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Introduction: Accurately recognizing and understanding human motion actions

presents a key challenge in the development of intelligent sports robots.

Traditional methods often encounter significant drawbacks, such as high

computational resource requirements and suboptimal real-time performance.

To address these limitations, this study proposes a novel approach called Sports-

ACtrans Net.

Methods: In this approach, the Swin Transformer processes visual data to extract

spatial features, while the Spatio-Temporal Graph Convolutional Network (ST-

GCN) models human motion as graphs to handle skeleton data. By combining

these outputs, a comprehensive representation of motion actions is created.

Reinforcement learning is employed to optimize the action recognition process,

framing it as a sequential decision-making problem. Deep Q-learning is utilized

to learn the optimal policy, thereby enhancing the robot’s ability to accurately

recognize and engage in motion.

Results and discussion: Experiments demonstrate significant improvements

over state-of-the-art methods. This research advances the fields of neural

computation, computer vision, and neuroscience, aiding in the development

of intelligent robotic systems capable of understanding and participating in

sports activities.

KEYWORDS

neural computing, computer vision, Swin Transformer, ST-GCN, reinforcement learning,
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1 Introduction

Robot sports action recognition is a significant research direction in computer vision

and machine learning, combining robotic capabilities with sports activities to achieve

accurate understanding and recognition of human sports actions (Hong et al., 2024). This

research holds considerable importance in promoting the application of intelligent robots

in sports, including aiding training, teaching, and participating in sports competitions

(Psaltis et al., 2022). This article introduces five commonly used deep learning or machine

learning models in the field of robot sports action recognition and discusses their

advantages and disadvantages (Ai et al., 2023).

Convolutional Neural Networks (CNN) (Wang, 2024) is a classic deep learning

model widely used in image recognition tasks. It leverages local receptive fields, weight

sharing, and pooling operations to capture spatial features in images. However, for

robot sports action recognition, CNNs have limitations in handling temporal information

and joint movements. Keshun et al. (2023b) Recurrent Neural Networks (RNN)

(Baradel et al., 2017) is a deep learning model suitable for sequential data processing.

It uses recurrent connections to handle temporal information and can capture the

evolution of action sequences. However, traditional RNNs face issues like vanishing

and exploding gradients, limiting their ability to model long sequences effectively.
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Long Short-Term Memory Networks (LSTM) (Imran and Raman,

2020) is an improved variant of RNN that introduces gating

mechanisms to address the vanishing and exploding gradient

problems. You et al. (2023) It excels in processing long

sequences and modeling temporal relationships. However, LSTM

still has drawbacks, such as a large number of parameters and

computational complexity. Spatial Temporal Graph Convolutional

Network (ST-GCN) (Duhme et al., 2021) is a graph convolution-

based method specifically designed for skeleton data. It models

skeleton data as a graph structure and uses graph convolution

operations to capture spatial and temporal relationships between

skeletal joints. ST-GCN has achieved remarkable results in action

recognition tasks, but for robot sports action recognition, relying

solely on skeleton data might not fully exploit the available visual

information. Transformer (Jiang and Lu, 2023), initially proposed

for natural language processing tasks, have also made significant

strides in computer vision, such as with the Swin Transformer.

Transformers use self-attention mechanisms to capture global

dependencies in images, making them suitable for handling image

sequences and extracting spatial features.

Current robot sports action recognition methods

predominantly rely on single-modal data, such as images or

skeleton data, which limits their potential. Multi-modal data,

by contrast, offers a more comprehensive description of sports

actions through richer information. Our motivation is to integrate

multi-modal information by combining visual and skeleton data

to enhance performance in robot sports action recognition. For

the visual modality, we use the Swin Transformer to process

video frame data. The Swin Transformer employs self-attention

mechanisms to establish global dependencies in images and

extract spatial features, serving as the visual feature representation.

For the skeleton modality, we use the Spatial Temporal Graph

Convolutional Network (ST-GCN) to process skeleton data.

ST-GCN models the skeleton data as a graph structure and uses

graph convolution operations to capture spatial and temporal

relationships between skeletal joints, providing the skeleton feature

representation. We design a multi-modal fusion architecture

to integrate visual and skeleton features. Fusion can occur at

the feature level or the decision level, creating a comprehensive

representation of sports actions. This approach leverages the

complementarity of multi-modal data, enhancing accuracy and

robustness. To further optimize action recognition performance,

we introduce reinforcement learning techniques. By modeling

the task as a sequential decision problem and using algorithms

like deep Q-learning or policy gradients, we optimize the system.

