use the vanilla attention to select and

merge its output into a d-dimensional feature vector for each

item. In this way, meaningful feature representations have

been generated. The second problem mentioned above has

been solved.

3.2.2 Capturing transition patterns
Zhang et al. (2019) proved that only the item level is not enough

to model the entire sequence pattern. Here, we model the feature-

wise transition patterns and the item-wise transition patterns in

the feature-wise self-attention layer and the item-wise self-attention

layer, respectively. More specifically, we use two self-attention

networks with independent parameters to model item-wise and

feature-wise transition patterns.

As shown in Figure 1, FIDS consists of five parts, namely, an

embedding layer, an automatic feature interaction layer, an item-

wise self-attention layer, a feature-wise self-attention layer, and a

prediction layer. Specifically, we first project the items and relevant

features into dense vector representations. Then, the automatic

feature interaction layer adopts multi-head self-attention networks

to learn higher-order interactions between features automatically

and generate the feature sequence. Subsequently, the feature-

wise sequential patterns and the item-wise sequential patterns

are learned in the feature-wise self-attention layer and the item-

wise self-attention layer, respectively. Finally, we combine the two

sequential patterns and recommend the next item in the prediction

layer. Following, we elaborate on the details of our proposed model

FIDS.

3.3 Embedding layer

We convert the user historical interaction sequence into a

fixed-length sequence s = (s1, s2, ..., sn), where n represents the

maximum length that the model can accommodate. If the sequence

length is longer than n, we intercept the n items that the user has

recently interacted with. For the length of sequences less than n,

we adopt a zero-padding strategy. We first map the item sequence

into a dense latent matrix V ∈ R
n×d, where d represents the
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latent dimension. Since the self-attention mechanism does not

have position awareness, we generate a learnable position matrix

P ∈ R
n×d to model the position relationship (Kang and McAuley,

2018). Each item in the sequence corresponds to a set of features,

and we generate a feature matrix Ai ∈ R
m×d for item si, where

m is the number of features of each item. Then, the original

feature sequence can be expressed as a matrix sequence f =
(A1,A2, ...,An).

In short, the embedding layer generates three sequences: item

sequence, position sequence, and feature sequence. We use S ∈
R
n×d and P ∈ R

n×d to represent the item and position sequence

embedding matrix respectively. A∗ ∈ R
m×d is used to represent an

element of the feature sequence.

3.4 Automatic feature interaction layer

The critical task at the automatic feature interaction layer is

to learn meaningful higher-order combined features. Song et al.

(2019) proved that self-attention network can effectively construct

higher-order feature interactions in CTR prediction tasks. Inspired

by it, once the feature matrix Ai about the i-th item is obtained, we

use a self-attention mechanism to learn higher-order interactions

between features. We adopt the widely used scaled dot-product

attention (Vaswani et al., 2017), which is defined as follows:

Attention(Q,K,V) = softmax(
QKT

√
d
)V , (1)

where Q, K, and V represent queries, keys, and values,

respectively. The term 1√
d
constrains the scale of the dot products,

where d is the latent dimension. For the task of learning the higher-

order interactions between features, Q, K, and V are all generated

by Ai. We first transform the feature matrix Ai into three matrices

via linear transformation and feed them into Attention to learn

higher-order interaction features.

HAi = Attention(AiW
Q,AiW

K ,AiW
V ), (2)

where WQ, WK , WV ∈ R
d×d are learnable weights. By doing

this, each feature vector is obtained by summing all feature vectors

with all attention scores.

3.4.1 Multi-head self-attention
We adopt a multi-head self-attention to map different feature

interactions to multiple subspaces and concatenate the outputs of

different subspaces:

MAi = [h1; h2; ...; hnh ]W
Ai ,

hj = Attention(AiW
Q
j ,AiW

K
j ,AiW

V
j ),

(3)

where nh denotes the number of heads in the automatic feature

interaction layer. AndWQ
j ,W

K
j ,W

V
j , andW

Ai are weight matrixes.

3.4.2 Residual connection
To a certain extent, the deeper the network is, the stronger

the expression ability and the better the performance will be.

