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This paper introduces the flexible control and trajectory planning medical two-
arm surgical robots, and employs effective collision detection methods to 
ensure the safety and precision during tasks. Firstly, the DH method is employed 
to establish relative rotation matrices between coordinate systems, determining 
the relative relationships of each joint link. A neural network based on a multilayer 
perceptron is proposed to solve FKP problem in real time. Secondly, a universal 
interpolator based on Non-Uniform Rational B-Splines (NURBS) is developed, 
capable of handling any geometric shape to ensure smooth and flexible 
motion trajectories. Finally, we developed a generalized momentum observer 
to detect external collisions, eliminating the need for external sensors and 
thereby reducing mechanical complexity and cost. The experiments verify the 
effectiveness of the kinematics solution and trajectory planning, demonstrating 
that the improved momentum torque observer can significantly reduce system 
overshoot, enabling the two-arm surgical robot to perform precise and safe 
surgical tasks under algorithmic guidance.
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1 Introduction

With the continuous development of medical technology and the progress of robot 
technology, more and more robots are applied in the medical industry (Zhong et al., 2019). 
The flexible control and trajectory planning of medical dual-arm collaborative robots are 
crucial technologies enabling these robots to perform various complex tasks in the medical 
field, such as surgical assistance (Wu et al., 2019) and rehabilitation training (Culmer et al., 
2009). Flexible control (Chalhoub and Ulsoy, 1987) refers to the ability of the robot control 
system to adapt to external environments and task requirements. For example, in the medical 
surgery, the responsive implementation, real-time control systems are crucial. These systems 
are adept at detecting and adjusting to minute fluctuations within the patient internal 
environment, thereby ensuring both the precision and safety of surgical procedures. 
Additionally, these adaptable control systems make robots more skilled and flexible when they 
do difficult jobs. This is most noticeable when robots have to do tasks when they are working 
closely with people. Flexible control is often closely related to trajectory planning in medical 
dual-arm robots (Kojima and Kibe, 2001; Kojima, 2002).

Trajectory planning refers to determining the robot motion trajectory in the workspace to 
enable it to accomplish specified tasks (Asada et al., 1990). In medical dual-arm robots, trajectory 

OPEN ACCESS

EDITED BY

Xin Luo,  
Chinese Academy of Sciences (CAS), China

REVIEWED BY

Bin Zhi Li,  
Chinese Academy of Sciences (CAS), China
Tinghui Chen,  
Chongqing University of Posts and 
Telecommunications, China

*CORRESPONDENCE

Hailong Yu  
 1955416359@qq.com

RECEIVED 18 June 2024
ACCEPTED 18 July 2024
PUBLISHED 27 August 2024

CITATION

Xie Y, Zhao X, Jiang Y, Wu Y and Yu H (2024) 
Flexible control and trajectory planning of 
medical two-arm surgical robot.
Front. Neurorobot. 18:1451055.
doi: 10.3389/fnbot.2024.1451055

COPYRIGHT

© 2024 Xie, Zhao, Jiang, Wu and Yu. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 27 August 2024
DOI 10.3389/fnbot.2024.1451055

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2024.1451055&domain=pdf&date_stamp=2024-08-27
https://www.frontiersin.org/articles/10.3389/fnbot.2024.1451055/full
https://www.frontiersin.org/articles/10.3389/fnbot.2024.1451055/full
https://www.frontiersin.org/articles/10.3389/fnbot.2024.1451055/full
mailto:1955416359@qq.com
https://doi.org/10.3389/fnbot.2024.1451055
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2024.1451055


Xie et al. 10.3389/fnbot.2024.1451055

Frontiers in Neurorobotics 02 frontiersin.org

planning must consider factors such as anatomical structures of the 
surgical area, surgical objectives, and safety to ensure that the robot 
motion can reach the expected positions accurately and safely.

