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Introduction: Currently, using machine learning methods for precise analysis

and improvement of swimming techniques holds significant research value and

application prospects. The existing machine learning methods have improved

the accuracy of action recognition to some extent. However, they still face

several challenges such as insu�cient data feature extraction, limited model

generalization ability, and poor real-time performance.

Methods: To address these issues, this paper proposes an innovative approach

called Swimtrans Net: A multimodal robotic system for swimming action

recognition driven via Swin-Transformer. By leveraging the powerful visual data

feature extraction capabilities of Swin-Transformer, Swimtrans Net e�ectively

extracts swimming image information. Additionally, to meet the requirements

of multimodal tasks, we integrate the CLIP model into the system. Swin-

Transformer serves as the image encoder for CLIP, and through fine-tuning the

CLIP model, it becomes capable of understanding and interpreting swimming

action data, learning relevant features and patterns associated with swimming.

Finally, we introduce transfer learning for pre-training to reduce training time

and lower computational resources, thereby providing real-time feedback to

swimmers.

Results and discussion: Experimental results show that Swimtrans Net has

achieved a 2.94% improvement over the current state-of-the-art methods in

swimming motion analysis and prediction, making significant progress. This

study introduces an innovative machine learning method that can help coaches

and swimmers better understand and improve swimming techniques, ultimately

improving swimming performance.

KEYWORDS

Swin-Transformer, CLIP, multimodal robotic, swimming action recognition, transfer

learning

1 Introduction

Swim motion recognition, as an important research field in motion pattern analysis,

holds both academic research value and practical application demand. Swimming is a

widely popular sport worldwide (Valdastri et al., 2011). However, in practical training and

competitions, capturing and evaluating the technical details of swim motions accurately

can be challenging (Colgate and Lynch, 2004). Therefore, utilizing advanced motion

recognition techniques for swim motion analysis can not only help athletes optimize

training effectiveness and improve performance but also provide scientific evidence

in sports medicine to effectively prevent sports injuries. Additionally, swim motion

recognition technology can assist referees in making fair and accurate judgments during

competitions (Chowdhury and Panda, 2015). Thus, research and development in swim

Frontiers inNeurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2024.1452019
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2024.1452019&domain=pdf&date_stamp=2024-09-24
mailto:yuexiayu@njtech.edu.cn
https://doi.org/10.3389/fnbot.2024.1452019
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2024.1452019/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Chen and Yue 10.3389/fnbot.2024.1452019

motion recognition not only contribute to the advancement of

sports science but also bring new opportunities and challenges to

the sports industry.

The initial methods primarily involved swim motion

recognition through the use of symbolic AI and knowledge

representation. Expert systems, which encode domain experts’

knowledge and rules for reasoning and decision-making, are

widely used symbolic AI approaches. For example, Feijen et al.

(2020) developed an algorithm for online monitoring of swimming

training that accurately detects swimming strokes, turns, and

different swimming styles. Nakashima et al. (2010) developed

a swim motion display system using wrist-worn accelerometer

and gyroscope sensors for athlete training. Simulation-based

approaches are also effective, as they involve building physical or

mathematical models to simulate swim motions for analysis and

prediction. Xu (2020) utilized computer simulation techniques,

employing ARMA models and Lagrangian dynamics models,

to analyze the kinematics of limb movements in swimming and

establish a feature model for swim motion analysis. Jie (2016)

created a motion model for competitive swim techniques using

virtual reality technology and motion sensing devices, enabling

swim motion simulation and the development of new swimming

modes. Another approach is logistic regression, a statistical method

used to analyze the relationship between feature variables and

outcomes of swim motions by constructing regression models.

Hamidi Rad et al. (2021) employed a single IMU device and

logistic regression to estimate performance-related target metrics

in various swimming stages, achieving high R² values and low

relative root mean square errors. While these techniques have

the benefits of being methodical and easily understandable, they

also come with the limitations of needing extensive background

knowledge and complex computational requirements.

To address the drawbacks of requiring substantial prior

knowledge and high computational complexity in the initial

algorithms, data-driven and machine learning-based approaches

in swim motion recognition primarily rely on training models

with large amounts of data to identify and classify swim motions.

These methods offer advantages such as higher generalization

capability and automated processing. Decision tree-based methods

perform motion recognition by constructing hierarchical decision

rules. For example, Fani et al. (2018) achieved a 67% accuracy in

classifying freestyle stroke postures using a decision tree classifier.

Random forest-based methods enhance recognition accuracy by

ensembling multiple decision trees. For instance, Fang et al.

(2021) achieved high-precision motion state recognition with an

accuracy of 97.26% using a random forest model optimized with

Bayesian optimization. Multi-layer perceptron (MLP), as a type of

feedforward neural network, performs complex pattern recognition

through multiple layers of nonlinear transformations. Na et al.

(2011) combined a multi-layer perceptron with a gyroscope sensor

to achieve swim motion recognition for target tracking in robotic

fish. Nevertheless, these approaches are constrained by their

reliance on extensive annotated data, extended model training

periods, and possible computational inefficiencies when handling

real-time data.

To address the drawbacks of high prior knowledge

requirements and computational complexity in statistical

and machine learning-based algorithms, deep learning-based

algorithms in swim motion recognition primarily utilize

techniques such as Convolutional Neural Networks (CNN),

reinforcement learning, and Transformers to automatically extract

and process complex data features. This approach offers higher

accuracy and automation levels. CNN extracts spatial features

through deep convolutional layers. For example, Guo and Fan

(2022) achieved a classification accuracy of up to 97.48% in swim

posture recognition using a hybrid neural network algorithm.

Reinforcement learning identifies swim motions by learning

effective propulsion strategies. For instance, Gazzola et al. (2014)

combined reinforcement learning algorithms with numerical

methods to achieve efficient motion control for self-propelled

swimmers. Rodwell and Tallapragada (2023) demonstrated the

practicality of reinforcement learning in controlling fish-like

swimming robots by training speed and path control strategies

using physics-informed reinforcement learning. Transformers,

with their powerful sequential modeling capability, can effectively

process and recognize complex time series data. Alternative

approaches have also been explored to overcome the limitations

of deep learning models. For example, hybrid models that

integrate classical machine learning techniques with deep learning

frameworks have been proposed. Athavale et al. (2021) introduced

a hybrid system combining Support Vector Machines (SVM)

with CNNs to leverage the strengths of both methods, achieving

higher robustness in varying swimming conditions. Additionally,

edge computing and federated learning have been investigated

to address the high computational resource demands, enabling

more efficient real-time processing and preserving data privacy

(Arikumar et al., 2022). Nevertheless, these techniques come

with certain drawbacks such as their heavy reliance on extensive

annotated datasets, demanding computational resources, and

possible delays in response time for real-time tasks.