However, the increase of network depth also bringsmany problems,

such as gradient disappearance and gradient explosion. Therefore,

simply adding more layers does not directly correspond to better

performance. He et al. (2016) proposed residual networks which

help propagate lower features to higher features. To preserve

the combined features learned previously, we apply residual

connections to combine different order features:

M′
Ai

= LayerNorm(MAi + Ai), (4)

where LayerNorm is Layer Normalization (Ba et al., 2016),

which is used to constrain the parameter range in order to alleviate

overfitting, and what we adopt is the same as Kang and McAuley

(2018):

LayerNorm(x) = α ⊙
x− µ

√
σ 2 + ǫ + β

, (5)

where x is the assumed input and µ, σ 2 are mean and variance.

⊙ is the Hadamard product. And α, β are learnable parameters.

3.4.3 Feed-forward network
Although the self-attention network has strong learning

capabilities, it still cannot get rid of the fact that it is a linear model.

To endow the model with non-linear capabilities and consider the

interaction at the dimensional level at the same time, we then add

two fully connected layers:

OAi = ReLU((M′
Ai
W1 + b1)W2 + b2), (6)

where W1, W2 ∈ R
d×d, b1, b1 ∈ R

d are weight matrixes and

bias, respectively. In essence, each feature of OAi has merged the

two-order influence of other features on itself.

3.4.4 Multiple self-attention blocks
To capture higher-order combined features, we stack multiple

self-attention blocks. We use SAttB (Self-Attention Block) to

represent the above self-attention process for simplifying; then,

the entire process of stacking multiple self-attention blocks can be

expressed as

O
(1)
Ai

= SAttB(Ai),

O
(2)
Ai

= SAttB(O
(1)
Ai
),

......

Ei = O
(b)
Ai

= SAttB(O
(b−1)
Ai

),

(7)

where O
(b)
Ai

∈ R
m×d is the output after stacking b self-attention

blocks about item i, and b (b >= 1) is the number of self-attention

blocks.
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3.4.5 Vanilla attention
Next, we use vanilla attention to merge mixed feature matrix

to a feature vector and select which features determine the user’s

choice:

fi =
m

∑

j

αje
i
j,

αj =
exp(eij)

∑m
k exp(ei

k
)
,

(8)

where eij is the j-th row of Ei. The term fi ∈ R
d is higher-order

integrated feature of item i. Then, the feature-wise sequence can be

translated to F = (f1, f2, ...fn), where fi represents the fused high-

order feature corresponding to item i. And we let F ∈ R
n×d denote

the integrated feature sequence matrix.

3.5 Feature-wise self-attention layer

Once the feature sequence F = (f1, f2, ...fn) is obtained,

we continue to use a same self-attention network to preserve

the contextual information and learn the dependencies between

features, and then, we try to generate a transition sequence F′ =
(f2, f3, ...fn+1). The last row of the output matrix in this layer

corresponds to the fusion feature of the next item that the user may

be interested in.

3.5.1 Position-coding
Since the self-attention network ignores the positional

relationship, we add position-coding P ∈ R
n×d to the feature

sequence matrix F to preserve the order of user interactions:

F =











f1 + p1
f2 + p2
· · ·

fn + pn











. (9)

Then, we send the summatrix to the self-attention blocks to capture

the user’s sequential patterns from the feature-wise, which is shown

as follows:

O
(1)
f = SAttB(F),

O
(2)
f = SAttB(O

(1)
f ),

......

O
(b)
f = SAttB(O

(b−1)
f ),

(10)

where O
(b)
f ∈ R

n×d is the learned feature transition matrix, the

last row of which can be interpreted as the next fusion feature that

the user might be interested in.

3.5.2 Mask
Unlike learning high-level feature interactions, when modeling

sequential transition patterns, we must limit the influence of items

purchased in future on items purchased in the past due to the

inherent sequence of sequences. More specifically, we adjust the

attention weights to 0 to eliminate the influence of fi on fj, where

i > j.