Appropriate reward functions are employed to maximize expected

rewards, improving the accuracy and stability of action recognition.

• We propose a method that integrates visual and skeleton

data to achieve a comprehensive description of robot

sports actions.

• We innovatively apply deep learning models such as the Swin

Transformer and ST-GCN to effectively extract visual and

skeleton features, capturing the spatio-temporal relationships

of actions.

• By introducing reinforcement learning techniques, we

optimize action recognition performance and stability.

Modeling the recognition task as a sequential decision

problem and maximizing expected rewards makes the

recognition system more intelligent.

2 Related work

2.1 Representation learning

With the development of machine learning and deep learning,

multi-modal data fusion and representation learning have become

popular research directions in the field of robot sports action

recognition (Wu et al., 2022). Multi-modal data fusion aims to

effectively combine data from different sensors or modalities to

improve action recognition performance. Representation learning

focuses on finding suitable feature representations to fully utilize

the complementarity of multi-modal data. Keshun and Huizhong

(2023) In the aspect of multi-modal data fusion, researchers have

explored different fusion strategies, such as feature-level fusion,

decision-level fusion, and model-level fusion. Feature-level fusion

obtains fused feature representations by concatenating or weighted

summing features from different modalities. Decision-level fusion

integrates classification results from different modalities, such as

through voting or weighted averaging. Model-level fusion jointly

trains or fuses network models of multiple modalities (Zhang et al.,

2023). Research in representation learning mainly focuses on how

to learn more discriminative and robust feature representations.

Methods such as autoencoders, Generative Adversarial Networks

(GANs), and Variational Autoencoders (VAEs) in deep learning

have been widely used for representation learning of multi-modal

data (Islam and Iqbal, 2021). Thesemethods, through unsupervised

or semi-supervised learning, learn feature representations with

strong representational capabilities, thereby improving action

recognition performance. Researchers have also proposed many

innovative multi-modal datasets and evaluated different fusion and

representation learning methods through experiments on these

datasets (You et al., 2022).

2.2 Action recognition

Transfer learning and cross-domain action recognition are

critical research directions in the field of robot sports action

recognition, aiming to address action recognition problems across

different scenarios and tasks (Wang et al., 2024b). Transfer learning

improves action recognition performance in the target domain

by leveraging knowledge and models from the source domain

(Chen et al., 2024). Cross-domain action recognition involves

transferring action recognitionmodels from one domain to another

to achieve knowledge transfer and application. Transfer learning

methods mainly include feature transfer, model transfer, and

relation transfer. Feature transfer applies feature representations

from the source domain to the target domain, utilizing source

domain knowledge to aid action recognition in the target domain.

Model transfer involves applying model parameters from the

source domain to the target domain’s model training to reduce the

need for samples and training time in the target domain. Relation
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transfer establishes relationships between the source and target

domains to achieve knowledge transfer and migration (Keshun

et al., 2023c). Future research can further explore the application

of transfer learning and cross-domain action recognition methods

in robot sports action recognition (Chao et al., 2024). This

can include studying how to select the most appropriate source

and target domains and how to design effective knowledge

transfer strategies. Additionally, combining multi-modal data

fusion and representation learning methods can further improve

the performance of transfer learning and cross-domain action

recognition (You et al., 2023).

2.3 Online learning and incremental
action recognition

Online learning and incremental action recognition are

cutting-edge research directions in the field of robot sports action

recognition, aiming to achieve rapid learning and adaptation

to new actions (Keshun et al., 2024a). Online learning refers

to the real-time learning and updating of action recognition

models through interaction with the environment during the

actual operation of the robot. Incremental action recognition

involves quickly learning new actions based on existing models,

achieving incremental updates and expansions of the model

(Liu et al., 2023). Online learning methods mainly include

reinforcement learning, online supervised learning, and active

learning. Reinforcement learning optimizes the action recognition

model by obtaining reward signals through interaction with the

environment. Online supervised learning continuously updates

model parameters by collecting labeled data online. Active learning

optimizes the learning process by actively selecting samples (Wang

et al., 2024a). Incremental action recognition methods include

incremental learning, transfer incremental learning, and deep

incremental learning. Incremental learning involves adding new

samples and labels based on existing models to achieve incremental

updates and expansions of the model (Keshun et al., 2024b).