In the standard operational procedures for industrial robots, 
ensuring both the robot functionality and the staff safety are 
paramount. To achieve this, a physical barrier is commonly 
implemented. This barrier serves to segregate the robot from the 
surrounding area or to delineate the operational zones of both the staff 
and the robot. This strategic separation effectively prevents any direct 
physical contact between the staff and the robotic equipment. In the 
medical sector, however, there is a distinct preference for robots that 
can collaborate closely with human operators. This necessitates the 
capability of robots to execute a multitude of tasks securely within the 
intricate and demanding conditions of surgical settings. The robots 
must be designed to operate harmoniously with medical professionals, 
ensuring that they can contribute effectively to the high-precision 
requirements of healthcare without compromising safety. Collision 
protection of medical dual-arm collaborative robots is critical to 
ensuring robot safe operation when working with humans. This 
protection typically employs various technologies and methods:

 1 Sensor technology (Zeng and Bone, 2013; Popov et al., 2017; Li 
et al., 2020): Sensors installed at various vital parts of the robot, 
such as arms and around the body, detect proximity or 
collisions. These sensors can be proximity, photoelectric, or 
pressure sensors, among others.

 2 Vision systems (Mohammed et al., 2017): Vision systems using 
cameras or laser scanners are utilized to detect the surrounding 
environment and human positions and timely identify 
potential collision hazards.

 3 Collision detection algorithms (Cao et al., 2019; Han et al., 
2019): Software algorithms analyze data provided by sensors 
and vision systems to determine the presence of collision risks 
and take corresponding measures to avoid collisions.

Adding sensors to the above collision detection method will 
increase the cost of the robot system, while sensorless collision 
detection will use acceleration information, which will lead to the 
introduction of interference and error.

In the robot arm kinematics, the research approaches (Venanzi 
and Parenti-Castelli, 2005; Pandey and Zhang, 2012) for kinematics 
modeling and parameter identification have reached a high level of 
maturity. Rectifying the kinematics parameters based on the general 
error model can directly enhance the accuracy of the robot arm end 
position. However, the following drawbacks may emerge during the 
process: a significant amount of calculation, a long period for 
identification parameter iteration, which severely affects the motion 
velocity. During the medical robot operating process, it is challenging 
to employ sensors to detect and provide real-time feedback on the end 
pose. Nevertheless, the artificial neural network (ANN) boasts strong 
self-learning and adaptive capabilities (Aoyagi et al., 2012; Angelidis 
and Vosniakos, 2014). In recent years, ANN has been extensively 
utilized in domains such as system optimization and intelligent 
control, among which the BP (Back Propagation) neural network is a 
multi-layer feedforward network trained in accordance with the 
reverse propagation algorithm. Utilizing the algorithm based on the 
neural network to estimate the pose at the end of the manipulator can 
circumvent certain issues in the process of parameter calibration.

This study delves into neural network technology, analyzing the 
inverse kinematics problem (IKP) and forward kinematics problem 
(FKP). The current FKP solving strategy relies on iterative methods, 
which incur high computational costs and long processing times and 
cannot achieve optimal real time operations. This paper proposes a 
neural network utilizing an improved form of multilayer perceptron 
for backpropagation learning to enhance the accuracy of solving the 
mechanical arm forward kinematics problem to the desired level and 
achieve real-time solutions.

Furthermore, the study investigates the establishment of NURBS 
curve-related techniques. It integrates NURBS curves into trajectory 
interpolation of medical dual-arm collaborative robots capable of 
handling any geometric shape. Additionally, this paper introduces 
compensation and variable damping design into the collision 
detection method based on the second-order momentum torque 
observer to improve robot collision detection real-time accuracy.