3.5.3 Di�erence
The automatic feature interaction layer and the feature-wise

self-attention layer (or the item-wise self-attention layer, which

will be introduced in detail later) are different when using self-

attention, although both utilize the attention mechanism. 1) We

do not need to consider position-coding when automatically

capturing feature interactions as there is no positional relationship

between features of an item. However, modeling sequential

patterns requires position-coding to learn the location contact.

2) When modeling feature-wise sequential patterns (or item-wise

sequential patterns), the impact of future features (or items) on

past features (or items) needs to be masked, but no mask is

required when capturing feature interactions as there is no order

between features. In addition, they have diverse interpretations

when using self-attention. Multiple block stacking is used to model

different order interactions and learn more complex sequential

patterns in the modeling feature interaction task and capturing

sequence mode, respectively. Residual connections can combine

interactions of different orders in the feature interaction task.When

modeling the transition patterns, it helps propagate integrated

features’ embedding (or the visited items’ embedding) to the

following layer.

3.6 Item-wise self-attention layer

The item-wise self-attention layer aims to learn the

dependencies between items. Similar to feature-wise, for

a given item sequence S = (s1, s2, ..., sn), this layer try to

learn a transition sequence S = (s2, s3, ..., sn+1). In detail,

we first attach a position-coding to the item sequence

S. Then, put it into stacked self-attention blocks, as

shown follows:

S =











s1 + p1
s2 + p2
· · ·

sn + pn











, (11)

O(1)
s = SAttB(S),

O(2)
s = SAttB(O(1)

s ),

......

O(b)
s = SAttB(O(b−1)

s ),

(12)

where the output O
(b)
s ∈ R

n×d of the last self-attention block

is the learned sequential pattern of item-wise. Note that the “Mask”

operation is also selected in the item-wise self-attention layer as in

the real scene, people do not knowwhat they will purchase in future

when they buy items.
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3.7 Prediction layer

To comprehensively consider feature-wise and item-wise

transition patterns, we concatenate the output of the two self-

attention layer O
(b)
f and O

(b)
s and then map it to a fully connected

layer:

Zu = [O
(b)
f ;O(b)

s ]Wz + bz, (13)

whereWz ∈ R
2d×d, bz ∈ R

d denote the weight matrix and bias,

respectively. Finally, given a user u, the relevant score of candidate

item i ∈ I is calculated as follows:

yui,t = zut v
T
i , (14)

where zut denotes the t-th line of Zu (t ∈ [1, n]), vi is one of

the candidate item embedding, and the vi is generated based solely

on the item ID. We extract the last step to calculate the score in

the prediction. We use the product to calculate the score of each

candidate item. Then, we sort the scores of all candidate items. The

higher the score, the more likely it is the next interactive item of the

user.

3.8 Training

In training, we randomly sample 100 negative items for each

training sequence and minimize the loss function below:

L = −
∑

i∈s

∑

t∈[1,n]

[

log(σ (yi,t))+
∑

j/∈s
log(1− σ (yj,t))

]

. (15)

3.8.1 Optimizer
We use the Adam optimizer (Kingma and Ba, 2015) to

optimize the network, which designs independent adaptive

learning rates for different parameters by calculating the first-order

moment estimation and the second-order moment estimation

of the gradient. During the evaluation phase, the number of

candidate items considered for each user is all items in the

dataset. This approach ensures a comprehensive evaluation of the

recommendation system’s performance.

3.8.2 Dropout
Overfitting is a common problem in neural network learning.

Dropout means that during the training of the deep learning

network, the neural network unit is temporarily dropped from the

network according to a certain probability, and it is shown to be an

effective means to alleviate overfitting in various neural networks

(Hinton et al., 2012; Krizhevsky et al., 2012; Srivastava et al., 2014;

Bouthillier et al., 2016; Volkovs et al., 2017). We also adopt a

dropout layer on the input item embedding, the fully connected

layer, and the output of the “Mask” operation.

4 Experiments

In this section, we first introduce the datasets, baseline

methods, evaluation metrics, and parameter settings in our

experiments. Then, we compare FIDS with the state-of-the-art

baseline methods, presenting experimental results and analyzing

the reasons.