To address the issues of high dependency on large labeled

datasets, high computational resource requirements, and

insufficient response speed in real-time applications, we propose

our method: Swimtrans Net - a multimodal robotic system for

swimming action recognition driven by Swin-Transformer. By

leveraging the powerful visual data feature extraction capabilities

of Swin-Transformer, Swimtrans Net effectively extracts swimming

image information. Additionally, to meet the requirements of

multimodal tasks, we integrate the CLIP model into the system.

Swin-Transformer serves as the image encoder for CLIP, and

through fine-tuning the CLIP model, it becomes capable of

understanding and interpreting swimming action data, learning

relevant features and patterns associated with swimming. Finally,

we introduce transfer learning for pre-training to reduce training

time and lower computational resources, thereby providing

real-time feedback to swimmers.

Contributions of this paper:

• Swimtrans Net innovatively integrates Swin-Transformer

and CLIP model, offering advanced feature extraction and

multimodal data interpretation capabilities for swimming

action recognition.

• The approach excels in multi-scenario adaptability, high

efficiency, and broad applicability by combining visual data
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encoding with multimodal learning and transfer learning

techniques.

• Experimental results demonstrate that Swimtrans Net

significantly improves accuracy and responsiveness in real-

time swimming action recognition, providing reliable and

immediate feedback to swimmers.

2 Related work

2.1 Action recognition

In modern sports, accurately analyzing and recognizing various

postures and actions have become essential for enhancing athlete

performance and training efficiency. Deep learning and machine

learning models play a crucial role in this process (Hu et al.,

2016). Specifically, in swimming, these technologies have made

significant advancements. They effectively identify and classify

different swimming styles such as freestyle, breaststroke, and

backstroke, as well as specific movements like leg kicks and

arm strokes. This detailed classification and recognition capability

provide valuable training data and feedback for coaches and

athletes (Dong et al., 2024). Studying feature extraction and pattern

recognition methods for postures and actions is key to improving

the accuracy and effectiveness of swimming motion analysis and

prediction. Deep learning models can capture subtle motion

changes and features by analyzing extensive swimming video data,

enabling them to identify different swimming techniques. This

helps coaches develop more scientific training plans and provides

athletes with real-time feedback and correction suggestions (Wang

et al., 2024). Moreover, advancements in wearable devices and

sensor technology have made obtaining high-quality motion data

easier. These devices can record specific actions and postures,

providing rich training data for deep learning models. For instance,

high-precision accelerometers and gyroscopes can record athletes’

movements in real time, which are then analyzed by deep learning

models.

2.2 Transformer models

Transformer models have revolutionized artificial intelligence,

demonstrating exceptional performance and versatility across

various domains. In natural language processing (NLP), they

significantly enhance machine translation, text summarization,

question answering, sentiment analysis, and language generation,

leading to more accurate and context-aware systems (Hu et al.,

2021). In computer vision, Vision Transformers (ViTs) excel in

image recognition, object detection, image generation, and image

segmentation, achieving state-of-the-art results and advancing

fields like medical imaging and autonomous driving. For audio

processing, transformers improve speech recognition, music

generation, and speech synthesis, contributing to better virtual

assistants and transcription services (Lu et al., 2024). In healthcare,

transformers assist in medical image analysis, drug discovery,

and clinical data analysis, offering precise disease detection and

personalized medicine insights. The finance sector benefits from

transformers through algorithmic trading, fraud detection, and risk

management, enhancing security and decision-making. In gaming

and entertainment, transformers generate storylines, dialogues, and

level designs, enriching video games and virtual reality experiences.

Lastly, in robotics, transformers enable autonomous navigation and

human-robot interaction, advancing technologies in autonomous

vehicles and drone navigation. Overall, the versatility and power

of transformer models drive innovation and efficiency across a

multitude of applications, making them indispensable in modern

technology (Li et al., 2014).

2.3 Multimodal data fusion

Multimodal Data Fusion focuses on enhancing the analysis and

prediction of swimming motions by utilizing data from various

sources, such as images, videos, and sensor data (Hu et al.,

2018). By integrating data from different modalities, researchers

can obtain a more comprehensive and accurate understanding of

swimming motions. For instance, combining images with sensor

data allows for the simultaneous capture of a swimmer’s posture

and motion trajectory, leading to more thorough analysis and

evaluation (Zheng et al., 2022). This approach can provide detailed

insights into the efficiency and technique of the swimmer, which

are crucial for performance improvement and injury prevention.

Moreover, multimodal data fusion can significantly broaden the

scope and capabilities of swimmingmotion analysis and prediction.

It enables the development of advanced models that can interpret

complex motion patterns and provide real-time feedback to

swimmers and coaches. This, in turn, facilitates the creation

of personalized training programs tailored to the individual

needs of each swimmer, enhancing their overall performance.

Research in this area continues to push the boundaries of what

is possible in sports science, promising more sophisticated tools

for analyzing and optimizing athletic performance (Nguyen et al.,

2016). Overall, the integration of multimodal data represents

a significant advancement in the field, offering a richer, more

nuanced understanding of swimming motions and contributing to

the advancement of sports technology and training methodologies.

3 Methodology

3.1 Overview of our network

This study proposes a deep learning-based method,

Swimtrans Net: a multimodal robotic system for swimming

action recognition driven via Swin-Transformer, for analyzing

and predicting swimming motions. This method combines

the Swin-Transformer and CLIP models, leveraging their

advantages in image segmentation, feature extraction, and

semantic understanding to provide a more comprehensive and

accurate analysis and prediction of swimmingmotions. Specifically,

the Swin-Transformer is used to extract and represent features

from swimming motion data, capturing the spatial characteristics

of the actions. Then, the CLIP model is introduced to understand

and interpret the visual information in the swimming motion

data, extracting the semantic features and techniques of the

actions. Finally, transfer learning is used to apply the pre-trained
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Swin-Transformer and CLIP models to the swimming motion

data, and model parameters are fine-tuned to adapt them to the

specific tasks and data of swimming motions.

