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Wearable augmentations (WAs) designed for movement and manipulation, such

as exoskeletons and supernumerary robotic limbs, are used to enhance the

physical abilities of healthy individuals and substitute or restore lost functionality

for impaired individuals. Non-invasive neuro-motor (NM) technologies, including

electroencephalography (EEG) and sufrace electromyography (sEMG), promise

direct and intuitive communication between the brain and the WA. After

presenting a historical perspective, this review proposes a conceptual model

for NM-controlled WAs, analyzes key design aspects, such as hardware design,

mounting methods, control paradigms, and sensory feedback, that have direct

implications on the user experience, and in the long term, on the embodiment of

WAs. The literature is surveyed and categorized into three main areas: hand WAs,

upper body WAs, and lower body WAs. The review concludes by highlighting

the primary findings, challenges, and trends in NM-controlled WAs. This review

motivates researchers and practitioners to further explore and evaluate the

development of WAs, ensuring a better quality of life.

KEYWORDS
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1 Introduction

Throughout history, humans have strived to enhance their physical and cognitive

abilities through technological innovations. For example, the invention of vehicles allowed

humans to overcome their natural speed limitation, while the emergence of the internet

expanded our communication abilities. This practice of enhancing human capabilities

through the application of technology falls under the field of human augmentation

(Guerrero et al., 2022). Within this larger field, human movement augmentation (HMA)

refers to the enhancement of sensorimotor capabilities, as opposed to cognitive ones, which

can include improvement of strength, endurance, and mobility (Cinel et al., 2019). Given

the physical nature of this mode of augmentation, implementations within HMA also share

this physical characteristic.

HMA can be wearable, designed to provide support or enhancement while attached

to the human body. Non-wearable augmentations, on the other hand, enhance human

capabilities as standalone devices. Furthermore, the implementation of augmentation can

be invasive, requiring medical interventions, or non-invasive, which requires alternative

methods to integrate the augmentation with the user. Additionally, the augmentation

can be controlled by various agents. An autonomous mode of control operates through

an algorithm or model on the device’s controller, occasionally accepting user preferences

Frontiers inNeurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2024.1443010
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2024.1443010&domain=pdf&date_stamp=2024-10-31
mailto:mohamad.eid@nyu.edu
https://doi.org/10.3389/fnbot.2024.1443010
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2024.1443010/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Alsuradi et al. 10.3389/fnbot.2024.1443010

but not as a direct input, primarily relying on its own logic for

decisions. A voluntary mode of control involves full user input,

often through physiological (such as surface electromyography or

electroencephalography) or non-physiological (such as a joystick or

pedals) signals.

Given the plethora of implementation taxonomies

within HMA, we focus on a specific subset of HMA

implementations that have been gaining interest in the community:

wearable augmentations (WAs) that are non-invasive and

primarily controlled through a voluntary control mode via

neurophysiological signals to infer user intent.

1.1 Wearable augmentations

WAs refer to a category of HMA devices designed to be

physically attached to the human body with the purpose of

assisting in performing a variety of physical tasks that would

otherwise be impossible for an individual. WAs include both

exoskeletons and supernumerary robotic limbs such as fingers,

arms, or legs. Exoskeletons are typically designed to provide

support to either upper or lower limbs for serving different

purposes such as rehabilitation (Cao and Huang, 2020) or

augmentation (Kazerooni, 2008). These exoskeletons are designed

to fit the natural configuration of the human body, to be worn as

external suits, and are equipped with actuators for the purpose of

assisting human joints. For example, lower body exoskeletons are

designed to aid in weight-bearing, reducing the metabolic cost of

locomotion, and facilitating gait rehabilitation (Siviy et al., 2023).

On the other hand, upper body exoskeletons are used in enhancing

load lifting capabilities, increasing strength and endurance. As

such, they often provide support to workers and laborers in the

industrial sector, and are also beneficial for rehabilitation purposes

(Ebrahimi, 2017).

Supernumerary robotic limbs, on other hand, are additional

limbs that augment human capabilities in tasks involving

manipulation and locomotion. These can work in conjunction

with natural limbs, or operate independently by introducing

additional degrees of freedom (DoFs). Some advantages of offering

those supernumerary DoFs is the enlarged workspace, as well as

the ability to perform sophisticated actions independently that

would otherwise be impossible for a single human to perform.

Supernumerary robotic legs, for instance, are primarily designed

to extend walking abilities (Khazoom et al., 2020) or to offer

enhanced stability while standing (Treers et al., 2017). In contrast,

supernumerary robotic arms aim to help healthy individuals

perform demanding tasks such as construction work (Parietti

and Asada, 2014; Ciullo et al., 2019), surgical operations (Abdi

et al., 2016), and aircraft fuselage assembly (Parietti and Asada,

2014). Furthermore, supernumerary robotic fingers have been

significantly explored due to their ease of attachment and the

limited DoFs required for their operation. Various supernumerary

robotic fingers have been proposed to assist stroke patients with

grasp compensation (Salvietti et al., 2016), offer rehabilitation for

hemiparetic upper limbs (Hussain et al., 2017a), and enable healthy

individuals in carrying out complex manipulation and grasping

tasks (Kieliba et al., 2021).

One of the primary challenges in achieving widespread

adoption of WAs is the complexity of their control paradigm. The

difficulty arises from the additional overhead attention required by

the brain in controlling theWAwhile maintaining a decent control

over the natural limbs (Guggenheim et al., 2020). Conventional

implementations of WAs relied on controlling them through

joysticks (Nguyen et al., 2019), audio commands (Guo et al.,

2022), eye gaze (Fan et al., 2020), sensing parameters related to

natural limb’s pose (Kojima et al., 2017) and position (Wu and

Asada, 2018), or a combination of these (Nguyen et al., 2019).

A recent and promising trend is to utilize non-invasive neuro-

motor (NM) interfaces, which overcome several issues associated

with the previously mentioned conventional methods due to their

intuitiveness. This brings us to the importance and functionality of

NM interfaces in controlling WAs.

1.2 Neuro-motor interfaces

NM interfaces utilize signals such as surface electromyography

(sEMG) and electroencephalography (EEG). These interfaces can

alleviate the constraint of using natural limbs to control WAs, as is

the case when using joysticks.

Several works have demonstrated controlling WAs through

sEMG signals. Typically, these utilize sEMG signals from body

parts relevant to the desired motion, such as signals from the leg

to control a lower body exoskeleton (Chen et al., 2023). On the

other hand, EEG-controlled WAs are capable of recognizing user’s

motion intention through detecting particular cortical activities

(Wu and Asada, 2018), in theory making the WA devices more

intuitive to control and use. However, EEG-controlledWAs are less

common due to the need of sophisticated algorithms to reliably and

accurately interpret user intent.

The following subsections provide a background on EEG

and sEMG signals. This includes their operational principles, key

components of their setups, and the challenges associated with

utilizing them as control signals.

1.2.1 Surface electromyography (sEMG)
Electromyography (EMG) is a method that records the

electrical activity of muscle cells during contraction (Merletti

and Farina, 2016). This activity involves small electrical currents

produced by muscle fibers before generating force. These currents

result from the exchange of ions across muscle fiber membranes,

a crucial part of the muscle contraction signaling process (Day,

2002). sEMG is a non-invasive variant of EMG, where electrodes

are placed on the surface of the skin above the muscle of interest.

sEMG signals have frequencies lower than 400–500 Hz (Mäki and

Ilmoniemi, 2011) and amplitudes in the lowmV range (Day, 2002).

Notable features of sEMG data exist in time, time-frequency, and

frequency domains (Zecca et al., 2002; Rechy-Ramirez and Hu,

2011). Nevertheless, time domain features are the most commonly

used for pattern recognition with machine interfaces and WAs in

particular (Spiewak et al., 2018).

Generally, there are two primary applications of sEMG in the

context of WAs control: sEMG-based motion recognition (Lee
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et al., 2023) and sEMG-based torque prediction (Lotti et al., 2020).

sEMG signals are characterized by a higher signal to noise ratio

(SNR) compared to EEG signals. However, for patients who exhibit

low sEMG activity or significant muscle spasticity, sEMG-based

WAs may not be suitable. In such cases, EEG-based WAs offer a

viable alternative.

1.2.2 Electroencephalography (EEG)
EEG is a non-invasive method of capturing electrical

cortical activity originating from the simultaneous postsynaptic

potentials of neural populations (Cohen, 2017). Electrodes are

placed on the scalp to capture the electrical activity associated

with cortical brain activation. The amplitude of the measured

EEG signals can vary from a few microvolts to several tens

of microvolts, influenced by factors such as the individual’s

mental state, age, and scalp characteristics (Niedermeyer and

da Silva, 2005). As EEG signals are small in amplitude, it

becomes necessary to amplify those signals for two main

reasons. The first is to improve SNR and thus better extract

the actual brain signal (Nunez and Srinivasan, 2006). The

second reason is to bring the signal to a level suitable for

digitization and further processing (Luck, 2014). One notable

aspect of EEG data is the neural rhythmic oscillations, where

the EEG signals generally have frequencies <100 Hz (Mäki and

Ilmoniemi, 2011). Oscillations are split into five main frequency

bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta

(13–30 Hz), and gamma (30–50 Hz) (Strijkstra et al., 2003).