Transfer incremental learning transfers knowledge from existing

models to new action recognition tasks to achieve rapid learning

and adaptation. Deep incremental learning combines deep learning

models with incremental learning methods to achieve quick

learning and recognition of new actions (Keshun et al., 2023a).

3 Methodology

3.1 Overview of our network

This article introduces a method for recognizing sports actions

in robotics by utilizing advanced techniques such as multimodal

data fusion and representation learning, transfer learning and

cross-domain action recognition, as well as online learning and

incremental action recognition. These methods aim to enhance

action recognition performance and generalization capabilities,

enabling the system to adapt to various scenarios and tasks. Figure 1

shows the overall framework diagram of the proposed method.

We applied data augmentation techniques such as random

cropping and scaling of video frames, random horizontal flipping,

and color jittering to increase data diversity and improve model

robustness. Regarding data preprocessing, we extracted consecutive

frames from the original videos at a fixed frame rate, adjusted each

frame image to a uniform size, extracted skeletal joint information

using a pose estimation algorithm followed by normalization,

and structured this data into temporal sequences for subsequent

spatiotemporal feature extraction. Through these methods, we

better captured the diversity and complexity of actions, enhancing

the model’s robustness and generalization capability. We believe

that these improvements will help readers better understand our

research methodology and implementation process.

The method incorporates several core principles. Multimodal

data fusion and representation learning combine data from

various sensors or modalities to enhance action recognition.

This includes feature-level, decision-level, and model-level fusion

strategies, using techniques like autoencoders, GANs, and VAEs

to learn robust feature representations. Transfer learning and

cross-domain action recognition utilize knowledge and models

from one domain to improve performance in another, employing

methods such as feature transfer, model transfer, and domain

adaptation. Online learning and incremental action recognition

facilitate rapid adaptation to new actions through reinforcement

learning, online supervised learning, and active learning, with

techniques like incremental learning and deep incremental learning

allowing for continuous model updates based on environmental

interactions. The method involves several key steps. First, collect

training and test sets of multimodal data, including images,

skeleton data, speech, and text, and perform preprocessing such

as denoising, normalization, and standardization. Next, fuse data

from different modalities, using methods like autoencoders and

GANs to obtain discriminative feature representations. Then, apply

transfer learning techniques to leverage source domain features for

target domain action recognition tasks. During robot operation,

achieve online learning and incremental action recognition

through environmental interaction, using reinforcement learning

and online supervised learning to optimize the model. Finally,

evaluate the model’s performance using the test set, analyzing

metrics like accuracy, recall, and F1 score. This integrated approach

enhances the generalization and performance of robotic sports

action recognition across various scenarios and tasks.

3.2 Swin transformer

The Swin Transformer (Swin stands for “Shifted Windows”)

is a Transformer model designed for image classification tasks

(Kim et al., 2023). Its fundamental principle is the introduction

of a hierarchical window mechanism to address the computational

and memory overhead issues faced by traditional Transformers

when processing large-scale images (Tang et al., 2023). Figure 2 is

a schematic diagram of the principle of Swin-transformer.

Traditional Transformer models divide the input image into

uniform patches (e.g., 16x16 patches) and process each patch as

a sequence element. However, this uniform division approach

significantly increases computational and memory requirements

when dealing with large-scale images. The Swin Transformer

addresses this issue by introducing a hierarchical window
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FIGURE 1

The overall framework diagram of the proposed method is presented.

FIGURE 2

A schematic diagram of the principle of Swin-transformer.

mechanism. This mechanism divides the image into multiple

windows and performs local Transformer operations within each

window, thereby reducing computational and memory overhead.

The Swin Transformer operates on several key principles.

Hierarchical window partitioning divides the input image into

small windows, each containing contiguous pixels, typically

sized 4x4 or 8x8. This approach reduces computational and

memory costs. Within these windows, hierarchical Transformer

operations are performed, consisting of local window-level

Transformers for feature extraction and local context modeling,

and global image-level Transformers for integrating global

features and semantic modeling. To improve feature interaction,

the Swin Transformer employs a shifted window operation,

where each window undergoes a positional shift at different

levels, facilitating information exchange and feature integration

across windows.
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FIGURE 3

A schematic diagram of the principle of ST-GCN.