4.1 Datasets

To compare the performance, we conduct experiments on

two real-world datasets: Tmall and MovieLens1. Tmall is a

comprehensive shopping website. The Tmall dataset is obtained

from IJCAI 2015 competition2. We filter out users with less than

15 clicks and items with less than 30 clicks by users (Kang and

McAuley, 2018). Each item contains three features (i.e., category,

seller, and brand). MovieLens is a collection of movie ratings,

including seven contextual features in total (i.e., rating, gender,

age, occupation, zip-code, year, and genre), where we treat rating

as a feature, and we treat a user’s features as the items’ features

that he/she has interacted with for not to waste information.

Furthermore, for an item sequence s = (s1, s2, ..., sn), we use s =
(s1, s2, ..., sn−1) for training and sn for testing. The feature sequence

is treated similarly. Table 2 shows the statistics of the datasets.

4.2 Baseline methods

We compared our proposed method FIDS with the following

competitive models.

BPR-MF (Rendle et al., 2009) is based on Bayesian theory

to maximize the posterior probability under a priori knowledge,

which uses a pairwise ranking loss to optimize the model and

combines matrix factorization for recommendation.

FPMC (Rendle et al., 2010) is mainly used to predict the

likelihood that unknown items will arouse user interest and use

this to list item recommendation lists, which combines matrix

factorization and Markov Chain for next-basket recommendation.

GRU4Rec (Hidasi et al., 2016) employs Gated Recurrent

Unit (GRU) to model user sequential behaviors for session-based

recommendations. Here, we treat an entire sequence as a session

during training.

TransRec (He et al., 2017) establishes a third-order relationship

between a user, a previously consumed item, and the next item.

Furthermore, it embeds the item as a point in the “translation”

space, and the user’s sequence behavior exists as a translation vector

in the space and then predicts the next item that may have behavior

through distance calculation.

Caser (Tang andWang, 2018) is proposed for top-N sequential

recommendation by modeling recent interacted actions as an

“image” and learning sequential patterns via convolution filters.

SASRec (Kang and McAuley, 2018) applies a self-attention

mechanism for the next item recommendation, which enables it to

make predictions based on relatively few actions.

SASRec+ (Kang and McAuley, 2018) is our extension to the

SASRecmethod involves concatenating item vector representations

1 https://www.kaggle.com/vatsal73/movielens-1m

2 https://tianchi.aliyun.com/competition
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TABLE 2 Statistics of datasets.

Datasets Tmall MovieLens

#clicks 276,117 1,000,210

#users 16,257 6,040

#items 18,678 3,706

#features of a record 3 7

Avg. #length of a user 15.98 163.82

sparsity 99.91% 95.53%

with category vector representations to serve as the input for the

item-level self-attention network.

MFGAN (Ren et al., 2020) employs the adversarial generation

network to sequential recommendation, which uses a multi-

discriminator structure to disentangle different factors to model

contextual information and improve the performance of sequential

recommendation.

MLP-Mixer+ (Tolstikhin et al., 2021) is our extended version

of the MLP-Mixer model, designed to adapt to sequential

recommendation tasks by incorporating explicit item features.

FDSA (Zhang et al., 2019) adopts item sequences and feature

sequences to model dependencies between items and dependencies

between features, respectively.

4.3 Experimental setup

4.3.1 Evaluation metrics
To evaluate the performance, we use two general evaluation

metrics, that is, Hit Rate (HR@K) and Normalized Discounted

Cumulative Gain (NDCG@K). The former evaluates the

unordered list of recommendations, and the latter evaluates

the ordered sequence. Here, we adopt K = {5, 10} for sequential
recommendation.

4.3.2 Parameter settings
For the parameters of baselines, we follow the best settings in

their studies. In our study, we set the maximum length to 100 in

Tmall and the MovieLens dataset to 400. Moreover, the maximum

length is also set in the same way in the model SASRec (Kang and

McAuley, 2018) and FDSA (Zhang et al., 2019). The learning rate

of Tmall and MovieLens is set to 0.0001 and 0.0002, respectively.