These oscillations are linked to various processes, including

sensory, perceptual, cognitive, motor, and emotional functions

(Siegel et al., 2012).

EEG data offer two primary types of signals for the control

of EEG-based WAs: endogenous, which are voluntarily generated

without external stimuli, and exogenous, which are elicited

in response to external stimuli. Endogenous signals can be

generated when users perform motor imagery (MI) (Pfurtscheller

and Neuper, 2001), a process where an individual imagines a

movement, leading to observable oscillations in the alpha band

at the motor cortex, known as event-related desynchronization

(ERD) (Schomer and Da Silva, 2012). Alternatively, endogenous

signals can arise from the intention to move, manifesting

as an ERD at the motor cortex, or as a movement-related

cortical potentials (Wright et al., 2011) that are detectable as

a low-frequency signal (Garipelli et al., 2013) at the motor

cortex. Endogenous EEG signals provide an intuitive interface

for controlling WAs, closely mimicking the way we naturally

control our limbs. However, these interfaces often require

more extensive training, and the communication bit rate

tends to be lower compared to exogenous-based methods

(Lee et al., 2017).

Exogenous signals, on the other hand, are evoked by an

external stimulus, most commonly through visual cues. This

method requires minimal training, and has higher bit rate,

however, it occupies the visual modality which is generally needed

for performing tasks, thus limiting its applicability. Examples

of exogenous signals are steady state visually evoked potential

(SSVEP) (Regan, 1966) and P300 (Polich, 2007).

1.3 Historical perspective

NM-controlled WAs are typically utilized by individuals

who have all their limbs. Interestingly, the technology for

these augmentations often originates from innovations aimed at

restoring functions for those who have lost one or more limbs, such

as prosthetic devices for amputees (Battye et al., 1955; Horn, 1972;

Guger et al., 1999; Bitzer and Van Der Smagt, 2006; Ferris et al.,

2006; Bai et al., 2015).

In fact, the field of prosthetics has historically paved the

way for augmentation. Given the intertwined history and shared

technologies of the two fields, we have charted a historical

timeline highlighting key developments in wearables for both

limb augmentation and replacement; see Figure 1. This timeline

particularly emphasizes those controlled via sEMG or EEG. The

inception of NM-controlled prostheses dates back to 1955 (Battye

et al., 1955), when the first hand replacement prosthetic was

controlled using sEMG. This innovation evolved to enable basic

actions, like opening and closing a fist, using sEMG signals from

the forearm. On the other hand, the emergence of EEG-controlled

prostheses was not until 1999. That year marked the development

of the first hand prosthesis controlled through MI of the right and

left hands, specifically to open and close the fist (Guger et al., 1999).

Subsequent to this, in 2001, a lower body exoskeleton controlled

through four sEMG signals obtained from the thigh was proposed

to facilitate the gait cycle of healthy individuals (Kawamoto and

Sankai, 2001), marking the first WA controlled through sEMG.

A decade later, 2012 witnessed the emergence of the first EEG-

controlledWA in the form of a lower body exoskeleton that assisted

in pivotal motions, such as transitioning from sitting to standing,

with a specific focus on rehabilitation contexts (Noda et al., 2012).

The most recent advancement involves augmenting hands with

supernumerary robotic fingers controlled via NM interfaces; the

first implementation was proposed in 2016 (Hussain et al., 2016b).

Motivated by the inherent intuitiveness of the NM control

paradigm and the mounting enthusiasm from the research

community, this article offers a comprehensive review of the

literature on non-invasive, NM-controlled WAs. Previous reviews

have focused on the principles of human movement augmentation

and associated challenges (Eden et al., 2022), or on supernumerary

robotic limbs, either from a device-driven perspective (Prattichizzo

et al., 2021; Yang et al., 2021) or a problem-driven approach (Tong

and Liu, 2021). Unlike prior works, our focus is on wearable devices

for human augmentation, including supernumerary robotic limbs

and exoskeletons controlled exclusively through NM interfaces

(either EEG, sEMG, or both). One motivation for reviewing work

on EEG/EMG-controlled WAs is our belief that the fusion of both

technologies is very promising for achieving reliable augmentation

due to the complementary behavior the two modalities could offer.

We conducted an initial literature search spanning the last

twelve years using the following logical combinations of keywords:

(EEGOREMGOR electroencephalographyOR electromyography)

AND (exoskeleton OR supernumerary) AND (lower body OR

upper body OR arm OR hand OR leg OR feet OR foot OR finger).

This search was carried out through EBSCO title-abstract-keyword

searches. As depicted in Figure 2, the results showcase a clear

upward trend in the research work in this domain. Out of these

papers, only the relevant ones discussing a physical WA device
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FIGURE 1

Historical timeline. Significant advancements in wearable technology, designed for either replacement or augmentation, controlled via neuro-motor

interfaces, that occurred in the past few decades. Color coding correspond to the type of wearable device and the color-shade indicates whether it

is intended for replacement or augmentation. Furthermore, the brain and muscle icons are used to indicate whether the wearable device is

controlled through EEG or sEMG interface, respectively.

controlled through EEG, EMG, or both are considered for the

segmental analysis. A few other older papers were also considered

given their historical importance. Motivated by the inherent

intuitiveness of the NM-control paradigm and the mounting

enthusiasm from the research community, this article offers a

comprehensive review of the literature on NM-controlled wearable

robots designed for human augmentation, considering 54 papers in

total. All data presented is up-to-date as of September 26th, 2024.

In Section 2, we discuss key concepts related to NM-controlled

WAs, including a conceptual model for NM-controlled WAs

and the main design considerations for creating functional and

user-friendly devices. Additionally, we explore two vital concepts

in NM-controlled WAs: the provision of sensory feedback and

the neuroplasticity and embodiment associated with using NM-

controlled WAs. Section 3 reviews studies that have utilized NM

interfaces for WAs, covering supernumerary robotic limbs and

exoskeletons from a segmental perspective. Finally, we address

some pressing challenges in the field and present trends and future

outlooks for NM-controlled WAs.

2 NM-controlled WAs: design and
integration

2.1 Conceptual model

A conceptual model for an NM-controlled WA is depicted in

Figure 3, illustrating a supernumerary finger as a representative

example. However, this model is applicable to any WA. It assumes

a hybrid control approach, utilizing both EEG and sEMG, although

systems may alternatively be controlled solely by one modality.

As mentioned earlier, hybrid NM-controlled WAs benefit from

the combined features of both modalities. EEG data is used for

predicting movement intent, given that EEG is a neural signal that

can capture movement intention signals almost instantaneously

(Liu et al., 2021), which allows for fast and seamless response.

sEMG data, on the other hand, can be used in multiple ways. sEMG

from a particular muscle could be a direct means of control to

predict the amount of torque or force required (Lotti et al., 2020;

Treussart et al., 2020). Another approach is using sEMG from body

parts involved with the WA in the task performance, providing

context for the WA. This would confine movement possibilities

and adjust force or torque to match the collective kinematics of the

natural body.

Accordingly, the conceptual model employs EEG and sEMG

acquisition systems, where the data acquired from both modalities

are transmitted to the WA controller, as illustrated in Figure 3.

Haptic sensors attached to the WA, which could measure

parameters like contact or grasping forces, transmit sensory data

to the WA controller as well. This data is then translated and

sent back to the user as either modality-matched or modality-

mismatched sensory feedback. After extensive use of the device, it is

expected that, due to the phenomenon of brain plasticity, the WA

will form its own representation in the brain, fostering a sense of

embodiment for the used WA (Kieliba et al., 2021).

2.2 Design considerations

Designing WAs requires careful consideration of various

factors. Our literature review has led us to identify four main

considerations essential to the design of WA, as depicted in

Figure 4. The first consideration is hardware design, which involves

decisions about the augmentation’s physical and functional

attributes. This includes the WA’s shape and structure (geometry),

the materials and weight, its range of motion (degrees of freedom),
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FIGURE 2

Trend. Annual number of published articles related to wearable augmentations controlled via EEG/EMG, according to the EBSCO database.