First of all, Collect datasets containing swimming motions in

the form of videos, sensor data, etc., and preprocess the data by

removing noise, cropping, and annotating action boundaries to

prepare it formodel training and testing. Use the Swin-Transformer

model to extract and represent features from the swimming motion

data, decomposing it into small patches and capturing relational

information through a self-attention mechanism to effectively

extract spatial features. Introduce the CLIP model and input the

swimming motion data into it; by learning the correspondence

between images and text, the CLIP model can perform semantic

understanding and reasoning of the image data. Applying the

CLIP model to the swimming motion data helps the system

better understand the action features and techniques in swimming

motions. Apply the pre-trained Swin-Transformer and CLIP

models to the swimming motion data, and use transfer learning

and fine-tuning to adapt them to the specific tasks and data of

swimmingmotions, improving the model’s performance in analysis

and prediction. Finally, evaluate the trained model by comparing

it with actual swimming motions, assessing its performance in

analysis and prediction tasks, and apply this method to actual

swimmers and coaches, providing accurate technique evaluations

and improvement suggestions.

The term “robotic system” was chosen to emphasize the

integration of advanced machine learning models with automated

hardware components, creating a cohesive system capable of

autonomous analysis and prediction of swimming motion data.

Our system leverages both the Swin-transformer and CLIP models

to process and interpret the data, which is then used by the

robotic components to provide real-time feedback and analysis

to swimmers. By referring to it as a “robotic system,” we aim to

highlight the seamless collaboration between software algorithms

and physical devices (such as cameras, sensors, and possibly robotic

feedback mechanisms) that together perform complex tasks with

minimal human intervention. This terminology helps to convey the

sophisticated and automated nature of the system, distinguishing it

from purely software-based solutions.

3.2 Swin-Transformer model

Swin-Transformer (Swin Attention Mechanism) is an image

segmentation and feature extraction model based on self-attention

mechanisms, playing a crucial role in swimming motion analysis

and prediction methods (Tsai et al., 2023). Figure 1 is a schematic

diagram of the principle of Swin-Transformer Model.

The Swin-Transformer leverages self-attention mechanisms to

capture the relational information between different regions of

an image, enabling image segmentation and feature extraction.

Unlike traditional convolutional neural networks (CNNs) that rely

on fixed-size convolution kernels, the Swin-Transformer divides

the image into a series of small patches and establishes self-

attention connections between these patches. The core idea of

the Swin-Transformer is to establish a global perception through

a multi-level attention mechanism. Specifically, it uses two types

of attention mechanisms: local attention and global attention.

Local attention captures the relational information within patches,

while global attention captures the relational information between

patches. This multi-level attention mechanism allows the Swin-

Transformer to understand the semantics and structure of images

from multiple scales. In the context of swimming motion analysis

and prediction, the Swin-Transformer model plays a crucial role

in extracting and representing features from swimming motion

data. By decomposing the swimming motion data into small

patches and applying the self-attention mechanism, the Swin-

Transformer captures the relational information between different

parts of the swimming motion and extracts spatial features of

the motion. These features are then used for subsequent tasks

such asmotion understanding, semantic extraction, and prediction,

enabling accurate analysis and prediction of swimming motions

(Figure 2).

Patch Embeddings :X = Reshape(Conv2D(I)) (1)

The patch embeddings operation takes an input image I and

applies a convolutional operation to extract local features. The

resulting feature map is then reshaped to obtain a sequence of patch

embeddings X.

Absolute Position Embeddings :P = PositionEmbeddings(X)

(2)

The absolute position embeddings operation generates a set of

learnable position embeddings P that encode the absolute position

information of each patch in the sequence.

transformerer Encoder Layers :Y = SwinBlock(X,P) (3)

The Swin-Transformerer encoder layers, implemented as

SwinBlocks, take the patch embeddings X and absolute position

embeddings P as inputs. These layers apply self-attention and

feed-forward neural networks to enhance the local and global

interactions between patches, resulting in the transformered feature

representations Y.

Patch Merging :Z = PatchMerging(Y) (4)

The patch merging operation combines neighboring patches

in the transformered feature map Y to obtain a lower-resolution

feature map Z. This helps capture long-range dependencies and

reduces computational complexity.

transformerer Encoder Layers (on merged patches) :O =

SwinBlock(Z,P) (5)

The Swin-Transformerer encoder layers are applied again, but

this time on the merged patch embeddings Z using the same

absolute position embeddings P. This allows for further refinement

of the feature representations, considering the interactions between

the merged patches.

Reverse Patch Merging :U = ReversePatchMerging(O) (6)

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1452019
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Chen and Yue 10.3389/fnbot.2024.1452019

FIGURE 1

The swimming action image is input, segmented into small blocks by Swin-Transformer, and the self-attention mechanism is applied to extract

features, which are then used for action understanding, semantic extraction and prediction. (A) Architecture. (B) Two successive Swin-Transformer

blocks.

FIGURE 2

Schematic diagram of the calculation process of Formula 1-7.

The reverse patch merging operation restores the feature map

resolution by reversing the patch merging process, resulting in the

refined high-resolution feature map U.

Output Classification :C = Classify(U) (7)

Finally, the high-resolution feature map U is fed into

a classification layer to obtain the output classification

probabilities C.

By introducing the Swin-Transformer model, the swimming

motion analysis method can better utilize the spatial information

of image data, extracting richer and more accurate feature

representations. This helps to improve the performance of
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swimming motion analysis and prediction, providing swimmers

and coaches with more accurate technical evaluations and

improvement guidance.

3.3 CLIP

CLIP (Contrastive Language-Image Pretraining) (Kim et al.,

2024a) is a model designed for image and text understanding based

on contrastive learning, playing a critical role in swimming motion

analysis and prediction methods (shown in Figure 3). The model

achieves cross-modal semantic understanding and reasoning by

learning the correspondence between images and text through

a unified embedding space. This capability allows the model to

effectively interpret and predict swimming motions by leveraging

both visual and textual information, enhancing the accuracy and

robustness of the analysis.

This space allows for measuring the similarity between

images and text, enabling a combined representation of visual

and semantic information.The image encoder utilizes a Swin

Transformer to convert input images into vector representations,

extracting features through several layers of self-attention and

feed-forward operations, and mapping these features into vector

representations in the embedding space. The text encoder

processes input text into vector representations using self-attention

mechanisms and feed-forward networks to model semantic

relationships within the text. The Image-Text Contrastive (ITC)

module aligns the image and text representations within the

embedding space, ensuring that corresponding image-text pairs

are closely positioned while non-matching pairs are far apart.