The number of blocks of all self-attention networks is set to 2

and 3 on Tmall and MovieLens, respectively. For the parameter

of the number of heads, we divide all self-attention networks into

two categories, used to model feature interactions and sequence

transition patterns. On the Tmall dataset, the number of heads

of these two types of self-attention is set to 1. For MovieLens,

the number of heads of self-attention used to model the sequence

transition patterns is set to 4, and for modeling feature interaction,

the value is set to 2. The dropout rate is 0.3 in Tmall and 0.2 in

MovieLens. The embedding size is set to 128 and 256 on the Tmall

and MovieLens datasets, respectively. For all models, the candidate

set for evaluation includes one hundred negative examples sampled

randomly and one positive example.

4.4 Results and discussion

To prove the effectiveness of our proposed model FIDS, we

compared it with seven state-of-the-art methods on Tmall and

MovieLens. The experimental results are shown in Table 3, and we

have the following observations:

First, we can observe that BPR, which does not consider the

sequence of user behaviors, performs worse than most sequential-

based models (e.g., FPMC and TransRec). This indicates that

modeling users’ sequential behaviors can enhance the accuracy

of recommendations. However, GRU4Rec performs poorly. We

analyze that the poor performance of GRU4Rec is caused by the

problem of disappearing gradients when RNN captures long-term

preferences, so it is hard to model users’ long-term preferences.

GRU4Rec is more suitable for session-based recommendation.

Similarly, Caser employs a convolutional module to combine

sequential tokens, organizing them into a matrix format. Caser

typically exhibits performance comparable to GRU4Rec.

Second, methods based on the self-attention mechanism,

that is, SASRec, MFGAN, FDSA, and FIDS, are superior to

other methods, which proves the effectiveness of self-attention in

modeling user sequential preferences. Compared with RNN-based

and CNN-based models, the advantage of self-attention is that

the hidden state obtained at each step contains the information

about the entire sequence. SASRec+ outperforms SASRec on

the MovieLens dataset but underperforms on the Tmall dataset.

This can be attributed to the instability in modeling sequential

patterns when concatenating item representations with item feature

representations as input vectors for the self-attention mechanism.

In essence, self-attention can model the dependencies between an

item and all step items, which is the strength of the self-attention

inherent structure. In addition, both FDSA and FIDS consider

features and exceed SASRec, MLP-Mixer+ and MFGAN, which

proves that capturing the dependencies between items alone cannot

adequately model the users’ sequential behaviors, and the feature

sequence also exposes the users’ sequential behaviors to some

extent.

Finally, compared to FDSA, our proposed model FIDS

adaptively learns the features of higher-order interactions via

multiple self-attention blocks with residual connection and

integrates themwith vanilla attention to enhance the representation

of elements in feature sequences. From Table 3, we can observe that

FIDS exceeds the strongest baseline FDSA by an average of 7.92%

and 2.71% on Tmall andMovieLens, respectively. The results prove

that considering feature-wise feature interactions can accurately

and comprehensively model integrated features. Moreover, our

approach outperforms all state-of-the-art methods. This illustrates

that FIDS is an effective method for sequential recommendation.

5 Ablation analysis

In this section, we construct detailed experiments to analyze

two problems: (1) The impact of only item-wise or only feature-

wise modeling. (2) Whether feature interaction can positively help

model performance.

(1) The impact of only item-wise or only feature-wise

modeling. We discuss the insufficient of considering only a single
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TABLE 3 Comparison of model performance on Tmall and MovieLens.