FIGURE 3

Conceptual model for an NM-controlled WA. This example features a hand WA with a control loop that includes EEG and sEMG to predict movement

intent and required force, respectively. The model also includes a feedback loop that conveys sensory feedback to the user.

and its sensing and actuation mechanisms. Rigid and fully actuated

WAs could provide high precision movements and could reach a

variety of configurations but will be heavier in weight, will require

larger number of actuators, and could compromise comfort, safety

and wearability (Prattichizzo et al., 2021). Soft and under-actuated

WAs are lighter and more wearable, but at the cost of reduced

functionality. The second consideration is mounting location,

which influences the WA’s functionality, user comfort, and stability

when worn. SomeWAs are adjustable and can be installed at several

locations of the body. For instance, a supernumerary arm can be

installed at the shoulder, or the waist, depending on the intended

use (Nguyen et al., 2019), while other WAs are designed to be worn

at a specific body location, such as a lower-body exoskeleton used to

support gait (Kawamoto and Sankai, 2001). The third consideration
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is the control paradigm. This component, arguably one of the most

challenging in design, is concerned with interfacing theWAwith its

user, thereby granting them agency over the WA’s movements. In

fact, the control consideration presents unique challenges for WAs

from both conceptual and practical perspectives. There are many

control interfaces that have been proposed in the literature, such

as using joysticks, non-physiological human body measurements

(contact forces, limb pose, limb position), and physiological human

body measurements (EEG, sEMG). The fourth consideration is the

provision of sensory feedback to the user through visual, auditory,

or haptic feedback. For supernumerary robotic limbs, this canmean

feedback on grasp strength, stride force, or the point of contact.

For exoskeletons, sensory feedback might convey information such

as mediolateral and anteroposterior weight shifts (for lower body

exoskeletons), as detailed in Muijzer-Witteveen et al. (2018).

Design choices made during the development of a WA directly

impact the user experience, both when the device is worn and

when in use. Usability, encompassing ease of use and learnability,

is influenced by several factors, including control and sensory

feedback mechanisms. Wearability, related to the user’s comfort

and thus affecting how long the device can be worn, is shaped

by choices regarding the mounting location, weight, and material

of the WA. Fatigue, closely linked to wearability, addresses both

the physical and mental impact of long-term WA use, such as

muscular and cognitive fatigue from ongoing interaction or sensory

overload. The intuitiveness of control is crucial as it should facilitate

coordination with the user’s movements. Safety is another key

aspect, ensuring the WA poses no physical danger or compromises

user data security. Lastly, acceptance, influenced by social and

psychological factors, plays a critical role in the WA’s adoption.

After extended usage, user experience has a direct influence

on embodiment, including the sense of ownership, agency, and

the ability to coordinate the WA’s movement with the rest of the

body. Users providing feedback on their sense of embodiment

can feed back into the design process, potentially leading to

modifications in the WA’s hardware, control, or sensory feedback

mechanisms. These improvements could lead to a version that

fosters better embodiment.

2.3 Sensory feedback

Sensory feedback, one of the design considerations, is defined

as the provision of cues to users about the interaction between

the WA, the human body, and the environment (Pinardi et al.,

2023). This can lead to enhanced control and motor functionality

(Clemente et al., 2019; Zollo et al., 2019), as well as increased

sense of embodiment (Di Pino et al., 2020; Page et al., 2018). As

stated in previous literature, there are three main considerations

when designing a sensory feedback mechanism for a WA:

the type of interaction information that needs to be conveyed

(measured parameter), the form in which it is delivered to the

user (feedback modality), and a feedback assessment mechanism.

The measured parameter required depends on the WA’s function.

For example, parameters such as contact force, contact location,

position, velocity, acceleration, temperature, and joint angles are

relevant for supernumerary limbs (Pinardi et al., 2023), whereas

weight-shift and force exertion are pertinent for lower and upper

body exoskeletons, respectively. Such parameters can be conveyed

to the user through modality-matched (e.g. displaying pressure

information using a pressure actuator) or modality-mismatched

(e.g. displaying pressure information using visual feedback)

stimulation. As explained in Figure 4, feedback modalities can

include visual, auditory, or haptic (including both, tactile and

proprioceptive), each with its own pros and cons. As for the

sensory feedback assessment, this is generally measured through

four main metrics: accuracy while using the WA, latency between

the event and perceiving the sensory feedback, task completion

time (Shadmehr and Mussa-Ivaldi, 2012), and force regulation.

Readers interested in sensory feedback for human augmentation

are directed to the work by Pinardi et al., where this topic is

discussed extensively.

Sensory feedback in NM-controlled WAs presents unique

challenges and requires additional considerations compared to

augmentations controlled by other methods. One critical aspect

is the timely delivery of sensory feedback, irrespective of its type.

While prompt feedback is crucial for all WAs to ensure seamless

control (Cipriani et al., 2014; Sensinger and Dosen, 2020), it is

especially vital for NM-controlled WAs. These devices require

cognitive training prior to their use; thus, any delay in feedback can

significantly affect the learning process and the effective control of

theWA. In certain implementations, it is necessary to provide users

with feedback upon the detection of EEG/sEMG signals that control

the device (Franco et al., 2019; Cisnal et al., 2023). This notification

is delivered to the participant before they can observe the resulting

physical movement of the wearable augmentation. Such proactive

feedback is designed to alleviate any user anxiety regarding their

ability to produce the correct EEG/sEMG signals. Consequently,

any delay in this feedback also presents a significant challenge, as it

can affect user confidence and the overall effectiveness of the device.

Given that NM-controlled WAs require cognitive effort

toward their control, additional mindfulness is required while

designing the sensory feedback mechanism used. Particularly, a

careful design is required in choosing the appropriate tradeoff

between noticeability and frequency of the feedback, for an

optimized cognitive load. We deem an adjustable sensory feedback

mechanism is necessary for NM-controlled WAs to tackle this

trade-off. Tailoring the type, intensity, and timing of the feedback

to the user’s preferences and needs could help achieve this. Also,

sensory feedback could be adapted based on the users’ performance,

by providing more pronounced feedback for situations where

users fail to perform the task properly. As users gain proficiency,

the frequency of sensory feedback could be reduced to decrease

cognitive burden and enhance usability.

2.4 Embodiment and neuroplasticity

A desired outcome of sensory feedback for an augmentation is

embodiment, which often is associated with improved performance

and utility. This means that the device is perceived as either part

of, or an extension of, the body. Embodiment can be self-reported,

but from a neurological standpoint, it is particularly important

in the context of NM-controlled WAs. This form of embodiment
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FIGURE 4

Design considerations of wearable augmentations. Some of these design considerations overlap with those of prostheses; however, the control

consideration is unique in this context, as they require employing additional and un-utilized resources of the human body. Furthermore, the

mounting locations are more versatile in the case of WAs compared to prostheses. Design considerations have direct impact on the user experience

and in the long term, on embodiment.

can be validated by examining neurophysiological signals related

to the movement of the WA and those of the natural limbs. For

example, in EEG, a distinct and repeatable neural activation, in the

form of an ERD, may occur during MI of the augmented device,

indicating embodiment. Similarly, in sEMG-controlledWAs, initial

attempts may result in noisy sEMG signals, but as the user

achieves embodiment, these signals becomemore standardized and

less noisy. These neurophysiological changes suggest neuroplastic

adaptations in the brain.

Neuroplasticity is the ability of the brain to adapt its

structure and functional connectivity in response to novel external

conditions that promote new functions or reorganize old ones

(Di Pino et al., 2014). This is the neural basis of early development

in children (Hensch, 2005), acquisition of new skills (Pascual-Leone

et al., 1995), and recovery from brain injuries (Chen et al., 2002).

The process itself is gradual, with three phases of acquiring a new

representation in the brain: the initial habituation, consolidation,

and long-lasting plasticity (Karni et al., 1998). In the context of NM-

controlled WAs, persistent and prolonged usage of a WA device

is anticipated to induce neural changes in the motor cortex due

to the motor control of the WA. Furthermore, depending on the

sensory feedback modality, neuroplastic changes could occur in

the somatosensory cortex (haptic feedback), visual cortex (visual

feedback), and auditory cortex (auditory feedback). This is inspired

from previous literature on neural plasticity of biological limbs,

where it was reported that expert tennis players had enlarged hand

representation in the motor cortex (Pearce et al., 2000), while violin

players had enlarged somatosensory representation of their fingers

(Elbert et al., 1995).

3 NM-controlled WAs: segmental
perspective

This section presents a comprehensive review of NM-

controlled WAs found in the literature and categorizes them based

on their functionality. The first category is hand WAs consisting

of devices that are designed to augment hand-related functions.

These could be in the form of supernumerary fingers or hand/wrist

orthoses. The second category is upper body WAs in the form of

supernumerary arms and upper body exoskeletons. These wearable

devices are concerned with providing support to the upper body

in performing gross manipulation tasks and increasing endurance

during industrial tasks. The third category is lower body WAs

in the form of supernumerary legs and lower body exoskeletons.