2 Related work

In the rapidly evolving medical industry landscape today, robotic 
automation has gradually entered the realm of medical systems. 
Traditional assembly processes of medical assistive devices are 
increasingly unable to meet the demands of modern medical 
production. Simultaneously, there is a growing demand for robots with 
high safety, stability, and flexibility to assist in collaborative operations 
during medical device-assisted drug dispensing. Robots can replace 
many tasks in medical drug dispensing. Manual solutions such as 
medication dispensing, assisting in guiding needles, and tumor 
resection using medical assistive devices must be updated. Medical 
dual-arm collaborative robots can perform complex drug dispensing 
processes, as depicted in Figure  1. The application of the medical 
dual-arm collaborative robot software platform in the medical assistive 
industry offers unparalleled advantages. These robots facilitate the drug 
dispensing process and enable collaboration between workers and 
robots. Integrating manual drug dispensing tasks with automated 
production addresses the labor-intensive operations in the medical 
industry. Moreover, the arms of these robots must possess the 
functionality for coordinated dual-arm operations to ensure 
synchronous and precise coordination and collision prevention.

2.1 Classification of robot interactive 
control

The classification of robot interaction control is illustrated in 
Figure 2. Common control methods (Niku, 2020) mainly include 
force/position hybrid control and impedance/admittance control. In 
several studies (Hogan, 1985; Anderson and Spong, 1988) on 
impedance control, a prescribed fixed passive impedance model is 
defined, and efforts are then focused on addressing challenges such as 
dealing with uncertainties. Research within this framework typically 
adopts either learning-based (Sharifi et  al., 2021) or adaptive 
impedance control (Yu et al., 2019). However, assuming that a fixed 
impedance model is no longer sufficient to describe specific 
applications, such as explosive movements or Human-Robot 
Interaction (HRI). Therefore, adopting variable impedance control 
(Ikeura and Inooka, 1995) must be considered for robot interaction 
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control. However, adjusting impedance parameters to provide optimal 
impedance characteristics is more effective in enhancing interaction 
performance, which is necessary for essential applications such as 
HRI. Physically informed HRI has been proposed in adaptive 
impedance kinematics learning. In this study (Dong and Ren, 2017), 
robots adapt their movements by learning tasks to predict the 
intentions of their partners. Optimal impedance adaptation in 
constrained motion HRI has been investigated (Sun et  al., 2019). 
Continuous critic learning is employed for interaction control, 
followed by obtaining the desired impedance as the optimal 
implementation to meet the control objectives. However, adaptive 

control is not appropriate for the control system with a high real-time 
demand, and it is deficient in the capacity to handle nonlinear issues. 
Fuzzy control. The fuzzy processing of the control parameters might 
cause the reduction of precision and the deterioration of the dynamic 
quality of the force interaction control.

Li et al. (Li et al., 2016) explores the cooperative kinematic control 
of multiple manipulators through distributed recurrent neural networks 
and offers a feasible approach to extend the existing outcomes on 
individual manipulator control by using recurrent neural networks to 
the circumstance of the coordination of multiple manipulators. Jin et al. 
(Jin et al., 2022) analyses a collaborative control problem of redundant 
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FIGURE 1

Medical dual-arm collaborative robot.
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FIGURE 2

System composition of cleaning robot.
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manipulators with time delays and proposes a time-delayed and 
distributed neural dynamics scheme. Yang et al. (Yang et al., 2023) 
proposes an Extended Kalman Filter-incorporated Residual Neural 
Network-based Calibration (ERC) model for kinematic calibration.

2.2 Arm mechanical structure

As shown in Figure 3, the shoulder and elbow joints are designed 
with dual-degree mechanisms, differing only in motor arrangement. 
The motor achieves arm abduction through bevel gear transmission, 
while the offset motor achieves arm flexion and extension through 
spur gear transmission. The structural principles of the elbow joint are 
the same as those of the shoulder joint.

Peripheral components such as end effectors and dexterous hands 
are installed at the end, and backlash compensation is applied to the 
spur gear transmission system through an eccentric flange. The arm 
integrates driver boards for the elbow and wrist motors, facilitating 
later debugging and maintenance. Touch sensor modules can also 
be installed inside the arm to perceive human contact and respond 
with corresponding actions such as speech or facial expressions, 
enhancing interaction with humans.