Datasets Tmall MovieLens

Measures HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

BPR-MF 0.2226 0.1474 0.3255 0.1781 0.3227 0.2033 0.4909 0.2557

FPMC 0.2855 0.2043 0.3944 0.2394 0.3435 0.2194 0.5276 0.2785

GRU4Rec 0.2155 0.1185 0.3082 0.1468 0.3714 0.1900 0.5093 0.2322

TransRec 0.2644 0.1820 0.3772 0.2169 0.3944 0.2548 0.5546 0.3048

Caser 0.3254 0.2337 0.4409 0.2708 0.6289 0.4687 0.7652 0.5131

SASRec 0.3679 0.2679 0.4852 0.3057 0.6753 0.5082 0.7917 0.5462

SASRec+ 0.3427 0.2415 0.4714 0.2829 0.6774 0.5192 0.7986 0.5532

MFGAN 0.3889 0.2741 0.4963 0.3231 0.6908 0.5372 0.8090 0.5773

MLP-Mixer+ 0.3930 0.2869 0.4059 0.3229 0.7301 0.5602 0.8207 0.5902

FDSA 0.3999 0.2914 0.5122 0.3309 0.7315 0.5642 0.8285 0.5957

FIDS 0.4360 0.3166 0.5493 0.3533 0.7469 0.5872 0.8376 0.6167

Improv. 9.02% 8.65% 7.24% 6.77% 2.11% 4.08% 1.10% 3.53%

The best score in each column is bolded, while the second-best score is underlined.

TABLE 4 Modeling sequence pattern from single sequence and multiple sequence.

Dataset Method
@5 @10

HR NDCG HR NDCG

Tmall

FIDS-item 0.3679 0.2679 0.4852 0.3057

FIDS-fea 0.4271 0.3166 0.5423 0.3498

FIDS 0.4361 0.3178 0.5493 0.3532

MovieLens

FIDS-item 0.6753 0.5082 0.7917 0.5462

FIDS-fea 0.7432 0.5801 0.8361 0.6103

FIDS 0.7469 0.5872 0.8376 0.6167

TABLE 5 Impact of using feature averaging, vanilla attention, and feature interaction to integrate features.

Dataset Method
@5 @10

HR NDCG HR NDCG

Tmall

FIDS-mean 0.4079 0.2900 0.5405 0.3329

FIDS-vani 0.3999 0.2914 0.5122 0.3309

FIDS 0.4361 0.3178 0.5493 0.3532

MovieLens

FIDS-mean 0.7300 0.5589 0.8331 0.5925

FIDS-vani 0.7315 0.5642 0.8285 0.5957

FIDS 0.7469 0.5872 0.8376 0.6167

sequence pattern by constructing two sub-experiments. We use

FIDS-item [identical as the SASRec model essentially (Kang and

McAuley, 2018)] to represent a model that only considers item

sequences and FIDS-fea to represent a model that only considers

feature sequences.

As shown in Table 4, the performance of the FIDS model is

16.48% and 11.21% higher than FIDS-item on average on the Tmall

and MovieLens datasets. Comparing FIDS and FIDS-fea, FIDS has

an average increase of 1.19% and 0.74% on the two datasets. These

increments show that it is necessary to learn sequential transition

patterns from item-wise and feature-wise at the same time. In

addition, we can observe that the performance of FIDS-fea is better

than that of FIDS-item. The reasonwe analyze is the contribution of

introducing features. Introducing contextual features can alleviate

the problem of sparse data to a certain extent. Moreover, comparing

the two datasets, the improvement of introducing features in the

Tmall dataset is greater than the improvement of introducing

features in theMovleLens dataset. It may be because theMovieLens

dataset is denser than the Tmall one, so the improvement brought

by considering the features is not so obvious.
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(2) Whether feature interaction can positively help model

performance. To deeply explain the impact of feature interaction

on FIDS, we remove the automatic feature interaction layer in

the model, which is used to learning feature interaction and

roughly integrate features to replace the module by averaging the

features of each item (FIDS-mean) or using vanilla attention (FIDS-

vani). Neither of these is designed to model integrated feature

representations, and we can understand them only considering

first-order features. Table 5 shows the experimental results.

As expected, our model outperforms the other two models

on both datasets. More specifically, the FIDS model is 6.06% and

3.00% better than FIDS-mean and 8.02% and 2.70% better than

FIDS-vani on two datasets, respectively, which proves that learning

the higher-order combined features can boost the performance

of the model. In essence, the representation of features of each

item is not independent and will be affected by other features. In

our model, the self-attention networks in the automatic feature

interaction layer establish the connection of different features.

Features of an arbitrary order can also be connected through

residual connections and stacking multiple self-attention blocks. In

addition, we also observe that the experimental results of FIDS-

vani and FIDS-mean are comparable. This shows that compared

with the crude average operation, simply using vanilla attention

to integrate features cannot improve the performance under the

current two datasets.