These devices are concerned with providing extended stability and

standing support, assisting in restoring locomotion, or reducing the

metabolic cost of gait.

3.1 Hand wearable augmentations

Hand WAs come in various forms, including hand orthoses

that assist stroke patients and supernumerary fingers that serve

as assistive aids or augmentative tools. These devices are crucial

for compensating for the loss of hand abilities caused by strokes,

offering solutions to regain grasping capabilities. For healthy

individuals, they enhance hand dexterity for complex tasks and

expand the manipulation workspace. Hussain et al. have been

at the forefront of hand WAs research since their pioneering

work on supernumerary fingers commenced in 2014. Their earliest

implementation of a hand WA was motion-controlled (and not

NM-controlled), where hand movements recorded by a smart

glove were translated into commands to control the supernumerary

finger, aimed to enhancemanipulation dexterity (Prattichizzo et al.,

2014). The first sEMG-controlled hand WA was introduced in

2016 in the form of a supernumerary finger (Hussain et al.,

2016a), targeting stroke patients. The developed supernumerary

finger acted as one part of a gripper, while the paretic hand as

the other part of the gripper, compensating for the lost ability

to grasp. The supernumerary finger was controlled through an

eCap interface (with three electrodes) that utilized sEMG signals

from the frontalis muscle for its flexion and extension. The control

mechanism was based on a finite state machine, where one frontalis
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muscle contraction could move or stop the movement of the

finger in a particular direction, while two consecutive contractions

switched the control direction from flex to extend or vice versa.

The functionality and effectiveness of the supernumerary finger

were tested with six stroke patients who went under the Frenchay

Arm Test. Patients were able to perform some of the Frenchay

Arm Test tasks with the supernumerary finger such as grasping

a cylinder and picking up a glass, which they could not perform

without the supernumerary finger. However, some patients failed

performing some of the Frenchay Arm Test tasks despite using the

supernumerary finger (Hussain et al., 2016a); those failures were

caused by the limited arm mobility. Following the same control

mechanism, authors equipped the sEMG-based supernumerary

finger with an arm support system used during the rehabilitation

period (Hussain et al., 2017a). The proposed system enabled stroke

patients to perform some of the Frenchay Arm Test tasks that they

could not perform with the supernumerary finger alone, such as

combing their hair.

To enable precise manipulative tasks, a sEMG-based

supernumerary finger capable of performing both a precision

and power grasp, involving the fingertip or the full finger

respectively, was developed (Salvietti et al., 2016). The flexion and

extension control mechanism was based on the frontalis muscles,

similar to that described by Hussain et al. (2016a), but included

an additional control signal based on three muscle contractions,

allowing switching between power and precision modes. In

another study (Hussain et al., 2016b), the issue of compliance

of the supernumerary finger was addressed using a dual sEMG

interface. The first component consisted of a sEMG armband

placed on the forearm, which recognized five different gestures

and associated them with movements of the supernumerary finger.

For instance, “wave-in” and “wave-out” gestures corresponded to

the respective extension and flexion of the supernumerary finger,

while a “closed-fist” gesture triggered full extension, and “fingers

spread” signaled a stop. The other sEMG interface was located

at the bicep of the contralateral arm and continuously measured

compliance, specifically the tightness of the grip. This prototype

was tested on both impaired and healthy individuals; results

showed that users were able to complete the desired tasks for

compensation and augmentation with the supernumerary finger

successfully.

In 2017, an enhanced sEMG-controlled hand WA prototype

with multiple fingers was proposed (Hussain et al., 2017b).

Such augmentation with higher DoFs is more suitable for high

payload tasks. This work employed the same control mechanism

as presented by Hussain et al., but enhanced the control by

incorporating auto-tuning calibration to better accommodate the

user-dependent nature of the sEMG signals. Similarly, Leigh

and Maes (2016) developed a wearable sEMG-based multi-joint

interface with two flexible, finger-like extensions. Beyond grasping,

the proposed augmentation could carry objects or turn a doorknob

while hands are occupied, and could provide a stable base or

support for writing. Those were controlled through a sEMG-based

gesture recognition through an armband placed at forearm close to

the elbow.

Seeking a more natural interface, Liu et al. (2021) proposed a

flexible supernumerary finger controlled by a hybrid EEG-sEMG

system. sEMG signals were measured from the frontalis muscles,

while EEG signals were measured from the contralateral motor

cortex. A 4-week study involving 10 healthy subjects revealed that

employing EEG to initiate grasping and sEMG to release objects led

to faster task completion (∼7 s) and higher success rates (∼90%),

specifically in bimanual tasks performed with one hand. Grasp

initiation was triggered through a detection of ERD at C3 electrode

as a result of performing the MI of flexing the supernumerary

finger; this detection was done through a trained convolutional

neural network. sEMG signals from eyebrow raises, processed with

a simple threshold method, controlled object release. A follow up

study attempted to use exclusively EEG for control using MI (Liu

et al., 2022). A convolutional neural network model was used for

identifying MI of the supernumerary finger’s flexing. A genetic

algorithm was used to select optimal channels for controlling the

supernumerary finger, thus enhancing adaptability for individual

users. A real-time control experiment was undertaken with

10 subjects, which involved bending the supernumerary finger;

an average classification accuracy of 70% was achieved. No

mechanism was proposed for the extension of the finger in

this work.

Several supernumerary robotic fingers implementations

utilized sensory feedback in their design to improve control

and embodiment of the WA. Meraz et al. (2017) developed

a sEMG-controlled supernumerary finger where differential

electrodes located behind the ear were used to capture the sEMG

signal and to control the finger’s fingertip in two directions:

horizontally and vertically. The system was equipped with dual

feedback mechanisms: visual and haptic. The visual feedback was

provided via a head-mounted display that showed the finger’s

position, whereas the haptic feedback was conveyed through

electrical stimulation on the palm, signaling contact with external

objects. In subsequent work, Shikida et al. (2017) developed a

sEMG-controlled supernumerary finger operated by signals from

the left and right posterior auricular muscles. The bending angle

of the thumb was determined by the activation level of these

muscles, with the robotic finger moving toward the side of the

stronger muscle contraction. The WA was designed to provide

sensory feedback about the joint angle of the thumb through

various vibration patterns delivered at the bases of the index and

pinky fingers. This feedback was found to increase the operability

of the supernumerary finger through the observed reduction in

mistakes in a finger-reaching task. Another work that utilized the

same control mechanism for the supernumerary finger (Aoyama

et al., 2019) employed an alternate sensory feedback method

that relies on the vibrotactile phantom sensation. Using two

vibration motors positioned at the back of the palm, the intensity

of vibration for each motor varied depending on the position of

the supernumerary finger. This variation altered the perception

point accordingly, which corresponded to the finger position.

Another work (Franco et al., 2019) proposed the use of vibrotactile

feedback for sEMG-controlled supernumerary finger to solve a

very relevant problem; correctly detecting the intent of moving

the supernumerary finger through sEMG. Conventionally, subjects

have to wait to see the impact of their control visually which is

time consuming and impractical. Authors found that providing

vibrotactile stimulation on the forehead, signaling a detection of a
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TABLE 1 Specifications summary of hand WAs.

Device name Control
modality

Measurement site Target population Attachment Year

Soft-SixthFinger (Hussain et al.,

2016a)

sEMG Frontalis muscle Chronic stroke patients Wrist-mounted 2016

Supernumerary robotic finger

(Hussain et al., 2016b)

sEMG Bicep muscle Chronic stroke patients

and healthy subjects

Wrist-mounted 2016

Robotic sixth finger (Salvietti et al.,

2016)

sEMG Frontalis muscle Chronic stroke patients Wrist-mounted 2016

Programmable joints interface

(Leigh and Maes, 2016)

sEMG Brachioradialis muscles Healthy subjects Wrist-mounted 2016

Soft supernumerary robotic Finger

(Hussain et al., 2017a)

sEMG Frontalis muscle Post stroke patients Wrist-mounted 2017

Robotic extra thumb (RET) (Meraz

et al., 2017)

sEMG Frontalis muscle Healthy subjects Wrist-mounted 2017

Soft sixth finger and double soft

sixth finger (Hussain et al., 2017b)

sEMG Frontalis muscle Chronic

stroke patients

Wrist-mounted 2017

Extra robotic thumb (ERT)

(Shikida et al., 2017)

sEMG Posterior auricular muscles Healthy subjects Attached on the left

hand by two belts

2017

sEMG-based robotic thumb

(Aoyama et al., 2019)

sEMG Posterior auricular muscles Healthy subjects Attached on the left

hand by two belts

2019

sEMG-based robotic sixth finger

(Franco et al., 2019)

sEMG Frontalis muscle Chronic stroke patients Worn on the

paretic forearm

2019

A wearable hand robot (Park et al.,

2020)

sEMG Forearm surface Chronic stroke patients Placed on forearm

and fingers

2020

Soft exoskeleton Glove (SExoG)

(Chen et al., 2021)

sEMG 4 electrodes at the forearm Chronic stroke patients Worn on the

paretic hand

2021

RobHand exoskeleton (Cisnal

et al., 2023)

sEMG Extensor and flexor

digitorum

Chronic stroke patients Worn on the

paretic hand

2023

HERO (hand orthosis) (Araujo

et al., 2021)

EEG 16 channels (10-20 system) Chronic stroke patients Worn on the

paretic hand

2021

MI-based sixth finger (Liu et al.,

2022)

EEG Parietal and frontal cortex Healthy subjects and

stroke patients

Wrist-mounted 2022

Modular and wearable

supernumerary robotic finger (Liu

et al., 2021)

sEMG; EEG Frontalis muscle; Central

cortex

Patients with hand motor

function impairment and

healthy subjects

Wrist-mounted 2021

Wrist exoskeleton (Yang et al.,

2023)

sEMG; EEG 8 channels at the forearm;

Prefrontal cortex

Stroke patients Wrist-mounted 2023

sEMG sourced command, reduced the required muscle effort and

the time needed to perform tasks.