3 Motion control and spline trajectory 
planning

3.1 Motion control of medical two-arm 
robot

3.1.1 Kinematics forward solution
The humanoid two-arm robot has 14 degrees of freedom and can 

be analyzed for one hand and the other hand. The optional position of 
the base coordinate system is not unique. Establishing a coordinate 
system in the above way can facilitate the analysis of the geometric 
relationship between each joint value and the robot pose. Compared with 
the traditional D-H method, the homogeneous transformation matrix 
between the adjacent joints of the robot can be  intuitively obtained 
during the forward solution process. At the same time, the calculation 
amount of inverse kinematics analysis can be reduced to a certain extent 
(Liu et al., 2021). This method is suitable for fast modeling in engineering, 
can simplify the derivation of kinematic relations, facilitate the 
acquisition of kinematic equations, and make the results more intuitive. 
Since the arm position is decoupled from the attitude, the first four joints 
and the wrist are calculated separately to facilitate the inverse solution. 
The robot is divided into four freedom degrees (θ θ θ θ1 2 3 4, , , ) at the lower 
part of the wrist and three degrees freedom (θ θ θ5 6 7, , ) at the end of the 
wrist joint. The forward kinematics is analyzed from the four joints at the 
base and three joints at the end. For the left hand, the transformation 
matrix from 1 to 7 can be obtained according to the spatial geometric 
relationship of each joint, as shown in Equation 1.
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3.1.2 Neural network solution
Installing additional sensors or transducers at the end of medical 

dual-arm collaborative robots to gather more information about the 
system state (robotic arm) may facilitate the rapid and convenient 
resolution of Forward Kinematics Problems (FKP). However, the 
additional cost of sensors renders it less than ideal. In iterative 
methods, kinematic problems are formalized, allowing them to 
be solved using any available numerical techniques. However, these 
numerical techniques are computationally intensive and cannot 
guarantee a solution.

The analytical approach of solving FKP based on neural networks 
is not limited to the specific structure of medical dual-arm 
collaborative robots; it can be  extended to other types of six-axis 
medical dual-arm collaborative robots or generalized medical 
dual-arm collaborative robots. Neuron processing units sum modified 
signals and apply the result to a linear or nonlinear activation function. 
Subsequently, the generated signal or value is transmitted to output 
units. Inputs, weights, architecture, and thresholds are parameters 
neural network unit control.

Once the network designers determine the neural network 
architecture, weight values can be  set through a training or 
learning process. In network training, the neural network free 
parameters (weights) adapt through a continuous stimulation 
process of the environment, embedding the network. 
Environmental stimuli are input–output data values obtained from 
different states of the environment. Free parameters are 
systematically updated during the training process to converge to 
optimal values. The learning rate controls the magnitude of free 
parameter updates. When to stop training depends on predefined 
conditions, such as reaching the maximum expected training time 
and the lowest error rate. The accuracy of neural network 
parameters and the amount of learning data are closely related to 
the learning process resembling that of the human brain. Inputs 
are the joint angles of the medical dual-arm collaborative robot, 
and the output of the neural network module is the position and 
posture of the robot end effector. First, nonlinear equations are 
established, as shown in Equation 6.

 

F D s s D s s D c c s s c c s s s p

F D c s

e x1 2 3 4
0

2 4

1 2 1 2 4 1 3 1 2 3 1 2 4

4 1

= + − + − −

= −

( )( )

ss c c c c s s D c s D c s p

F D D c D c D

e y3 1 2 3 1 2 4 1 2 3 1 2

2 2

2
0

3 1 2 3 4

− + − − −

= + + +

( )( )

cc s s c c pe z2 4 2 3 4
0+ −( )








  

(6)

According to the aforementioned nonlinear equations, a three-
layer BP neural network method is adopted to perform forward 
kinematics solution for medical dual-arm collaborative robot. As 
illustrated in Figure 4, the neural network topology consists of three 
layers, with the input layer comprising 3 neurons and the output layer 

FIGURE 3

Coorinate system distribution.

https://doi.org/10.3389/fnbot.2024.1451055
https://www.frontiersin.org/journals/neurorobotics


Xie et al. 10.3389/fnbot.2024.1451055

Frontiers in Neurorobotics 06 frontiersin.org

containing 4 neurons. The nonlinear mapping of the robot forward 
kinematics can be converted into a linear mapping via Equation 7, 
where N samples are designated as Pj j,α( ), with j N=1 2, , , . Here, 
Pjrepresents the network input vector, serving as the j-th positional 
sample, and α j represents the network output vector corresponding 
to the j-th motor angle.