6 Impact of hyper-parameters

In this section, we discuss the effect of hyper-parameters on the

model. Due to space constraints, we only show results in terms of

NDCG@10 on Tmall and MovieLens.

6.1 Impact of the residual connection

The essence of residual connection is to spread lower-layer

information to higher-layer. In our model, the residual connection

is also an indispensable part. There are a total of (n + 2) self-

attentions in the FIDS model, of which n self-attentions are used to

learn feature interaction, and two self-attentions are used to model

sequence patterns. To explore the role of residual connections

in different tasks, we separately remove the residual connections

in self-attention networks with different functions. We use Res-

inter to represent the removal of the residual connections in

the above n self-attentions, Res-seq to represent the removal of

the residual connections in the above two self-attentions, and

Res-seq-inter to remove all self-attention residual connections

in FIDS. As shown in Table 6, in all evaluation metrics on the

two datasets, the results of Res-seq exceed those of Res-seq-inter.

This indicates that considering residual connections when learning

feature interactions can indeed combine interactions of different

orders. And Res-inter also performs better than Res-seq-inter on

both datasets. This also shows that the residual connection helps

propagate the visited items’ embedding or integrated features’

embedding to the following layer. Overall comparison, on the

Tmall dataset, the performance of FIDS is improved by 4.39 %

and 2.62% compared to that of Res-seq-inter in terms of HR and

NDCG, respectively. On the MovieLens dataset, FIDS is improved

by 1.34 % and 3.22 %, respectively. It shows that the residual

connection promotes the performance of FIDS.

6.2 Impact of the fully connected layer

Adding fully connected layers can endow the non-linear

modeling capabilities of the self-attention module. To show this

explicitly, we design to remove all fully connected layers in all self-

attention networks. Table 7 shows the results where we use FIDS-

fully to represent the model without the fully connected layer. On

the Tmall dataset, FIDS has an average increase of 5.13% and 5.34%

in terms of HR and NDCG, respectively, compared with FIDS-

fully. On MovieLens, the percentages of improvement are 2.19%

and 4.39% in terms of HR and NDCG, respectively. This shows

that FIDS outperforms FIDS-fully and the learning ability of linear

models is limited. Stacking fully connected layers endow FIDS with

stronger learning ability.

6.3 Impact of the number of self-attention
blocks

Stacking self-attention blocks on item sequences and feature

sequences helps to learn more complex transition patterns, while

higher-order feature interactions can be learned by stacking

multiple blocks in the automatic feature interaction layer. The effect

of the number of blocks on FIDS is shown in Figure 2, where bitem,

binte, and bfea, respectively, denote the number of blocks in the item-

wise self-attention layer, the feature-wise self-attention layer, and

the automatic feature interaction layer. On both datasets, we can

observe that setting the appropriate number of blocks can boost

the performance of FIDS. However, when the number of blocks is

too large, the performance is significantly reduced. Especially when

bitem = 5, the result on MovieLens will quickly decrease to 0.2562

(we do not show in Figure 2). We analyze that it is easy to lose

low-level information when too many blocks are stacked.

6.4 Impact of the number of self-attention
heads

Multi-head attention is to project Q, K, and V through

multiple different linear transformations and finally stitch together

different attention results, which intends to map features to

different subspaces. We discuss the respective effects of multi-head

in modeling sequence patterns and feature interactions. Figure 3

shows the experimental results, where hseq represents the number

of self-attention heads used for learning transition patterns and

hinter represents the number of self-attention heads learning feature

interactions. We can observe that when the number of heads is 1,

the model performs best on the Tmall dataset. On the MovieLens

dataset, when hseq = 4 and hinter = 2, the value in terms

of NDCG@10 is the largest. This may be because our model

needs more heads to capture feature interactions and transition

relationships as the MovieLens dataset contains more features,
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TABLE 6 Impact of the residual connection.

Dataset Method
@5 @10

HR NDCG HR NDCG

Tmall

Res-seq-inter 0.4122 0.3080 0.5334 0.3461

Res-inter 0.4265 0.3108 0.5366 0.3463

Res-seq 0.4243 0.3115 0.5437 0.3502

FIDS 0.4361 0.3178 0.5493 0.3532

MovieLens

Res-seq-inter 0.7301 0.5664 0.8344 0.6001

Res-inter 0.7404 0.5780 0.8364 0.6092

Res-seq 0.7301 0.5676 0.8303 0.6003

FIDS 0.7469 0.5872 0.8376 0.6167

TABLE 7 Impact of the fully connected layer.