As for hand orthoses, most of the implementations are

developed to aid in the rehabilitation of wrist and finger functions

for stroke patient. Many of these devices utilize sEMG-based

implementations. In such setups, sEMG signatures corresponding

to rehabilitation movements, such as opening, closing, relaxing,

or forming a spherical grip with the hand, are captured. The

mapping of the sEMG signals to these specific movements is

achieved through various methods such as simple thresholding

(Cisnal et al., 2023), machine learning classifiers (Park et al.,

2020), or deep learning models (Chen et al., 2021). As for EEG-

based orthoses, an implementation by Araujo et al. utilized MI

of the right and left hand to respectively control the flexion or

cessation of flexion in all fingers. However, there was no mention

of a mechanism for extension. After a training session, an LDA

classifier was employed to differentiate between the two classes.

In 2023, a novel wrist orthosis utilizing both sEMG and EEG

control was developed to facilitate six distinct gestures (Yang et al.,

2023). The system primarily operated on sEMG control, acquired

through an armband and processed by a convolutional neural

network to map sEMG patterns to the specific gestures. However,

when fatigue was detected, the system automatically switched to

EEG control to prevent further fatigue. EEG signals were acquired

using three electrodes placed on the forehead, and control was

binaryâĂŤindicating either the presence or absence of motion

intent. The potential movements were displayed on a screen, and

the subject decided whether to ignore the cue or intend to move. A

summary of the hand WA literature along with their specifications

is shown in Table 1.
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3.2 Upper body wearable augmentations

Upper body exoskeleton and supernumerary arms both serve

to enhance upper body functions, yet they are tailored for distinct

applications. Upper body exoskeleton serve a dual purpose. They

are essential for the rehabilitation and functional restoration

of individuals with upper limb impairments. Additionally, they

provide robust support for healthy individuals, cushioning shock

during drilling tasks, enhancing endurance for extended weight

carrying, and facilitating the lifting of heavy loads for brief duration.

Conversely, supernumerary arms are designed to broaden the

workspace and increase the DoF for able-bodied users, or to serve

as a substitute arm for individuals with impairments, such as stroke

patients, offering an alternative to the affected limb.

The vast majority of upper body exoskeletons found in

the literature are controlled through sEMG. Focusing on those

designed to augment the abilities of healthy individuals, Zhang

et al. (2019) developed a sEMG-based upper body exoskeleton

that enhanced bicep function. A closed-loop system measured

bicep activity via sEMG sensors and adjusted a pneumatic muscle’s

pressure to match the exertion, allowing users to control their

force output. This exoskeleton doubled the lifting capacity for

industrial workers, allowing them to perform repetitive lifting tasks

with twice the efficiency. Another example is by Lotti et al. (2020)

who developed a real-time sEMG-based upper body exoskeleton

for elbow support. This exoskeleton used three sEMG channels

and the joint angle of the elbow to calculate the elbow flexion-

extension torque, where a calibration session was conducted

for the controller taking individual anthropometric features into

consideration. Using this exoskeleton significantly reduced exerted

force by the users across different loads up to 2 kg. A subsequent

study (Treussart et al., 2020) developed a sEMG-based control

mechanism for a rigid upper body exoskeleton with the goal of

assisting biceps with carrying unknown loads. The system was able

to predict the direction and intensity of the intended movement

and was able to adapt to different users through calibrating user-

specific parameters in the control method. The controller used a

closed-form non-linear exponential-power relationship to estimate

torque from the sEMG signal. A significant reduction of physical

strain and muscles effort was observed upon using the exoskeleton

device. Recently, Lee et al. (2023) developed a soft upper body

exoskeleton to provide further strength to multiple joints in the

shoulder and elbow using pneumatic artificial muscles. The system

operated by interpreting sEMG signals from the shoulder and

upper arm to control the exoskeleton, with a cloud-based artificial

intelligence solution predicting the user’s movement intentions.

The WA could differentiate between four intended movements

(shoulder/elbow, flexion/extension) with an average accuracy of

96.2%, offering four times the strength to the user, and featuring

a rapid response rate of <250 ms.

Similarly, upper body exoskeletons used for rehabilitation

are predominantly controlled through sEMG. An early

implementation was proposed by Kiguchi and Hayashi (2012),

a sEMG-based impedance control method for a rigid upper

body exoskeleton for self-rehabilitation practices. The algorithm

dynamically controlled the WA’s stiffness and damping properties,

adapting to the user’s unique sEMG signal features and specific

body characteristics through a neuro-fuzzy modifier. Another

study employed two sEMG channels on the biceps and triceps

to assist in carrying loads up to 10 kg. In this work, the sEMG

amplitude was mapped to a force exertion by the upper body

exoskeleton using a fuzzy logic algorithm (Jeon et al., 2012). A

subsequent work (McDonald et al., 2017) proposed a sEMG-based

rehabilitation upper body exoskeleton system for spinal cord

injury (SCI) patients. The system was designed to predict an

intended movement out of sixteen possible movement involving

the wrist, elbow, and forearm from the sEMG waveforms. Linear

discriminant analysis was used to classify the intended movements

of the users, involving single or multiple degrees of freedom or a

combination of both. A classification sensitivity of 82% and 66%

were achieved for the healthy population and the SCI patients,

respectively.

A unique implementation of a rehabilitation upper body

exoskeleton was by Kawase et al. (2017) where a hybrid EEG/sEMG

control systemwas utilized for real-time rehabilitation and support.

The desired motion was selected using EEG signals through an

SSVEP paradigm and an SVM classifier, which relied on features

extracted from a single electrode at the occipital cortex. Meanwhile,

sEMG signals were utilized to predict the intended joint angle;

this estimation was performed using a mathematical model of

the musculoskeletal system commonly applied in neuroscience

research (Maintained, 2009). Their experiments with SCI patients

demonstrated the exoskeleton’s ability to assist users in carrying

objects effectively. Particularly, users positioned their arms at

appropriate angles, with a correlation coefficient between the

required and measured angles of 0.9 for SCI patients.

Unlike upper body exoskeletons, the supernumerary arms are

relatively recent. The first NM-controlled supernumerary arm was

proposed in 2018 by Penaloza and Nishio (2018) and Penaloza et al.

(2018). An EEG-controlled supernumerary arm for multitasking

side-by-side with the natural arms through MI was demonstrated.

Authors also explored equipping the supernumerary arm with

vision capabilities to evaluate the context of the manipulation task

(Penaloza et al., 2018). A calibration session was conducted for

each subject to optimize the EEG frequency band and channels,

setting a simple threshold on the PSD values to distinguish between

grasp and release actions. The EEG signal was used to detect the

intention of the grasp while the camera was used to detect the object

thus choosing a suitable grasping method. The supernumerary arm

demonstrated successful object grasping and releasing capabilities,

distinguishing between grasp and release actions with an average

accuracy of 70% during multitasking. A year after, a novel soft

supernumerary arm akin to an elephant trunk was proposed, with

reconfigurable end effectors based on the task (suction, grasper,

and holder) (Nguyen et al., 2019). The proposed supernumerary

arm used pneumatic actuation and was mountable at different

locations. Two sEMG signals acquired from both biceps were used

to control the pressurization (three levels) and the direction of

the motion (8 angles), respectively, based on simple threshold

mapping. Test scenarios such as opening a door, picking an object,

and holding an umbrella were carried out, and the supernumerary

arm demonstrated its ability to carry up to 3.8 kg. Recently, Tang

et al. (2022) proposed an EEG-based supernumerary armwith three

rigid fingers, developed for stroke patients with a nonfunctional
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TABLE 2 Specifications summary of upper body WAs.