 

h f w p a

f w p a
i i j i

i k i k

= +( )
= +( )







1

2α  
(7)

Where: wi and a i1  are the weights and thresholds of the node i of 
the hidden layer and the input layer; wk  and a k2  are the weights and 
thresholds between the output layer and the hidden layer.

From the experience gained through network training, it is 
understood that the number of training samples should 
be approximately 5 to 10 times the number of network weights. Once 
the sample set is determined, the initial step involves normalizing the 

input and output data of the neural network, ensuring that all data 
points are scaled to the range [−1, 1]. In the architecture of the BP 
network, the middle-hidden layer plays a pivotal role in the network 
performance, as it receives calculated results from the input layer and 
passes them to the output layer. Therefore, the activation function 
used in the hidden layer must be continuous and smooth to facilitate 
effective learning. Given its favorable properties and compliance with 
these criteria, the sigmoid function is chosen as the activation 
function for the hidden layer of the neural network. This choice is 
made to enhance the network ability to model complex relationships 
within the data.

We take the position, velocity and acceleration of each joint as input 
to form an 18-dimensional input vector, and take the spatial coordinates 
of the end joints as output. The optimal number of hidden layers of the 
neural network can be  obtained by empirical formula, which can 
be specifically seen in Algorithm 1. Using MSE as a metric, we can 
calculate that the best hidden layer node is 11. The whole network 
structure is shown in Figure 5. The training results are shown in Figure 6.

FIGURE 4

Three-layer feedforward neural network.

FIGURE 5

Network structure.

https://doi.org/10.3389/fnbot.2024.1451055
https://www.frontiersin.org/journals/neurorobotics


Xie et al. 10.3389/fnbot.2024.1451055

Frontiers in Neurorobotics 07 frontiersin.org

ALGORITHM 1. Optimal hidden neuron count for a backpropagation network

In the motion control process of the medical dual-arm 
collaborative robot, a large number of positions and joint angles are 
saved as samples. After training with these samples as inputs, the 
kinematic forward description from robot joint angles to robot end 
effector positions can be obtained. This allows the establishment of 
the nonlinear equations and weights to derive the forward 
kinematics of the medical dual-arm collaborative robot.

3.2 Trajectory planning with NURBS

NURBS (Non-Uniform Rational B-Splines) spline curves are a 
commonly used mathematical representation method in computer 
graphics and computer-aided design (CAD). A series of control 
points, weights, and knot vectors define them. NURBS curves are 
widely used in computer graphics and CAD because they can 
accurately represent various curve shapes and have good mathematical 
properties such as local control, smoothness, and adjustability. This 
makes them essential tools in design and modeling work.

The steps for NURBS spline curve planning involve specific 
algorithms to calculate the feed rate and sample points for each 
sampling interval, as this motion planning is implemented in real 
time. The NURBS spline curve fitting process is illustrated in Figure 7.
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 (1) Calculation process of node parameter ui (cumulative chord 
length method)
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According to joint displacement time node sequence p ti i,{ }; By 
definition, the corresponding node vector is U u u un k= { }+0 1 2, , , ; 
The specific expression is shown in Equation 9.
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Formula ui calculated by cumulative chord length method:
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 (2) The calculation process of matrix R elements is shown in 
Equations 8 and 11.
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 (3) Control the calculation process of vertex di
The control vertex dl1 is calculated according to the following 