FIGURE 4

A schematic diagram of the principle of Transfer Learning.

The Swin Transformer plays a crucial role in image

classification by addressing several challenges. It reduces

computational and memory overhead through its hierarchical

windowmechanism, which transforms the processing of large-scale

images into more manageable window-level operations, enhancing

the model’s scalability. This approach allows the Swin Transformer

to effectively handle large-scale images, overcoming limitations

faced by traditional Transformer models. Additionally, the

model integrates both global and local features by first extracting

local features and modeling local context within each window,

then combining these local features into comprehensive global

semantic representations through global image-level Transformer

operations. This results in more accurate and detailed feature

representations, improving classification performance.

The formula of Swin Transformer is as follows:

Xl+1 = LayerNorm (Xl + Mlp (Shift (Window (Xl)) + Attention (Xl)))

(1)

The variables are explained in Equation 1:

l: represents the index of the current layer. Xl: represents the

input of the lth layer, which can be a feature vector, attention

vector, etc. Xl+1: represents the output of the l + 1th layer.

Window(Xl): represents the window division operation on the

input Xl. Shift(Window(Xl)): indicates the shift operation of the

features in the window. Attention(Xl): indicates the attention

mechanism operation on the input Xl. Mlp(·): indicates the multi-

layer perceptron (MLP) operation, which usually includes two

linear transformations and an activation function. The LayerNorm

operation in the formula is used to normalize the input layer to

improve the stability and convergence of the model.

This formula describes the calculation process of each layer in

Swin Transformer. Through the window division operation and

the shift operation, the local features are interacted and integrated.

Then, through the attention mechanism operation, the input and

the features in the window interact. Finally, the MLP operation

is used to further map and nonlinearly transform the interacted

features. Finally, the output of the previous layer and the result of

the MLP operation are added through the LayerNorm operation,

and normalized to obtain the output of the current layer.
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Input: Datasets: VideoBadminton, Sports-1M,

Finegym, UCF101

Output: Trained Sports-ACtrans Net model

Initialize Sports-ACtrans Net parameters θ;

Initialize learning rate α;

Initialize maximum epochs E;

Initialize batch size B;

Initialize evaluation metrics: Precision, Recall;

for epoch e← 1 to E do

for each batch b← 1 to
total samples

B do

Sample a mini-batch of data (Xb,Yb) from

datasets;

# Swin Transformer feature extraction

FSwin
b
← SwinTransformer(Xb, θSwin);

# ST-GCN feature extraction

FST
b
← ST-GCN(Xb, θST );

# Concatenate features Fb ← Concat(FSwin
b

, FST
b
);

# Pass through fully connected layer

Zb ← FC(Fb, θFC);

# Compute loss Lb ← Loss(Zb,Yb);

# Backpropagation θ ← θ − α∇θLb;

end

# Evaluate on validation set

Pe,Re ← Evaluate(Validation Set, θ);

if Pe > Best Precision then

Best Precision← Pe;

Best Model← θ;

end

if Re > Best Recall then

Best Recall← Re;

Best Model← θ;

end

# Print metrics Print Pe,Re;

end

while not converged do

Sample data (Xs,Ys) from source domains;

Sample data (Xt ,Yt) from target domains;

# Domain adaptation Fs ← Feature Extractor(Xs, θ);

Ft ← Feature Extractor(Xt , θ);

LDA ← Domain Loss(Fs, Ft);

θ ← θ − α∇θLDA;

end

Return Best Model;

Algorithm 1. Training process for Sports-ACtrans Net.

3.3 ST-GCN network

The Spatio-Temporal Graph Convolutional Network (ST-

GCN) is a model designed for action recognition tasks (Feng et al.,

2022). It is based on the concept of Graph Convolutional Networks

(GCNs) and performs convolution operations on spatio-temporal

graphs to capture the spatial and temporal relationships within T
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FIGURE 5

The comparison of di�erent metrics of di�erent models is from di�erent datasets.

action sequences (Kim et al., 2023). Figure 3 is a schematic diagram

of the principle of ST-GCN.

The ST-GCN model operates on several fundamental

principles. It begins by constructing spatio-temporal graphs to

represent the input action sequence, where nodes correspond

to each joint at specific time steps and edges capture the

spatio-temporal relationships between them. Each node holds

a feature vector representing the joint’s state at a given time.