Device name Control modality Measurement site Target
population

Attachment Year

Intelligent exoskeleton robot

arm (Jeon et al., 2012)

sEMG Biceps and tricep muscles Individuals with

disabilities

Forearm 2012

Upper body power-assist

exoskeleton (Kiguchi and

Hayashi, 2012)

sEMG 16 muscles spanning the arm,

chest and shoulder

Healthy subjects Upper arm and

forearm

2012

MAHI Exo-II (McDonald

et al., 2017)

sEMG 8 muscles including the

biceps, triceps and forearm

muscles

Spinal cord injury

patients

Forearm 2017

Soft poly-limbs (Nguyen et al.,

2019)

sEMG Biceps brachii muscles Impaired and healthy

subjects

Placed on a shoulder

and waist harness

2019

Soft robotic bicep

augmentation (Zhang et al.,

2019)

sEMG Biceps brachii muscles Industrial workers Attached to the arm

with a shoulder

harness

2019

Supernumerary limbs during

independent tasks

(Guggenheim et al., 2020)

sEMG Pectoralis major and rectus

abdominis muscles

Healthy subjects Waist-mounted 2020

Soft wearable arm exosuit

(Lotti et al., 2020)

sEMG Bicep, tricep, and

brachioradialis muscles

Elbow support for

healthy subjects

Attached with a

shoulder harness

2020

Upper body exoskeleton for

carrying Unknown Load

(Treussart et al., 2020)

sEMG Bicep and tricep muscles Healthy subjects Upper arm and

forearm

2020

Intelligent upper body

exoskeleton (Lee et al., 2023)

sEMG Biceps and triceps brachii,

and medial deltoid muscles

Elderly Attached to a

backpack to support

shoulder and elbow

2023

BMI of a third arm for

multitasking (Penaloza and

Nishio, 2018)

EEG Frontal and parietal cortex Healthy subjects Next to the user 2018

Human-like robotic limb

(Penaloza et al., 2018)

EEG Contralateral motor cortex Healthy subjects Next to the user 2018

Wearable supernumerary

robotic limb system (Tang

et al., 2022)

EEG 64 channels (10–20 system) People with upper-limb

motor disorder

Mounted on users’

right shoulder with an

elastic strap

2022

Whole-arm exoskeleton

(Catalán et al., 2023)

EEG 5 channels at the contralateral

hemisphere

Impaired individuals Upper arm and

forearm

2023

A hybrid BMI-based

exoskeleton (Kawase et al.,

2017)

sEMG; EEG 8 muscles including the

biceps, triceps, forearm

muscles; occipital cortex

Paralyzed individuals Worn as a vest with

arm attachments

2017

natural arm. The system was comprised of a module for grasp

intention recognition using EEG data through MI or natural limbs

and another module for object detection to identify the position of

the target. The outputs of both modules fed into a hybrid module

for arm trajectory estimation. Graph convolutional networks and

gated recurrent unit network models were used for EEG intent

predictions, leading to an average grasping success rate of 86.44%.

Apart from developing supernumerary arms for enhancement

or rehabilitation purposes, Asada’s team developed two, stick-like,

supernumerary arms controlled through abdominal muscles, to

explore the dynamics of using both natural and supernumerary

arms concurrently (Guggenheim et al., 2020). Users were requested

to minimize the positional discrepancy between each of the

four limb’s tip and specific targets (Guggenheim et al., 2020).

It was found that during multitasking, participants used their

natural arms first before using their supernumerary arms with

a significantly different movement starting time. Such a finding

suggests giving priority for natural limbs for time-sensitive tasks.

A summary of the upper body WA literature along with their

specifications is shown in Table 2.

3.3 Lower body wearable augmentations

Lower body exoskeletons and supernumerary legs both fall

under lower body WAs. Lower body exoskeletons are versatile

devices designed to address various mobility needs including gait

support for the elderly or individuals with walking disorders. For

those with paraplegic conditions, lower body exoskeletons enable

upright walking and thus granting independence. Additionally,

they play a pivotal role in the rehabilitation and restoration of

walking abilities for individuals recovering from SCI or strokes

(Contreras-Vidal and Grossman, 2013), facilitating the retraining
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of muscles and neural pathways through repetitive motion and

therapeutic exercises.

Several commercially available lower body WAs, in the form

of exoskeletons, have been utilized in research literature, where

NM-control paradigms are developed for their operation such

as Rex (Rex Bionics, 2023), Lokomat (Hocoma, 2023), and HAL

(Lower Limb HAL, 2023). For unique research goals or to explore

innovative control strategies, some research groups have developed

their own custom-made lower body exoskeletons.

The first NM-controlled lower body exoskeleton, HAL-3, was

developed in 2001 (Kawamoto and Sankai, 2001); earlier versions

of this WA were controlled through other non-physiological

means. HAL-3 was controlled by sEMG signals from the upper

leg and designed to offer power assistance, aiding in ambulation

for patients who could move their muscles but require additional

strength for movement. The WA predicted joint torque based on

the acquired sEMG parameters through a linear equation where

its parameters were calibrated for each subject. To mitigate any

discomfort from inaccurate torque predictions or time delays,

the system incorporated a feedforward controller, ensuring rapid

response for power assistance.

A limitation of sEMG-based lower body exoskeleton is their

unsuitability for stroke patients with low sEMG activity or

significant muscle spasticity. An alternative is EEG-based lower

body exoskeletons, where such implementations are based either on

endogenous or exogenous signals (see section 1.2.2). The first EEG-

controlled lower body exoskeleton was proposed in 2012, called

EEG-oneDoF, due to its single DoF designed to assist with stand-

up and sit-downmovements (Noda et al., 2012). This custom-made

WA was controlled through MI of right- and left-hand movement;

EEG data was formed into a covariance matrix and fed into a

trained linear classifier achieving an accuracy of 71%. Since the

output of the classifier can fluctuate, a hysteresis algorithm was

employed. The EEG-oneDoF exoskeleton, was equipped with visual

feedback. Visual feedback was displayed on a screen showing the

probability of the EEG decoder predicting stand-up or sit-down.

Similarly, Do et al. proposed a predictive model that detects

kinesthetic MI of walking, aiming to enable gait for patients with

SCI. EEG data segments of 0.75 s were acquired every 0.25 s using

a sliding overlapping window. A state transition was guaranteed

when the model consistently predicted that state for 2 s, achieving

an accuracy of 86.3% (Do et al., 2013). Another study (Lee et al.,

2017) introduced a cascaded classification system that differentiates

between walking and turning movements using EEG data. Users

performed MI tasks involving either moving or relaxing both

hands. These MI signals controlled the first stage to predict walking

versus turning, and the same movements differentiated turning

right from turning left in the subsequent stage. ERD data from the

motor cortex were utilized for prediction, with a random forest

classifier handling classification. The proposed system achieved

an average accuracy of ∼92.4%. Real-time visual feedback was

displayed on a screen, showing the action predicted from brain

signals and the subsequent actions to be performed by the WA.

Other studies have also explored the concept of intent

prediction, the other form of endogenous control, applied to

lower body exoskeleton. For instance, Kilicarslan et al. developed

Neuro-Rex, a lower body exoskeleton designed to facilitate walking,

turning, sitting, and standing for paraplegic patients. This was

done by predicting intent frommovement-related cortical potential

below 2 Hz (Kilicarslan et al., 2013). The system achieved a three-

class accuracy of 97% for walking, turning right, and turning

left motions and 99% for sitting, resting, and standing motions.

Building on this, further research introduced an EEG-based intent

detection system which aided gait in stroke patients using the

Lokomat Pro, a commercialized lower body exoskeleton tailored

for such applications (García-Cossio et al., 2015). Employing a

logistic regression classifier and focusing on alpha and beta bands

at the sensorimotor cortex, the system achieved 89% accuracy

in predicting walking and idling states. A similar lower body

exoskeleton was proposed to enable gait, but based on both MI and

movement intent (López-Larraz et al., 2016). The systemwas able to

achieve 84 and 70% decoding accuracy for healthy and SCI patients,

respectively, in choosing between rest and walk conditions.

Lower body exoskeletons have also been successfully controlled

by exogenous EEG signals, predominantly using SSVEP. For

example, Kwak et al. (2015) made use of five flickering LEDs at

unique frequencies from 6 to 13 Hz to elicit SSVEPs detectable

in the occipital cortex. These potentials were then classified using

k-nearest neighbors classifier and utilized as control signals to

command the lower body exoskeleton. These commands were

walking forward, turning right, turning left, sitting, and standing,

and achieved an accuracy of 91%. Another innovative study (Gui

et al., 2017) introduced a locomotion trainer with multiple gait

patterns, which operated on a hybrid control approach employing

both EEG and sEMG signals. This system used four flickering LEDs

at different frequencies to trigger SSVEP, corresponding to four

control modes: stop, walk, speed up, and slow down. Concurrently,

sEMG signals from the right knee joint were analyzed to predict

the torque required for the task. This dual-modality system was

tested on both healthy individuals and stroke patients, achieving

an accuracy of ∼ 92.40% in detecting the four movements using a

LDA classifier.