Equation 12.
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From the NURBS first and last points (control points), the 
Equation 13 can be obtained.
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 (4) B spline basis function Ni u( ) has been calculated; The four basis 
functions of each segment B spline should be calculated according 
to the following formula, and the four basis functions N uj,3 ( ) 
corresponding to j i i i i= − − −( )3 2 1, , ,  should be  calculated 
periodically for each segment, as shown in Equation 14.
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 (5) Subsection curve expression calculation process
Calculate the expression of each B spline curve according to the 

following Equation 15, which needs to be calculated periodically for 
each segment:

 

Px u
px N u

N u

Py u
py

j i
i

j j j

j i
i

j j

j i
i

j

( ) =
( )

( )

( ) =

= −

= −

= −

∑
∑

∑

3 3

3 3

3

ω

ω

ω

,

,

jj j

j i
i

j j

j i
i

j j j

j i
i

N u

N u

Pz u
pz N u

,

,

,

3

3 3

3 3

3

( )

( )

( ) =
( )

= −

= −

= −

∑

∑
∑

ω

ω

ω jj jN u,3 ( )



















  

(15)

FIGURE 6

BP train result.
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At this stage, the B spline curve is fitted. Next, the curve data points 
need to be densified to enable the robot to walk to each densification point 
periodically. This densification is generally achieved through 
Taylor expansion.

3.3 Collision detection basics

Considering the influence of the external collision torque and the 
friction torque, the robot dynamic equation can be  written as 
Equation 16. q q q, ,   represent the robot joint angle, angular velocity 
and angular acceleration, respectively. Robot inertia matrix is 
D. Coriolis matrix is C. Gravitational term is G. The external impact 
is equivalent to the external torque of each joint is τe. Robot joint 
friction torque is τ f . Robot motor drive torque is τ .

 
D q q C q q q G q e f( ) +









 + ( ) + + =

"" " "

, τ τ τ
 

(16)

As can be  seen from the Equation 16, solving τe requires the 
acceleration, but it will bring noise. So we design an observer based 
on generalized momentum. The robot generalized momentum is 
defined as Equation 17.

 P D q q= ( )
"

 (17)

We define an observation vector r. The torque gain matrix is K1 
and K2. P



 is the estimate of P. The second-order observer is shown in 
Equation 18.
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We optimize this second-order observer by introducing links such 
as Equation 19.
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Finally, the resulting observer is shown in Equation 20.
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4 Simulation analysis and 
experimental verification

4.1 Network verification

In the exploration of applying neural networks to solve the FKP, 
we  initially collected the requisite datasets in accordance with 
established approaches. Subsequently, we  employed BP neural 
network technology to train the model systematically, with the 
parameters of the joint motor serving as the input of the network 
and the coordinate position of the robot arm end as the 
output target.

FIGURE 7

NURBS spline curve fitting proces.
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Once the model training was accomplished, we randomly chose 
some data samples that were not encompassed in the training to test 
the prediction capability of the neural network. Based on the 
outcomes presented in Figure  8, we  discovered that the neural 
network could precisely predict the coordinate position of the robot 
arm end. This finding thoroughly substantiates that the approach of 
leveraging the BP neural network to predict the position of the robot 
arm end is not only feasible but also highly accurate.

Additionally, this data-driven prediction method possesses 
stronger adaptability and flexibility compared to the traditional 
analytical method, and can handle the complex scenarios in practical 
applications more effectively.

4.2 Kinematics verification

Based on the characteristic parameters of the robotic arm links 
and the end effector spherical wrist, the correctness of both forward 
and inverse kinematics algorithms can be verified through curve 
acquisition in the driver software. The planner generates the 
trajectory curve of the robot end effector, and joint values are 
obtained through inverse kinematics. Then, spatial positions are 
calculated through forward kinematics, plotting numerous position 
points into a spatial curve. The degree of overlap between the two 
curves is compared.