The model then uses graph convolution operations to extract

features and model the spatio-temporal relationships in the

graph. These operations update the feature representation of

each node by aggregating information from its neighboring

nodes, accounting for both spatial and temporal neighbors

to capture context within the action sequence. To enhance

feature abstraction, ST-GCN typically stacks multiple graph

convolutional layers, with each layer refining the spatio-temporal

graph’s features and passing the updated information to the

next layer. Finally, the output features from the last graph

convolutional layer are input into a classifier, such as a fully

connected layer, to perform action sequence classification.

This layered approach allows ST-GCN to effectively learn

and utilize complex spatio-temporal patterns for accurate

action recognition.

The role of ST-GCN in action recognition includes several

key aspects. Firstly, it models spatio-temporal relationships

within action sequences through graph convolution operations

on the spatio-temporal graph. By considering both spatial

and temporal neighboring nodes, ST-GCN effectively captures

relevant spatio-temporal context information, enabling a better

understanding of the action sequences. Secondly, the model

uses parameter sharing in its graph convolution operations

to process features of different nodes, which reduces the

overall number of parameters and enhances both efficiency and

generalization ability. Additionally, ST-GCN performs multi-

layer feature extraction by stacking multiple graph convolutional

layers. Each layer extracts different levels of abstract features,

thus capturing comprehensive spatio-temporal information within

the action sequences. Finally, the graph convolution operations

in ST-GCN are capable of handling action sequences of

varying lengths, making the model adaptable to inputs of

different scales.

The formula of ST-GCN is in Equation 2:

X(l+1)
= σ (AX(l)W(l)) (2)

The variables are explained as follows:

l: represents the index of the current layer. X(l): represents

the input features of the lth layer, which is a three-dimensional

tensor of size N × C × T, where N is the number of nodes,

C is the number of feature channels, and T is the number of

time steps. X(l+1): represents the output features of the l +

1th layer, which has the same dimension as X(l). A: represents

the adjacency matrix of the spatiotemporal graph, which is a

matrix of size N × N, reflecting the spatiotemporal relationship

between nodes. W(l): represents the weight matrix of the lth

layer, which is a matrix of size C × K, where K is the number

of convolution kernels. σ (·): represents the activation function.

Commonly used activation functions include ReLU, sigmoid, etc.

The convolution operation in the formula can be explained as

follows: first, the input feature X(l) is transformed by matrix

multiplication X(l)W(l); then, the transformed feature is multiplied

with the adjacency matrix A by matrix multiplication X(l+1) to

consider the spatiotemporal relationship between nodes; finally,

the result is nonlinearly mapped by the activation function σ (·) to

obtain the output feature X(l+1) of the l+ 1 layer.

The adjacency matrix A in ST-GCN reflects the spatiotemporal

relationship between nodes and can be constructed according to the

needs of specific tasks. Common construction methods include the

combination of spatial neighbor relations and temporal neighbor

relations, and learning using graph neural networks.

3.4 Reinforcement learning

Reinforcement Learning (RL) is a machine learning method

used to solve the problem of an agent learning to obtain an optimal

behavior policy through trial and error while interacting with its

environment (Gao et al., 2020). The fundamental principle of RL

is that the agent learns by observing the state of the environment,

performing actions, receiving rewards, and updating its policy
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TABLE 2 The comparison of di�erent metrics of di�erent models is from di�erent datasets.
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FIGURE 6

The comparison of di�erent metrics of di�erent models is from di�erent datasets.

accordingly (Brandão et al., 2022). Figure 4 is a schematic diagram

of the principle of RL.

Reinforcement Learning (RL) involves several fundamental

concepts and a basic process. The environment is the domain

in which the agent operates, encompassing states, actions, and

rewards. A state describes the current situation of the environment,

while actions are the decisions the agent canmake. Rewards provide

feedback on the actions’ effectiveness, helping to evaluate their

quality. The policy is the strategy the agent uses to select actions

based on the current state, which can be either deterministic

or probabilistic. The RL process starts with initializing the

environment’s state. The agent observes this state and selects an

action based on its policy. It then performs the action, interacts with

the environment, and receives a reward along with the next state.