Apart from using lower body WA for locomotion and gait

assistance, EEG-controlled systems have been used for neuro-

rehabilitation purposes, creating tangible impact on patients neural

pathways. Such investigation was conducted by Donati et al. (2016),

where eight individuals with chronic SCI underwent training for a

year. The paradigm incorporated immersive virtual reality training

using brain signals to control a virtual avatar and later to control

a custom-made lower body exoskeleton with tactile feedback.

This formed a feedback loop enabling real-time observation of

brain activity outcomes. Results indicated that all eight patients

exhibited neurological enhancements in somatic sensation and

enhanced ERD during MI. As a result, 50% of these patients were

upgraded from chronic to incomplete paraplegia classification. For

sensory feedback, the work employed force sensors on the lower

body WA and a multi-channel haptic display (vibrators) on the

patients’ forearms to provide continuous tactile feedback during

gait training. The results showed that the feedback mechanisms

may contribute to cortical and subcortical plasticity, potentially

aiding in partial neurological recovery.

Beyond rehabilitation and gait assistance, research explored the

use of lower body exoskeleton for reducing the metabolic cost of

walking for healthy individuals. One study (Gordon and Ferris,
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TABLE 3 Specifications summary of lower body WAs.

Device name Control
modality

Measurement site Target population Attachment Year

Robotic ankle exoskeleton

(Gordon and Ferris, 2007)

sEMG Soleus muscle Stroke and spinal cord

injury patients

Placed below the knee and

to the foot

2007

Robotic ankle exoskeleton

(Koller et al., 2015)

sEMG Soleus muscle Healthy subjects Placed below the knee and

to the foot

2015

Extra robotic limbs (Parietti

and Asada, 2017)

sEMG Pectoralis major, rectus

abdominis

Healthy subjects Placed at sides of legs

attached with a harness on

the waist and hips

2017

Leg enhancer (Cenit and

Gandhi, 2020)

sEMG Vastus lateralis, rectus

femoris, tibialis anterior,

soleus and others

Elderly Placed on the whole leg 2020

Gait rehabilitation

exoskeleton (Chen et al.,

2023)

sEMG Quadriceps femoris and

hamstrings

Stroke and spinal cord

injury patients

Exoskeletal frame placed

on the waist, hip, and knee

joints

2023

EEG-oneDoF (Noda et al.,

2012)

EEG 64 channels (10–20 system) Stroke and spinal cord

injury patients

Placed on legs and feet

with chest harness

2012

NeuroRex (Contreras-Vidal

and Grossman, 2013)

EEG 64 channels (10–20 system) Mobility-impaired people Legs and the waist 2013

Lower body exoskeleton

(Kilicarslan et al., 2013)

EEG 64 channels (10–20 system) Individuals with

tetraplegia or paraplegia

Placed on legs and feet

with chest harness

2013

Robotic gait orthosis (Do

et al., 2013)

EEG 64 channels (10–20 system) Individuals with

tetraplegia or paraplegia

due to spinal cord injury

Placed on legs and feet

with chest harness

2013

Robotic-assisted treadmill

walking (García-Cossio et al.,

2015)

EEG 64 channels (10–20 system) Stroke patients Placed on legs and feet

with chest harness

2015

Lower limb exoskeleton

control system (Kwak et al.,

2015)

EEG Occipital cortex Patients with motor

disabilities

Placed on legs and feet

with waist harness

2015

Brain-machine

interface-based gait protocol

(Donati et al., 2016)

EEG Contralateral motor cortex Spinal cord injury patients Placed on legs and feet

with chest harness

2016

Ambulatory exoskeleton

(López-Larraz et al., 2016)

EEG 32 channels (10-20 system) Individuals with

incomplete paraplegia

Attached on both legs 2016

Brain-controlled exoskeleton

(Lee et al., 2017)

EEG Contralateral motor cortex Individuals with tetraplegia Attached on both legs 2017

BMI lowe limb exoskeleton

(Ferrero et al., 2021)

EEG 27 electrodes Patients with motor

disorders

Attached on both legs 2021

Gait Rehabilitation HRI (Gui

et al., 2017)

sEMG; EEG Rectus femoris,

semitendinosus muscles;

Occipital cortex

Individuals with paraplegia Placed on the whole leg 2017

mHMI lower limb

exoskeleton (Gordleeva et al.,

2020)

sEMG; EEG Fasciae latae, rectus femoris,

and others;

Motor cortex

Patients with motor

disorders

Attached on both legs 2020

2007) investigated a pneumatically powered ankle exoskeleton that

operated via sEMG control, where the exoskeleton’s activation

was proportional to the user’s soleus sEMG activation. This

research demonstrated that ten healthy subjects were able to

reduce the activation of their soleus muscle by ∼35% when

using the exoskeleton. It is important to note that, despite

recent advancements in developing lower-body exoskeletons aimed

at reducing the metabolic cost of gait, these recent systems

predominantly employ non-neural control methods (Nuckols et al.,

2020; Kim et al., 2019; Lim et al., 2019), rather than neural

approaches such as EEG or EMG. This is not necessarily the case

for lower body exoskeletons developed for other applications.

Finally, work on NM-controlled supernumerary legs is

relatively limited in the literature. Parietti and Asada (2017)

proposed a pair of supernumerary legs worn at the hip, with a wide

and hemispheric workspace and capable of fully supporting the

weight of the user. These legs were controlled by two sEMG signals

from the torso and two from the chest muscles. A contraction

of the right-side muscles moved the right leg forward (chest

muscle) or backward (torso muscle), and similarly for the left
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leg. Muscles on the upper body were used to control the extra

limbs without interfering with the natural limbs, thus enabling

independent control of the supernumerary legs. Subjects were able

to achieve accurate and independent control of the supernumerary

legs. A summary of lower body WA systems with their features is

presented in Table 3.

3.4 Commercial products

There are several commercially available WAs designed for

rehabilitation and enhancement. For example, the Lokomat is a

robotic device that assists patients with walking difficulties by

providing targeted gait training using virtual reality, facilitating

recovery through an adjustable exoskeleton that supports the

legs during therapy sessions (Hocoma, 2023). Another example

is REX, a hands-free robotic WA that enables users to stand,

walk, and engage in therapeutic exercises without crutches (Rex

Bionics, 2023). However, both Lokomat and REX, like many similar

products, rely on control paradigms that are not NM-based.

NM-controlled WAs are a promising but still emerging

technology. While sEMG and EEG can offer reliable control, this

is often limited to controlled research environments. Many NM-

controlled systems in the literature integrate the hardware of

commercially available products with novel NM-control paradigms

to develop more advanced solutions.

There are a few commercial WAs that do utilize sEMG for

control. One example is the HAL Lower Limb, a medical device

designed to assist individuals with neuromuscular diseases, spinal

cord injuries, and stroke. By detecting sEMG signals from the skin’s

surface, it translates the wearer’s neural intentions into movement,

enhancing mobility and rehabilitation (Lower Limb HAL, 2023).

Similarly, the HAL Single Joint Type is a compact, lightweight

robotic device focused on joint-specific rehabilitation, targeting

areas like the elbows, knees, shoulders, and ankles, also controlled

via sEMG (Single Joint HAL, 2023).

While there are few NM-controlled WAs utilizing sEMG,

there are no commercially available WAs that rely primarily

on EEG for control. EEG-based control remains largely within

research settings, as the technology is still in development for

real-world applications. This highlights a significant gap in the

commercialization of EEG-based WAs, which could potentially

offer more intuitive control for users.

3.5 Summary of findings

The summary of findings on NM-controlled WAs highlights

several key points. Firstly, NM-controlled upper body and lower

body exoskeletons are among the earliest implementations of

WAs, with a substantial body of literature documenting these

developments. In terms of supernumerary limbs, supernumerary

fingers stand out as both the earliest andmost researched, given that

hands are the most utilized body part for physical interaction with

the world. Conversely, supernumerary legs and arms have received

less attention, likely due to the more complex design challenges

they present.

Furthermore, it is observed that EEG is frequently used for

lower body exoskeleton control, while sEMG is commonly used

for upper body and hand WAs. This could be due to how EEG

activations linked to larger natural effectors, such as legs, are

more easily distinguished from effectors that might require finer

control, such as hands and fingers. In addition, sEMG could be the

more useful counterpart for the latter two types of NM-controlled

WAs when considering that upper body and hands are often

associated with tasks that require finer adjustments in muscular

torque. Nonetheless, there is a rising trend of using both EEG

and sEMG as a hybrid control modality. These implementations

use EEG for intent detection and sEMG for force estimation, or

switch between modalities upon detecting fatigue. Additionally, as

EEG classification methods improve, distinguishing neural activity

associated with smaller effectors, such as fingers, is becoming

possible. This advancement suggests the potential for hybrid EEG-

sEMG systems to achieve finer control in NM-controlled WAs.