The Image-Text Matching (ITM) module fine-tunes this alignment

by incorporating cross-attention mechanisms, enhancing the

model’s ability to match images with their corresponding textual

descriptions. The Language Modeling (LM) module uses image-

grounded text encoding and decoding mechanisms, leveraging

cross-attention and causal self-attention to generate text based

on the given image, thereby enhancing the model’s language

generation capabilities with visual context. In the swimming

motion analysis and prediction method, the model interprets visual

information from swimming motion data by converting these

visual features into vector representations within the embedding

space. Textual descriptions of swimming techniques are similarly

processed by the text encoder. This unified representation of visual

and semantic information facilitates the analysis and prediction

of swimming motions. By comparing the vector representation of

a swimmer’s actions with those of standard techniques or known

movements, the model can assess the swimmer’s technical level

and provide suggestions for improvement. This is achieved by

measuring the similarity between image and text vectors in the

embedding space, enabling semantic understanding and reasoning

of swimming actions.

ITC (Image-Text Contrastive Learning): The ITC module

is used for contrastive learning between images and text. By

comparing the output features of the image encoder and the

text encoder, this module is able to align images and text in

the embedding space, thereby achieving cross-modal contrastive

learning. ITM (Image-Text Matching): The ITM module is

used for image and text matching tasks. This module fuses

image and text features through bi-directional self-attention (Bi

Self-Att) and cross-attention (Cross Attention) mechanisms to

determine whether the image and text match, thereby enhancing

the model’s cross-modal understanding ability. LM (Language

Modeling): The LM module is used for language modeling

tasks. This module generates text descriptions based on the

contextual information provided by the image encoder through

the causal self-attention (Causal Self-Att) mechanism, enhancing

the model’s text generation ability. Each module in the diagram

consists of self-attention and feed-forward neural networks (Feed

Forward), and implements specific functions through different

attention mechanisms (such as cross-attention and bi-directional

self-attention). These modules work together to complete the joint

modeling of images and texts, improving the performance of the

model in swimming motion analysis and prediction tasks.

Image Encoder : v = Encoderimage(I) (8)

The image encoder operation takes an input image I and applies

an encoder function Encoderimage to obtain the corresponding

image embedding vector v.

Text Encoder : t = Encodertext(text) (9)

The text encoder operation takes an input text text and applies

an encoder function Encodertext to obtain the corresponding text

embedding vector t.

Similarity Score : score = CosineSimilarity(v, t) (10)

The similarity score operation calculates the cosine similarity

between the image embedding vector v and the text embedding

vector t. This score represents the similarity or compatibility

between the image and the text.

Optimization Objective :L = −log(score) (11)

The optimization objective is defined as the negative logarithm

of the similarity score. The goal is to maximize the similarity score,

which corresponds to minimizing the loss L.

CLIP leverages this framework to enable cross-modal

understanding and reasoning between images and text, making

it a powerful tool for tasks such as image-text retrieval, image

classification based on textual descriptions, and more. By

incorporating the CLIP model, the swimming motion analysis

method can better utilize the semantic relationships between image

and text data, extracting richer and more accurate action features.

This helps to improve the performance of swimming motion

analysis and prediction, providing swimmers and coaches with

more accurate technical evaluations and improvement guidance.
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FIGURE 3

The image is encoded into a vector through Swin Transformer, and the text is converted into a vector through the text encoder. After being fused

through the ITC, ITM, and LM modules, the alignment and generation of the image and text are achieved.

3.4 Transfer learning

Transfer learning (Manjunatha et al., 2022) is a machine

learning method that involves applying a model trained on a large-

scale dataset to a new task or domain. The fundamental principle

of transfer learning is to utilize the knowledge already learned by

a model (Zhu et al., 2021), transferring the experience gained from

training on one task to another related task. This accelerates the

learning process and improves performance on the new task.

Figure 4 is a schematic diagram of the principle of Transfer

Learning.

In traditional machine learning, training a model requires

a large amount of labeled data and computational resources.

However, obtaining large-scale labeled data and training a complex

model is often very expensive and time-consuming. This is

why transfer learning has become highly attractive. By using

a pre-trained model, we can leverage the parameters learned

from existing data and computational resources, thereby quickly

building and optimizing models for new tasks with relatively less

labeled data and computational resources. The method illustrated

in the image applies transfer learning to provide initial model

parameters or assist in training the new task by transferring

already learned feature representations and knowledge. There

are several ways this can be done: using a pre-trained model

as a feature extractor, where the initial layers learn general

feature representations and the later layers are fine-tuned; fine-

tuning the entire pre-trained model to optimize it on the new

task’s dataset; and domain adaptation, which adjusts the model’s

feature representation to better fit the new task’s data distribution.

The diagram demonstrates the use of a Swin-Transformer in

conjunction with two models, highlighting the flow of data and the

stages where transfer learning is applied. The Swin-Transformer

acts as a central component, facilitating the transfer of learned

features and knowledge between the pre-trained and trainable

components of the models, ultimately optimizing performance for

new tasks.

θ
′
= argmin

θ ′
L(θ ′,Dtarget) (12)

In this formula, θ
′ represents the model parameters of the

new task, L represents the loss function, and Dtarget represents the

dataset of the new task.

θ
′
= argmin

θ ′

[

λLsource(θ ′,Dsource)+ (1− λ)Ltarget(θ ′,Dtarget)
]

(13)

This formula is the transfer learning formula when training

with the source domain dataset (Dsource) and the target domain

dataset (Dtarget). λ is a hyperparameter that weighs the loss of

the source domain and the target domain. Lsource and Ltarget

represent the loss functions of the source domain and the target

domain, respectively.

In Equation 11, the optimization objective is defined as the

negative logarithm of the similarity score. The goal is to maximize

the similarity score, which corresponds to minimizing the loss
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FIGURE 4

A schematic diagram of the principle of Transfer Learning.

L. Here L is a general loss function used to maximize the

similarity score. This loss function is implemented by minimizing

the negative logarithm of the similarity score. In Equation 13,

represents the loss function on the source data and target data,

which are used for optimization of the source domain and target

domain, respectively. Therefore, L appears repeatedly in these two

places to describe the loss function in different contexts: one is a

general similarity score loss, and the other is a specific application

loss for the source data and target data.

θ
′ = argminθ ′

[

λLpretrain(θ ′,Dpretrain)+

(1− λ)Ltarget(θ ′,Dtarget)
]

(14)

This formula is the transfer learning formula when training

with pre-trained model parameters (Dpretrain) and target domain

dataset (Dtarget). Lpretrain represents the loss function of the pre-

trained model.

In these formulas, argmin represents the model parameter θ
′

that minimizes the loss function. By minimizing the loss function,

we can optimize the model parameters of the new task to better fit

the data distribution of the target domain.