Dataset Method
@5 @10

HR NDCG HR NDCG

Tmall

FIDS-fully 0.4097 0.2994 0.5291 0.3379

FIDS 0.4361 0.3178 0.5493 0.3532

MovieLens

FIDS-fully 0.7237 0.5597 0.8278 0.5937

FIDS 0.7469 0.5872 0.8376 0.6167

FIGURE 2

Performance under di�erent number of heads. (A) Tmall dataset result. (B) MovieLens dataset result.

FIGURE 3

Performance under di�erent number of blocks. (A) Tmall dataset result. (B) MovieLens dataset result.
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FIGURE 4

Performance under di�erent dropout rate. (A) Tmall dataset result. (B) MovieLens dataset result.

FIGURE 5

Performance under di�erent embedding sizes. (A) Tmall dataset result. (B) MovieLens dataset result.

while there are fewer features involved in the Tmall dataset, and

it may not require too complex structures to model these two

relationships.

6.5 Impact of dropout rate

Dropout is one of the effective means to solve overfitting.

We also adopt dropout on the input item embedding, the fully

connected layer, and the output of the “Mask”. To explore the

impact of the dropout rate on model performance, we set the

dropout rate to [0, 0.1, 0.2, ..., 0.8, 0.9] for experiments. Figure 4

shows the experimental results under different dropout rates. We

can observe that when the dropout rate is 0.3, the experimental

results on the Tmall dataset are the best, and the dropout rate

of 0.2 is the most suitable for the MovieLens dataset. Setting the

dropout rate to 0 means that no arbitrarily discarding information

during training leads to poor results, which proves that the

dropout strategy is indeed effective for overfitting. Moreover, both

datasets show the same trend. As the dropout rate increases, the

performance of themodel first improves and then decreases or even

drops sharply at the end, indicating that an appropriate dropout

rate can improve the model’s expressiveness and positively impact

the generalization ability of FIDS. However, high dropout rates will

inhibit the expression of the model.

6.6 Impact of the embedding size

The embedding size is a crucial parameter that determines the

accuracy of the recommendation.We set the embedding dimension

in [64, 128, 256, 512] and show the performance of FIDS with

different embedding sizes in terms of NDCG@5 and NDCG@10

in Figure 5. We can observe that setting the embedding size to 128

and 256 is the best choice for Tmall and MovieLens, respectively.

The value of NDCG gradually increases as the embedding size

increases until it reaches the highest point and then decreases as

the embedding size increases. This is because FIDS can model

more information on both datasets as the embedding size increases.

However, overfitting may occur if the embedding size is too large.

In addition, comparing the two datasets, the value of the optimal

embedding size of MovieLens is greater than that of Tmall. We

analyze that MovieLens contains denser data information, so a

larger embedding size is needed to model the data.
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7 Conclusion

In this study, we propose a novel model called Feature

Interaction Dual Self-attention network (FIDS), which adopts

dual self-attention to learn feature interactions and capture

full sequential patterns. In particular, we apply multiple self-

attention networks to capture feature interactions of each

item to comprehensively and accurately represent the feature

sequence. Then, we combine the effect of item sequence

and feature sequence via full-connected layer for sequential

recommendation. Extensive experimental analysis proves that

our proposed model, FIDS, consistently exceeds the state-of-

the-art methods, achieving an average improvement of 5.965%

in HR and 4.66% in NDCG. Despite the promising results

of the Feature Interaction Dual Self-attention network (FIDS),

several future research directions can enhance its performance

and applicability. Exploring advanced attention mechanisms,

integrating with graph neural networks, and investigating dynamic

feature representations can improve its ability to capture

complex dependencies and interactions. Enhancing computational

efficiency and scalability, developing real-time recommendation

capabilities, and incorporating multi-modal data will broaden

its applicability.
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