The agent updates its policy using this reward and state transition

information, refining its decision-making for future states. This

cycle of observing states, selecting actions, receiving rewards,

and updating the policy continues until a predefined termination

condition is met. This iterative process helps the agent learn to

make better decisions over time.

Reinforcement Learning (RL) plays several important roles. It

helps the agent learn the optimal policy to maximize cumulative

rewards through interaction with the environment and trial-and-

error learning. By trying different actions and adjusting its policy

based on rewards, the agent gradually optimizes its behavior. RL

is also effective in handling complex environments with large

state and action spaces, where traditional rules or algorithms

may be inadequate. It allows the agent to adapt autonomously to

optimal policies through environmental interaction. Furthermore,

RL provides adaptability and generalization capabilities, enabling

the agent to learn and apply strategies in different tasks

and environments, thus enhancing its generalization ability.

The applications of RL are extensive, spanning fields such as

robot control, autonomous driving, game playing, and resource

management. Through RL, agents can learn optimal decision-

making strategies from interactions with their environments,

making it a valuable tool for addressing various practical problems.

The basic formula of reinforcement learning is as follows:

Q(s, a) = (1− α) · Q(s, a)+ α ·

(

r + γ ·max
a′

Q(s′, a′)

)

(3)

The variables are explained in Equation 3:

Q(s, a): represents the value function (Q value) of the state-

action pair (s, a), which represents the expectation of the long-term

cumulative reward obtained by selecting action a under state s.

s: represents the current state. a: represents the currently selected

action. α: represents the learning rate, which determines the relative

weight of the new estimate to the old estimate. r: represents the

immediate reward obtained after executing action a. γ : represents

the discount factor, which is used to weigh the importance of

current rewards and future rewards. s′: represents the next state

entered after executing action a. a′: represents the action selected

in the next state s′. The formula represents the update rule of the

state-action value (Q value) in the Q-learning algorithm. In each

step, according to the current state s and the selected action a, the

estimate of the Q value is updated by observing the immediate

reward r and the next state s′ entered.

The update rule in the formula includes two parts: one is the

current estimate (1 − α) · Q(s, a), which means that the current

estimate decays according to the learning rate; the other is the new

estimate α ·
(

r + γ ·maxa′ Q(s
′, a′)

)

, which represents the update

term based on the immediate reward and the maximum Q value

estimate of the next state.

4 Experiment

4.1 Datasets

This article utilizes several datasets, including the

VideoBadminton Dataset (Li et al., 2024), Sports-1M Dataset

(Li et al., 2021), Finegym Dataset (Shao et al., 2020), and UCF101

Dataset (Cho et al., 2013). The VideoBadminton Dataset focuses

specifically on badminton games, featuring various actions like

serves, smashes, and rallies from multiple angles and scenarios.

The Sports-1M Dataset is a large-scale collection of over a million

sports videos annotated across more than 400 different sports

categories, widely used for sports action recognition tasks. The

Finegym Dataset is aimed at fine-grained action recognition

in gymnastics, providing detailed annotations for gymnastics

actions across events like floor exercises, vaults, and uneven bars,

facilitating precise action segmentation and classification. The

UCF101 Dataset is a well-known action recognition dataset that
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includes 13,320 video clips from 101 different action categories,

such as human-object interactions, body movements, and sports

activities, serving as a comprehensive benchmark for evaluating

action recognition models.

4.2 Experimental details

In this experiment, we conducted a systematic research

study on action recognition in sports videos using eight A100

GPUs. Initially, we selected the UCF101 and Finegym datasets,

both containing a wide range of action categories and detailed

action annotations, making them suitable for model training and

evaluation. During the data preprocessing stage, we extracted

video frames, processed labels, and partitioned the dataset into

training, validation, and test sets in proportions of 70%, 15%,

and 15% respectively. This rigorous data partitioning method

ensured the effectiveness of model training and the reliability

of evaluation results. n terms of model selection and design,

we utilized Swin Transformer and ST-GCN as the baseline

models and designed multiple experimental combinations. These

combinations encompassed various model architectures, training

details, and hyperparameter settings such as network depth,

filter sizes, learning rate, and batch size. Specific hyperparameter

settings included a learning rate of 0.001, a batch size of 32,

and the utilization of optimization algorithms like Stochastic

Gradient Descent (SGD) and Adam to ensure scientific and

consistent performance comparisons across different experimental

conditions. hrough these configurations and methods, we were

able to systematically evaluate and optimize the performance

of the Sports-ACtrans Net model in the task of multimodal

robotic sports action recognition. The experimental process

design strictly adhered to standardized procedures. We initialized

model architecture and hyperparameters, further partitioned

the dataset using cross-validation or fixed ratio methods

to ensure the independence of training and testing phases.