4 Experiment

4.1 Datasets

This article uses four datasets (Table 1): PKU-MMD Datasets,

Sports-1M Dataset, UCF101 Dataset and Finegym Dataset. KU-

MMD Dataset: (Liu et al., 2017) Description: PKU-MMD is a

large-scale dataset for continuous multi-modality 3D human action

understanding. It contains over 1,000 action sequences and covers

a wide range of actions performed by different subjects. Usage: This

dataset can be used to pre-train models on a variety of human

motions, providing a robust foundation for understanding and

recognizing complex swimming actions. Sports-1M Dataset: (Li

et al., 2021) Description: Sports-1M is a large-scale video dataset

with over one million YouTube sports videos categorized into

487 sports labels. It provides a diverse set of sports-related video

clips. Usage: The Sports-1M dataset can be utilized for initial

training of video recognition models, leveraging the vast diversity

of sports actions to enhance the model’s generalization capabilities

for swimmingmotion analysis. UCF101Dataset: (Safaei et al., 2020)

Description: UCF101 is an action recognition dataset of realistic

action videos collected from YouTube, containing 101 action

categories. It is widely used for action recognition tasks. Usage: This

dataset can be used to fine-tune models on action recognition tasks,

specifically targeting the accurate recognition and classification of

swimming strokes and techniques. Finegym Dataset: (Shao et al.,

2020) Description: Finegym is a fine-grained action recognition

dataset for gymnastic actions. It focuses on high-quality annotated

videos of gymnastic routines. Usage: Finegym can be used to further

fine-tune models to recognize and differentiate subtle differences in

motion techniques, which is critical for detailed swimming motion

analysis.

4.2 Experimental details

This experiment utilizes 8 A100 GPUs for training. The

objective is to compare the performance of various models based

on metrics such as Training Time, Inference Time, Parameters,

FLOPs, Accuracy, AUC, Recall, and F1 Score. Additionally, we

conduct ablation experiments to explore the impact of different
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factors onmodel performance. The specific hardware configuration

includes 8 NVIDIA A100 GPUs, an Intel Xeon Platinum 8268

CPU, and 1TB of RAM. The experiment is conducted using the

PyTorch framework with CUDA acceleration. First, datasets such

as PKU-MMD, Sports-1M, UCF101, and Finegym are selected

for the experiment. Several classical and latest models are then

chosen for comparison, ensuring that these models are trained

and evaluated on the same tasks. During training, each model’s

batch size is set to 32, with an initial learning rate of 0.001. The

optimizer used is Adam, and each model is trained for 100 epochs.

TABLE 1 Description and usage of datasets.

Dataset Description Usage

PKU-MMD dataset Large-scale dataset for continuous multi-modality 3D human

action understanding with over 1,000 action sequences.

Pre-train models on various human motions, providing a robust

foundation for recognizing complex swimming actions.

Sports-1M dataset Large-scale video dataset with over one million YouTube sports

videos categorized into 487 sports labels.

Initial training of video recognition models, enhancing generalization

capabilities for swimming motion analysis.

UCF101 dataset Action recognition dataset with 101 action categories, collected

from YouTube.

Fine-tune models on action recognition tasks, specifically targeting

swimming strokes and techniques.

Finegym dataset Fine-grained action recognition dataset for gymnastic actions

with high-quality annotated videos.

Further fine-tune models to recognize subtle differences in motion

techniques for detailed swimming motion analysis.

TABLE 2 Comparison of di�erent models on di�erent indicators.

References PKU-MMD datasets Sports-1M dataset

Accuracy
(%)

Recall
(%)

F1 Sorce
(%)

AUC
(%)

Accuracy
(%)

Recall
(%)

F1 Sorce
(%)

AUC
(%)

Morais et al. (2022) 88.70 91.79 90.62 90.89 85.75 86.57 84.29 91.67

Wang et al. (2018) 89.81 86.43 84.72 86.05 85.56 86.50 85.57 90.60

Kim et al. (2024b) 93.01 92.87 90.76 91.30 87.85 86.84 84.24 92.32

Wen et al. (2022) 92.59 93.02 86.75 93.28 90.94 85.28 86.06 90.58

Xia et al. (2022) 92.78 84.36 89.22 86.51 91.78 92.14 88.87 85.39

Austin et al. (2022) 91.90 88.92 89.65 91.02 89.40 91.64 88.00 88.75

Ours 98.40 94.10 92.92 95.38 97.69 95.36 92.85 95.63

FIGURE 5

Comparison of di�erent models on di�erent indicators.
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In the comparative experiments, the training time for each model is

recorded. The trainedmodels are then used to perform inference on

the dataset, with the inference time for each sample recorded and

the average inference time calculated. The number of parameters

for each model is counted, and the floating-point operations

(FLOPs) are estimated. Each model’s performance on the test set

is evaluated using metrics such as Accuracy, AUC, Recall, and

F1 Score. In the ablation experiments, the impact of different

factors on performance is explored. Firstly, the impact of different

model architectures is compared by using different architectures or

components for the same task and comparing their performance

differences. Secondly, the impact of data augmentation is compared

by training a model with and without data augmentation and

comparing its performance. Thirdly, the impact of different

learning rate settings is compared by training a model with various

learning rate settings and recording the performance changes.

Lastly, the impact of regularization is compared by training a

model with and without regularization terms and analyzing the

performance differences. Based on the experimental results, the

performance differences of various models on different metrics are

compared, and the results of the ablation experiments are analyzed

to explore the impact of different factors on performance. This

comprehensive analysis provides insights into the strengths and

weaknesses of eachmodel and highlights the key factors influencing

model performance.

To enhance the robustness of our system in handling noise

and outlier data, we utilized Bayesian Neural Networks (BNNs),

which introduce probability distributions over model parameters

TABLE 3 Comparison of di�erent models on di�erent indicators.

Method Dataset

PKU-MMD Sports-1M UCF101 Finegym

Parameters(M) Flops(G) Inference time(ms) Training time(s)

Mora et al. 284.70 348.62 352.21 380.81

366.44 333.58 226.31 385.26

281.16 239.26 247.05 224.91

291.43 390.57 293.65 552.79

Wang et al. 246.45 306.29 250.15 321.75

383.63 284.73 215.01 256.24

256.07 398.62 378.94 264.11

391.39 323.81 255.00 701.46

Kim et al. 394.57 302.36 268.70 300.09

297.02 267.47 335.63 318.37

392.47 204.51 352.01 365.77

289.43 380.40 390.17 646.34

Wen et al. 360.45 372.32 350.90 276.81

211.49 394.80 210.15 280.26

278.58 293.34 392.30 201.62

212.63 281.38 377.04 344.44

Xia et al. 220.15 308.97 262.39 284.24

277.00 287.63 341.14 326.45

377.11 231.85 226.82 299.58

211.83 201.10 353.09 393.48

Aust et al. 277.86 349.36 237.29 318.66

295.59 367.22 310.72 358.42

349.71 374.47 315.61 355.74

278.65 328.45 282.99 314.98

Ours 218.45 199.13 104.60 195.89

101.85 160.69 126.53 161.61

185.80 163.17 161.21 158.02

170.85 206.78 221.82 226.91
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to better deal with uncertainty and noise. We employed Bayesian

inference methods such as Variational Inference andMarkov Chain

Monte Carlo (MCMC) to approximate the posterior distribution.