Sinusoidal trajectories and spatial circular arc trajectories are 
separately applied to track trajectories using kinematic algorithms. As 
illustrated in Figures 9, 10, these are curves collected by the driver software.

4.3 Trajectory planning verification

The NURBS curve functions as a generalized parameter interpolator, 
maintaining a uniform feed rate for most of the interpolation process and 
ensuring that each interpolation point falls within a specified error range. 
As shown in Figure 11, the interpolator avoids sharp corners and feed-
sensitive angles in the curve, thereby mitigating high-frequency 
components or frequencies matching the machine inherent frequency in 
the interpolation trajectory, reducing high jitter. In the trajectory planning 
method, a forward-looking module detects sharp corners of the NURBS 
curve. An acceleration-deceleration method then adjusts the feed rate at 
these corners to meet error requirements and accommodate the robot 
acceleration and deceleration capabilities.

4.4 Collision detection algorithm

To quickly verify the feasibility of the collision detection algorithm, 
we conducted simulation experiments using a two-degree freedom 
robot model for comparative research. As shown in Figure  12, the 

FIGURE 8

Comparison of end coordinate prediction results.
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FIGURE 9

Sine tracking curve.

FIGURE 10

Circular arc trace curve.

dashed line represents the simulation results of the unimproved 
observer (Equation 18). In contrast, the solid red and green lines 
represent the simulation results of the improved torque observer 
(Equation 20). The solid black line simulates the occurrence of a 
collision. It can be observed that after the collision occurs, the improved 
observer exhibits reduced overshoot and quick response speed.

4.5 True machine verification

This paper conducts experiments on flexible control and trajectory 
planning using the medical dual-arm collaborative robot produced by 
Siasun Corporation. Figure 13A depicts the experimental results of 
drug dispensing by the medical assistance dual-arm robot.

 1) Opening the bottle cap: (demonstrated using preopened 
medication, placing the opened aluminum cap into a box)

 a The robot left arm grabs the bottle while the right arm grasps 
the bottle opener.

 b The left arm places the bottle in the specified position and visually 
checks the notch position. If the position is incorrect, the left 
arm rotates the bottle to a specific position. Subsequently, the 
right arm grabs the bottle opener and quickly presses down to 
remove the aluminum cap from the medication using pressure.

 c The right arm returns the bottle opener to its original position, while 
the left arm lifts the bottle and places the pressed aluminum cap 
into the collection box. A visual system is introduced here to confirm 
whether the bottle cap has been successfully opened. An error 
message is prompted if it is still attached to the bottle or the opener.

 d After disposing of the aluminum cap, the bottle is placed back 
in the specified position.

 (2) Medication dispensing demonstration:
 a The right arm grabs the syringe, as shown in Figure 13B, while 

the left grabs the plunger.

FIGURE 11

NURBS spline diagram.
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 b The two arms cooperate to demonstrate liquid suction from the 
vial and inject the liquid into the bottle, as shown in Figure 13C.

5 Conclusion

This paper addresses the challenges of flexible control and 
trajectory planning in medical dual-arm collaborative robots. It 
proposes a neural network based kinematic solver as a universal 
approximator to resolve the kinematic problems of humanoid dual-arm 
robots while ensuring solution accuracy. Compared to other numerical 
and geometric methods for solving equation systems, the neural 
network based kinematic solver directly obtains reasonable solutions 
in the workspace when the number of unknowns exceeds the number 
of equations, providing a concise selection approach. Regarding 
trajectory planning, we propose a comprehensive interpolation scheme 
based on NURBS curve interpolation. The NURBS spline fitting 
method is employed to further smooth the interpolated feed curves, 
with repeated checks for chord error during interpolation to restrict it 
within a specified error range. Additionally, an improved second-order 
momentum torque observer is designed to accurately detect external 
collisions without external sensors. This observer operates without 
requiring arm acceleration as input, effectively avoiding interference 
and errors caused by acceleration. Optimized observer design 
significantly reduces system overshoot, thereby enhancing collision 
detection accuracy.
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