Throughout the model training process, we meticulously recorded

training time, parameter count, and performance metrics on

the training and validation sets for each experiment, laying

the foundation for subsequent model performance evaluations.

Upon completing training, we rigorously evaluated the model’s

performance using the test set, including key metrics like

accuracy, AUC, recall, and F1 score. Additionally, we recorded

the model’s inference time and computational load, crucial for

assessing the model’s performance and resource requirements in

practical applications.

In this paper, we designed two ablation experiments to

validate the superiority of the ST-GCN module in action

recognition. We conducted experiments using four datasets:

VideoBadminton Dataset with 56,880 video clips, Sports-

1M Dataset with 1,000,000 video clips, Finegym Dataset

with 133,184 video clips, and UCF101 Dataset with 13,320

video clips. Specifically, in the ablation experiments, we

replaced the ST-GCN module with three commonly used

convolutional networks to evaluate their performance differences:

GCN (classical graph convolutional network), ResNet-50

(deep residual network), and ResNet-18 (shallower residual
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FIGURE 7

Ablation experiments on the ST-GCN module.

network). The experimental hyperparameters were set as follows:

learning rate of 0.001, batch size of 32, Adam optimizer,

100 training epochs, and evaluation using 5-fold cross-

validation. The experimental results indicated that models

using the ST-GCN module outperformed the other alternative

models on all datasets, thereby confirming the superiority

of the ST-GCN module in multimodal robotic sports action

recognition. Algorithm 1 shows the training process of the

proposed method.

4.3 Experimental results and analysis

In Table 1, Figure 5, we present our experimental results and

compare them with other methods. We used different datasets

and evaluated them based on accuracy, recall, F1 score, and AUC.

We compared the methods of Mart et al., Jaou et al., Shar et

al., Muha et al., and Khan et al. These methods showed varying

strengths and weaknesses across different datasets. For example,

Mart et al.’s method achieved high accuracy and recall on the
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VideoBadminton and Finegym datasets but performed poorly on

others. Jaou et al.’s method attained high accuracy and AUC on

the Sports-1M dataset but had average performance on other

metrics. Our proposed method achieved the best results across

all datasets. It excelled in accuracy, recall, F1 score, and AUC,

particularly on the Finegym and UCF101 datasets, indicating its

suitability for these specific tasks and stable performance across

different datasets. The advantages of our method likely stem from

our model architecture and training strategies. Our model includes

more effective feature representations and stronger classification

capabilities, enabling it to recognize and classify actions more

accurately. We also employed advanced training techniques, such

as data augmentation, transfer learning, or ensemble learning, to

enhance the model’s generalization ability and robustness.

In Table 2, Figure 6 presents the results of our experiments

on multimodal robot sports action recognition on different

datasets, comparing variousmethods in terms ofmodel parameters,

floating-point operations (Flops), inference time, and training

time. These metrics are crucial for evaluating the efficiency and

performance of the models. We conducted experiments on the

VideoBadminton Dataset, Sports-1M Dataset, Finegym Dataset,

and UCF101 Dataset. The compared methods include Martin et al.

(2020), Jaouedi et al. (2020), Sharif et al. (2020), Muhammad

et al. (2021), and Khan et al. (2024) (two different versions), and

our proposed multimodal action recognition method combining

Swin Transformer and ST-GCN with reinforcement learning.

Our method demonstrates fewer model parameters and floating-

point operations on all datasets, indicating its lightweight and

efficient nature. For example, on the VideoBadminton Dataset,

our method only requires 161.51M parameters and 205.23G Flops,

significantly lower than other methods. Additionally, our method

exhibits the fastest inference speed and shortest training time

on all datasets. For instance, on the Sports-1M Dataset, our

method achieves an inference time of only 178.43 ms, while

other methods generally exceed 200ms. On the UCF101 Dataset,

our method has a training time of 215.33s, much lower than

other methods. Overall, our method performs excellently in all

metrics. The fewer model parameters and floating-point operations

enable the model to run efficiently even with limited hardware

resources, and the shorter inference and training time indicate

a more efficient training and inference process, suitable for

real-time action recognition tasks in practical applications. The

experimental results demonstrate that our proposed multimodal

action recognition method based on Swin Transformer and ST-

GCN combined with reinforcement learning performs remarkably

well on various datasets. This method not only significantly

reduces model complexity but also improves inference speed and

training efficiency. This indicates the advantages of our method

in practical applications, especially in robot motion scenarios that

require real-time action recognition. Overall, our method not only

excels in accuracy but also demonstrates excellent performance

in computational efficiency and resource consumption, proving

its outstanding performance and broad application prospects in

multimodal robot sports action recognition tasks.