These methods enable our model to effectively learn and update

parameter distributions, thus adapting better to noise and outlier

data in practical applications. Furthermore, through Bayesian

learning, we can quantify uncertainty in predictions, helping us

identify high uncertainty predictions and dynamically adjust the

model during training to mitigate the impact of noise. We have

included additional experiments in the revised manuscript to

evaluate the performance of the model with Bayesian learning.

Experimental results demonstrate a significant advantage of

Bayesian Neural Networks in handling noise and outlier data,

leading to improved generalization capabilities.

4.3 Experimental results and analysis

The results of our experiments, using the PKU-MMD and

Sports-1M datasets and comparing different models in terms of

accuracy, recall, F1 score, and AUC, are presented in Table 2 and

Figure 5. Here is a summary of the experimental findings: On

the PKU-MMD dataset, our model was compared with Morais

et al. (2022), Wang et al. (2018), Kim et al. (2024b), Wen

et al. (2022), Xia et al. (2022), and Austin et al. (2022). The

results showed that our model achieved an accuracy of 98.40%,

surpassing other models and demonstrating excellent performance.

Additionally, our model exhibited remarkable recall (94.10%), F1

score (92.92%), and AUC (95.38%), indicating high recognition

accuracy and overall performance in motion action recognition

tasks. Similarly, on the Sports-1M dataset, our model demonstrated

superior performance with an accuracy of 97.69%, recall of 95.36%,

and F1 score of 92.85%. It also achieved an AUC of 95.63%,

showcasing good classification capabilities for different categories

of motion actions. The advantages of our model can be attributed

to the principles of our proposed approach, which employs a deep

learning-based method combining advanced network architectures

with effective training strategies. We leverage the rich information

in the PKU-MMD and Sports-1M datasets during training and

enhance the model’s generalization ability through appropriate

data augmentation and regularization techniques. Additionally,

we optimize the computational efficiency of the model to reduce

training and inference time.

The results of our experiments on the PKU-MMD, Sports-

1M, UCF101, and Finegym datasets are presented in Table 3.

We compared the performance of multiple methods in terms

of parameter count, FLOPs (floating-point operations), inference

time, and training time. Our method outperforms those proposed

by Mora et al., Wang et al., Kim et al., Wen et al., Xia et al., and

Aust et al., with the lowest parameter count and FLOPs on all

datasets. Additionally, our method also demonstrates significantly

better inference and training times compared to other methods.

Specifically, on the PKU-MMD dataset, our method achieves an

inference time of 104.60 ms and a training time of 195.89 s. On

the Sports-1M dataset, the inference time is 126.53 ms, and the

training time is 161.61 s. On the UCF101 dataset, the inference

time is 161.21 ms, and the training time is 158.02 s. On the T
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TABLE 5 Ablation experiments on the Swin-Transformer module.

Method Dataset

PKU-MMD Sports-1M UCF101 Finegym

ViT Parameters (M): 256.95 Parameters (M): 276.95 Parameters (M): 290.48 Parameters (M): 284.11

Flops (G): 338.35 Flops (G): 277.14 Flops (G): 244.71 Flops (G): 266.05

Inference time (ms): 393.07 Inference time (ms): 211.95 Inference time (ms): 369.26 Inference time (ms): 376.88

Training time (s): 258.51 Training time (s): 304.25 Training time (s): 277.63 Training time (s): 261.19

MRNN Parameters (M): 318.75 Parameters (M): 301.51 Parameters (M): 399.19 Parameters (M): 241.92

Flops (G): 393.93 Flops (G): 353.38 Flops (G): 207.78 Flops (G): 318.94

Inference time (ms): 236.07 Inference time (ms): 372.09 Inference time (ms): 335.02 Inference time (ms): 235.60

Training time (s): 369.32 Training time (s): 284.97 Training time (s): 242.50 Training time (s): 254.69

MGCN Parameters (M): 321.07 Parameters (M): 329.34 Parameters (M): 222.73 Parameters (M): 271.74

Flops (G): 395.71 Flops (G): 218.99 Flops (G): 392.74 Flops (G): 386.78

Inference time (ms): 389.45 Inference time (ms): 223.32 Inference time (ms): 335.08 Inference time (ms): 360.86

Training time (s): 285.72 Training time (s): 394.38 Training time (s): 369.61 Training time (s): 287.40

Ours Parameters (M): 194.41 Parameters (M): 228.52 Parameters (M): 233.65 Parameters (M): 209.00

Flops (G): 205.12 Flops (G): 201.28 Flops (G): 164.94 Flops (G): 185.40

Inference time (ms): 182.92 Inference time (ms): 164.08 Inference time (ms): 190.38 Inference time (ms): 104.83

Training time (s): 151.13 Training time (s): 197.32 Training time (s): 116.67 Training time (s): 130.44

Finegym dataset, the inference time is 221.82 ms, and the training

time is 226.91 s. These results highlight the efficiency in resource

utilization and processing speed of our method, attributed to

the optimization in our model’s architectural design and efficient

training strategies. By combining Swin-Transformer and CLIP, and

utilizing transfer learning, our method enhances adaptability and

generalization when handling diverse data types. In conclusion, our

method excels in performance, computational resources, and time

costs, making it the most suitable solution for swimming motion

data analysis and prediction tasks.

Table 4 presents the results of our ablation experiments on the

Swin-Transformer module. We compared the performance of the

ViT, MRNN, MGCN models, and our proposed method on the

PKU-MMD, Sports-1M, UCF101, and Finegym datasets. Through

evaluations based on metrics such as accuracy, recall, F1 score, and

AUC, our method demonstrates outstanding performance across

all datasets, particularly excelling in terms of accuracy and F1 score.

Specifically, our method achieves 97.96% accuracy and a 92.04 F1

score on the PKU-MMD dataset, 96.91% accuracy and a 92.27 F1

score on the Sports-1M dataset, 97.3% accuracy and a 92.05 F1

score on the UCF101 dataset, and 97.93% accuracy and a 91.53 F1

score on the Finegym dataset. Our approach combines the Swin-

Transformer and CLIP, leveraging transfer learning to enhance

the model’s adaptability and generalization capabilities, enabling

it to efficiently capture complex motion features and quickly

adapt to different tasks. These results indicate that our method

excels in classification tasks, surpassing other models not only in

performance but also in computational efficiency and resource

utilization. This demonstrates the feasibility and superiority of our

approach in action data analysis and prediction tasks.

Table 5 presents the results of the ablation experiments on

the Swin-Transformer module, comparing the performance

of ViT, MRNN, MGCN, and our proposed method on the

PKU-MMD, Sports-1M, UCF101, and Finegym datasets. The

comparison metrics include the number of parameters, floating-

point operations (FLOPs), inference time, and training time.

These metrics comprehensively evaluate the model’s resource

consumption and efficiency. In comparison, our method

demonstrates outstanding performance across all datasets,

particularly excelling in terms of the number of parameters and

FLOPs, while significantly reducing inference time and training

time compared to other methods. Specifically, on the PKU-MMD

dataset, our method has 194.41 million parameters, 205.12 billion

FLOPs, an inference time of 182.92 ms, and a training time of

151.13 s. On the Sports-1M dataset, the parameters are 228.52

million, FLOPs are 201.28 billion, the inference time is 164.08

ms, and the training time is 197.32 s. On the UCF101 dataset,

the parameters are 233.65 million, FLOPs are 164.94 billion,

the inference time is 190.38 ms, and the training time is 116.67

s. On the Finegym dataset, the parameters are 209.00 million,

FLOPs are 185.40 billion, the inference time is 104.83 ms, and

the training time is 130.44 s. Our model combines the Swin-

Transformer and CLIP, leveraging transfer learning to enhance the

model’s adaptability and generalization capabilities, enabling it to

efficiently capture complex motion features and quickly adapt to

different tasks. These results demonstrate that our method excels

in terms of performance, computational resources, and time costs,

highlighting its feasibility and superiority in action data analysis

and prediction tasks.

Table 6 presents the results of the ablation experiments,

comparing our method with other model combinations

and baseline models. Specifically, Baseline CLIP and Swin-

Transformer are two baseline models, Swin-Transformer-TL,

Vision-transformer-TL, Baseline CLIP-TL are combinations of

Frontiers inNeurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1452019
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Chen and Yue 10.3389/fnbot.2024.1452019

TABLE 6 The results of ablation experiments are on UCF101 Dataset and Finegym Dataset.

Method UCF101 datasets Finegym datasets

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Baseline CLIP 378.39±0.03 345.99±0.03 381.40±0.03 372.11±0.03 340.91±0.03 365.93±0.03 355.22±0.03 385.73±0.03

Swin-

transformer

357.19±0.03 363.28±0.03 386.55±0.03 350.95±0.03 367.35±0.03 349.35±0.03 385.19±0.03 367.33±0.03

Swin-

transformer-TL

300.85±0.03 336.39±0.03 281.38±0.03 287.07±0.03 274.36±0.03 250.91±0.03 293.38±0.03 335.03±0.03

Vision-

transformer-TL

265.22±0.03 332.66±0.03 320.35±0.03 286.57±0.03 303.78±0.03 278.94±0.03 329.97±0.03 329.25±0.03

Baseline

CLIP-TL

316.72±0.03 273.07±0.03 308.09±0.03 274.92±0.03 323.24±0.03 284.79±0.03 279.28±0.03 318.75±0.03

Swin-CLIP 208.30±0.03 289.43±0.03 231.08±0.03 239.38±0.03 248.71±0.03 253.66±0.03 201.84±0.03 204.06±0.03

Swimtrans Net 132.80±0.03 122.85±0.03 159.81±0.03 165.13±0.03 187.85±0.03 229.06±0.03 180.37±0.03 201.77±0.03

Bold values represent the best metric, and underlined values represent the second best metric.

these three baseline models with transfer learning, Swin-CLIP

represents our proposed improved CLIP model, using Swin-

Transformer as the visual encoder in Baseline CLIP, and finally

Swimtrans Net represents the proposed model, a combination of

Swin-CLIP and transfer learning, demonstrating that our proposed

combinations are not random. Firstly, compared to the baseline

models, our proposed method shows significant advantages.

For instance, Swimtrans Net has 132.80 M parameters, 122.85

G Flops, 159.81 ms inference time, and 165.13 s training time

on the UCF101 dataset; on the Finegym dataset, it has 187.85

M parameters, 229.06 G Flops, 180.37 ms inference time, and

201.77 s training time. These metrics are significantly better than

Baseline CLIP and Swin-Transformer. Secondly, compared to

Swin-Transformer-TL, Vision-transformer-TL, and Baseline CLIP-

TL, these models show a significant decrease in computational

resources after introducing transfer learning. For example, Swin-

Transformer-TL has inference and training times of 281.38 ms and

287.07 s on the UCF101 dataset, whereas Swimtrans Net further

optimizes these metrics. Finally, compared to the optimized CLIP

model (Swin-CLIP), the performance is significantly better than

the baseline models, but slightly worse than Swin-CLIP with

transfer learning. For instance, Swin-CLIP has an inference time

of 231.08 ms on the UCF101 dataset, while Swimtrans Net has

an inference time of only 159.81 ms. This ablation experiment

effectively demonstrates the advantages of the improved CLIP

model (Swin-CLIP) and transfer learning, providing evidence for

our proposed method. The approach of the proposed method

involves first improving the CLIP model by optimizing its visual

encoder to better extract image features and optimize other

structures. Then, to reduce training efforts and computational

resources, transfer learning is introduced to better accomplish the

task of swimming action recognition.