In Table 3, Figure 7 displays the results of ablation experiments

on the ST-GCN module, comparing the performance of different

methods on the VideoBadminton Dataset, Sports-1M Dataset,

Finegym Dataset, and UCF101 Dataset. The evaluated metrics

Frontiers inNeurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1443432
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Lu 10.3389/fnbot.2024.1443432

FIGURE 8

Ablation experiments on the ST-GCN module.

include accuracy, recall, F1 score, and area under the curve (AUC),

which are used to assess the model’s classification performance. The

experimental results show that our proposed multimodal action

recognition method combining Swin Transformer and ST-GCN

with reinforcement learning achieves the highest accuracy on all

datasets. For example, it reaches 97.23% on the VideoBadminton

Dataset, significantly outperforming other methods. It also

demonstrates excellent recall, reaching 94.16% on the Sports-

1M Dataset. The F1 score showcases its robustness in handling

imbalanced data, achieving 91.53% on the Finegym Dataset.

Furthermore, it exhibits outstanding performance in terms of AUC,

indicating strong overall classification performance, with a score

of 91.34% on the UCF101 Dataset. Overall, our method performs

remarkably well in all metrics, particularly surpassing other

comparative methods in terms of accuracy, recall, F1 score, and

AUC. This demonstrates the significant performance advantage of

our method in multimodal robot sports action recognition tasks.

Not only does it reduce model complexity, but it also significantly

improves classification performance, showcasing its outstanding

performance and broad prospects in practical applications.

In Table 4, Figure 8 presents the results of ablation experiments

on the ST-GRU module, comparing the performance of different

methods on the VideoBadminton Dataset, Sports-1M Dataset,

Finegym Dataset, and UCF101 Dataset. The evaluated metrics

include model parameters, floating-point operations (Flops),

inference time, and training time, which are used to assess the

model’s computational complexity and runtime efficiency. The

experimental results show that our proposed multimodal action

recognition method combining Swin Transformer and ST-GRU

with reinforcement learning exhibits the fewest model parameters

and lowest floating-point operations on all datasets, indicating a

lightweight and computationally efficient model. Additionally, our

method demonstrates the fastest inference time, with an inference

time of only 177.48ms on the Finegym Dataset, significantly

outperforming other methods, showcasing its superiority in tasks

that require real-time performance. Moreover, our method has the

shortest training time on all datasets, with a training time of 115.13s

on theUCF101Dataset, indicating amore efficient training process.

Overall, our method performs remarkably well in all metrics,

significantly surpassing other comparative methods, proving its
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significant performance advantage and broad application prospects

in multimodal robot sports action recognition tasks.

5 Conclusion and discussion

In this article, in order to address the shortcomings of

traditional methods in the aspects of complexity, real-time

performance, and accuracy in multi-modal robot motion

action recognition tasks, we propose the Sports-ACtrans Net, a

method for multi-modal action recognition that combines the

Swin Transformer and ST-GRU with reinforcement learning.

Experimental results show that the proposed method has the

fewest model parameters and the lowest Flops on the dataset,

making it a lightweight and computationally efficient model.

Additionally, our method also excels in inference time and

training time, with an inference time of only 177.48 milliseconds

on the Finegym dataset and a training time of 115.13 seconds

on the UCF101 dataset, demonstrating significant advantages

in real-time performance and training efficiency. However,

the performance of our method has not yet been validated

on other types of datasets, so future research will test the

model on more diverse datasets to evaluate its generalization

ability. Despite the improved computational efficiency, the

overall architecture remains quite complex, which may limit

deployment in resource-constrained environments. Future work

will focus on simplifying the model structure to enhance its

applicability in resource-constrained environments such as

embedded systems.
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