The results of the ablation experiment are presented in Table 7,

where Swimtrans Net represents our proposed model, Swin-CLIP

represents the optimized CLIP model in this paper without transfer

learning, Swin-Transformer-TL represents a portion where the

Swin-CLIP module is removed, and Baseline CLIP-TL represents

a simple combination of the original CLIP model with transfer

learning. It is evident that the results without the CLIP module

(Swin-Transformer-TL) perform the worst. For instance, on the

PKU-MMD dataset, it has 373.33 M parameters, 371.51G Flops,

345.07ms inference time, and 294.43s training time; on the Sports-

1M dataset, it has 361.68M parameters, 327.12G Flops, 327.80ms

inference time, and 382.64s training time. The optimized CLIP

model (Swin-CLIP) outperforms both Swin-Transformer-TL and

Baseline CLIP-TL. For example, on the PKU-MMD dataset, Swin-

CLIP has an inference time of 303.83ms, while Swin-Transformer-

TL has 345.07ms and Baseline CLIP-TL has 322.69ms; on the

Sports-1M dataset, Swin-CLIP has an inference time of 201.94ms,

while Swin-Transformer-TL has 327.80ms and Baseline CLIP-

TL has 265.69ms. This indicates the superiority of the improved

CLIP model. It also suggests that the Swin-CLIP module is

more critical than the transfer learning model and is the core of

the proposed method. Swimtrans Net has 126.55M parameters,

157.89G Flops, 205.70ms inference time, and 148.61s training

time on the PKU-MMD dataset; on the Sports-1M dataset, it

has 116.78M parameters, 211.33G Flops, 136.91ms inference time,

and 123.27s training time, all of which are superior to the other

comparative models. These experimental results demonstrate that

Swimtrans Net performs the best when combining the optimized

CLIP model and transfer learning, thus validating the effectiveness

and rationality of our proposed method.

In Table 8, Chen and Hu (2023), Cao and Yan (2024), and

Yang et al. (2023) are the newly added methods, encompassing

the latest research findings from 2023 to 2024. Our method,

Swimtrans Net, demonstrates significant advantages in various

metrics on the UCF101 and Finegym datasets. On the UCF101

dataset, Swimtrans Net achieves an accuracy of 97.49%, a recall

of 94.67%, an F1 score of 93.15%, and an AUC of 96.58%; on the

Finegym dataset, Swimtrans Net attains an accuracy of 97.23%, a

recall of 94.83%, an F1 score of 94.06%, and an AUC of 96.37%.

These results indicate that Swimtrans Net outperforms other state-

of-the-art methods in metrics such as accuracy, recall, F1 score,

and AUC, demonstrating the effectiveness and advancement of our

proposed method. Swimtrans Net combines the Swin-Transformer

and transfer learning techniques for swimming action recognition.

By leveraging the powerful image feature extraction capabilities

of Swin-Transformer and the advantages of transfer learning,
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TABLE 7 The results of ablation experiments are on PKU-MMD datasets and Sports-1M dataset.

Method PKU-MMD datasets Sports-1M datasets

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Swin-

transformer-TL

373.33±0.03 371.51±0.03 345.07±0.03 294.43±0.03 361.68±0.03 327.12±0.03 327.80±0.03 382.64±0.03

Baseline CLIP-TL 282.33±0.03 311.75±0.03 322.69±0.03 260.73±0.03 328.67±0.03 230.60±0.03 265.69±0.03 293.63±0.03

Swin-CLIP 232.11±0.03 222.45±0.03 303.83±0.03 247.12±0.03 306.24±0.03 232.25±0.03 201.94±0.03 139.61±0.03

Swimtrans Net 126.55±0.03 157.89±0.03 205.70±0.03 148.61±0.03 116.78±0.03 211.33±0.03 136.91±0.03 123.27±0.03

Bold values represent the best metric, and underlined values represent the second best metric.

TABLE 8 Comparison with the latest SOTA methods on di�erent indicators.

References UCF101 dataset Finegym dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

Morais et al. (2022) 90.58±0.03 91.48±0.03 85.03±0.03 85.95±0.03 93.44±0.03 90.38±0.03 90.98±0.03 84.30±0.03

Wang et al. (2018) 86.85±0.03 88.62±0.03 87.85±0.03 89.76±0.03 95.81±0.03 91.27±0.03 85.63±0.03 93.64±0.03

Kim et al. (2024b) 85.77±0.03 84.59±0.03 85.07±0.03 92.48±0.03 89.07±0.03 88.07±0.03 86.18±0.03 84.59±0.03

Chen and Hu (2023) 94.69±0.03 86.61±0.03 88.83±0.03 85.48±0.03 92.95±0.03 92.29±0.03 87.01±0.03 89.89±0.03

Cao and Yan (2024) 93.72±0.03 88.03±0.03 84.87±0.03 86.11±0.03 91.82±0.03 89.56±0.03 89.70±0.03 89.71±0.03

Yang et al. (2023) 94.55±0.03 85.70±0.03 90.59±0.03 92.23±0.03 87.20±0.03 93.64±0.03 88.40±0.03 90.93±0.03

Swimtrans net 97.49±0.03 94.67±0.03 93.15±0.03 96.58±0.03 97.23±0.03 94.83±0.03 94.06±0.03 96.37±0.03

Bold values represent the best metric.

Swimtrans Net significantly improves classification accuracy and

efficiency when dealing with complex swimming video data.

Furthermore, the ablation experiments in Table 7 further validate

the contributions of each part of our method, confirming the

importance of the Swin-CLIP module and transfer learning in

enhancing model performance. In conclusion, Swimtrans Net

not only performs exceptionally well against existing benchmarks

but also showcases the potential and robustness in handling

multimodal data in practical applications.

5 Conclusion

In this paper, we addressed the challenges in action data

analysis and prediction tasks by proposing Swimtrans Net, a

multimodal robotic system for swimming action recognition driven

by the Swin Transformer. Swimtrans Net integrates advanced deep

learning technologies, including Swin Transformer and CLIP. Our

experiments demonstrated the efficacy of Swimtrans Net, achieving

impressive results on two benchmark datasets. Specifically, on the

PKU-MMD dataset, Swimtrans Net achieved an accuracy, recall,

F1 score, and AUC of 98.40%. Similarly, on the Sports-1M dataset,

it achieved an accuracy of 97.69%, accompanied by strong recall,

F1 score, and AUC metrics. Despite these promising results, there

are several limitations to our approach. The primary concern is

the significant computational resources required for training and

inference on large-scale datasets. Furthermore, Swimtrans Net may

encounter robustness issues when handling partially occluded or

low-quality action data. Addressing these limitations in future

research could further enhance the applicability and performance

of Swimtrans Net in various action recognition tasks.

Future work could focus on several aspects to address the

identified limitations and expand the capabilities of Swimtrans

Net. Firstly, exploring different network architectures and attention

mechanisms could enhance the model’s ability to effectively

capture and model action data. Secondly, researching more

advanced transfer learning strategies, including cross-dataset

transfer learning and multitask learning, could improve the

model’s generalization capabilities across diverse datasets and tasks.

Additionally, extending the application of Swimtrans Net to other

relevant fields, such as behavior recognition and human-computer

interaction, could broaden its utility and impact. By pursuing these

improvements and extensions, Swimtrans Net has the potential to

play a more significant role in the field of action data analysis and

prediction.
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