Additionally, a summary of the commonly used muscles for

sEMG signal generation toward controlling each of the three types

of WAs is shown in Figure 5A. Depending on the application and

other design considerations, the choice of the muscle varies. It can

be observed that muscles used to control hand WAs are located

on the arms, forehead, or around the ears. For upper body WAs,

muscles located at the chest, abdomen, and arms are commonly

employed. On the other hand, lower body WAs commonly utilize

muscles of the abdomen or legs for sEMG-based control. As for

EEG based control, a summary of the commonly used cortical

activations toward controlling WAs based on the EEG signal type

is shown in Figure 5B. These signals are not specific to the type

of WA employed; instead, they are related to the eliciting neural

mechanism. MI of WAs elicits ERDs in the central and frontal

areas. MI and movement-related cortical potentials (MRCPs) of

natural limbs, used to control WAs, are commonly detected in

the central cortex. Lastly, SSVEP in the occipital cortex, elicited

in response to visual flickering stimuli, has proven beneficial in

controlling WAs.

It is interesting, but reasonable, to note that MRCPs are largely

linked to those of natural limbs, rather than supernumerary ones.

The intent to move differs from MI, arguably more intuitive than

its counterpart. Thus, it is more likely to be observed for natural

effectors, which already possess cortical representations that can

be easily accessed. On the other hand, supernumerary effectors are

by nature foreign to the user’s natural body representation, thus

requiring a high degree of embodiment even for MI. An extended

duration of training, as well as considerations for embodiment,

would likely be required in order to move from MI to motor

intention for supernumerary limbs, if indeed this shift is feasible.

This leads to another key observation, that sensory feedback is

often an underemphasized element in NM-controlled WA design.

For instance, only one upper body WA was found to employ

sensory feedback in its design (Cisnal et al., 2023). On the other

hand, few examples of hand WAs were found to employ sensory

feedback to convey proprioceptive as well as tactile information. A

summary of NM-controlled WAs incorporating sensory feedback

is summarized in Table 4. Finally, minimal research exists on

evaluating the effects of prolonged use of WAs, particularly

examining the long-term neuroplasticity and embodiment effects

of these devices.
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FIGURE 5

Pictorial summary. (A) An illustration depicting the muscles utilized for acquiring sEMG signals, depending on the type of WA, which are frequently

employed in WA control. (B) Employed EEG signals for WAs control and their acquisition locations on the scalp. MI, motor imagery; MRCP,

movement related cortical potentials; SSVEP, steady-state visually evoked potentials.

4 Outlook

4.1 Challenges and future work

The field of NM-controlled WAs, situated at the

intersection of various disciplines, introduces multiple

dimensions of challenges. Each challenge presents an

opportunity for a future work. Below, we list some of

these persistent challenges and possible directions for

overcoming them:

• Consistency of performance: Research has shown that

physiological signals, including EEG and sEMG, contain

personalized elements, leading to variations in neural

correlates from one individual to another. A significant

challenge in NM-controlled WAs is the consistency of

performance across different users. Developing calibration

and fine-tuning algorithms to personalize these NM-

controlled WAs represents a promising direction for future

research, potentially utilizing big neurophysiological data to

train AI based solutions.

• Context-aware control: WA technologies must be equipped

with capabilities to perceive and interpret contextual

information from the environment, such as user intentions,

task requirements, spatial awareness, and social cues. By

leveraging this context, WAs can dynamically adjust their

behavior, control strategies, and interaction modalities

to better assist, collaborate, and communicate with the

user. A key challenge is the development of robust context

recognition and understanding algorithms that can accurately

interpret complex user and environmental cues. Another

challenge is the design of efficient control strategies that

can seamlessly integrate the context-aware information

with the user’s natural movements and intentions. One

possible direction is the integration of multimodal sensing

technologies (augmenting EEG-sEMG sensing with visual,

auditory, and tactile sensors) to capture context-rich

information and utilize machine learning algorithms to offer

shared control of the WA. Furthermore, advances in machine

learning offer exciting solutions for WA control. A recent

example presents a deep learning method for predicting finger

forces from motor units in the forearm using unsupervised

approach. This eliminates the need for labeled finger force

data during training, making it applicable in cases where force

measurements are unavailable, such as in individuals with

amputations (Meng and Hu, 2024).
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TABLE 4 Summary of literature on WAs that employ sensory feedback in their design.

Device name Augmentation type and
control modaliity

Measured
parameter

Feedback
modality

Feedback assessment

Robotic extra thumb (RET)

(Meraz et al., 2017)

Hand WA, sEMG Contact force

Finger position

Electrical

stimulation

Visual stimulation

Reduced error rate and the

increased number of successful

contacts between the RET and the

other fingers.

sEMG-based robotic thumb

(Aoyama et al., 2019)

Hand WA, sEMG Finger position Vibrotactile

stimulation

through phantom

sensation

Reduced error rate and the

increased number of successful

contacts between the Robotic

Thumb and the other fingers

Extra robotic thumb (ERT)

(Shikida et al., 2017)

Hand WA, sEMG Joint angle Vibration

stimulation

Increased number of successful

contacts between the ERT and the

other fingers

sEMG-based robotic sixth

finger (Franco et al., 2019)

Hand WA, sEMG Movement intent Vibration

stimulation

Reduced completion time, reduced

muscle effort, and self report.

EEG-oneDoF (Noda et al.,

2012)

Lower body WA, EEG Intended

movement

Visual stimulation NA

Brain-machine

interface-based gait protocol

(Donati et al., 2016)

Hand WA, sEMG Contact force Tactile stimulation Improved somatic sensation

Hand WA, sEMG Intended

movement

Visual stimulation

Brain-controlled exoskeleton

(Lee et al., 2017)

Hand WA, sEMG Intended

movement

Visual stimulation Reduced completion time

RobHand exoskeleton (Cisnal

et al., 2023)

Hand WA, sEMG Movement intent Visual stimulation Improved accuracy in performing

required gestures

• User-centered and ergonomic design: The need for user-

centered and ergonomic WA is widely recognized. The

number of WA in daily use is still very low not only

due to missing availability on the market but also due to

usability challenges. Personalized WA technologies that can

be used by specified users to achieve specified goals with

effectiveness, efficiency, and satisfaction in a specified context

of use are far from being a reality. Involving all stakeholders,

including the end user, throughout the development process

to address human/environmental factors is essential. Physical

and psycho-social factors, such as physical abilities, varying

skills, knowledge, prior experiences or expectations must

be investigated and valued as design criteria. In addition,

ergonomic factors, such as muscular fatigue, stress on the

musculoskeletal system, and technology acceptance should

also be considered through self-reports, observational, and

cognitive methods. Performing ergonomic risk assessments

in order to evaluate the impact of WA technologies on

the health and wellbeing, such as the development of

musculoskeletal disorders is essential. Long term ergonomic

effects should also be examined and incorporated in the

design process.

• Ethical considerations: WAs raise several ethical concerns that

need to be navigated by several entities in the community

such as medical professionals, WAs designers, stakeholders,

legislators, and others. Potential ethical challenges and

concerns include safety, security, data privacy, accessibility

and equity, and long-term neural effects such as manipulation

of body representation in the brain. Safety considerations

include safeguarding against hazards from power sources

such as batteries, preventing sudden and un-intentional high

force exertions, ensuring protection against falls in lower

body exoskeletons, and avoiding collisions with obstacles.

There is a pressing need for personal care robots’ standards

(such as ISO 13482) to be tailored for WAs. As for

security, it is vital to protect these devices from unauthorized

access and control by entities other than the intended

user, developing layers of security. Unequal access to WA

technologies, due to high cost of the technology, raises

concerns about fairness and equity. Such disparities could

significantly affect individuals’ opportunities to compete in the

society. Excluding marginalized communities can be seen as

morally problematic and has to be addressed by developers

and legislators (Oertelt et al., 2017). Finally, there are several

neural complications that might arise due to and during the

usage of WAs, many of those are discussed in the literature

(Dominijanni et al., 2021). One possible complication is

altering the body representation in the brain and thus

impairing individuals from using their natural limbs to

their full-extent.

4.2 Trends

Finally, being in its early stages, the field of NM-controlledWAs

is ripe with various trends presenting exciting opportunities. Below,

we present some of these emerging trends:
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• WA evaluation: developingWA evaluation methods, based on

self-reports, performance, behavior, and cognitive factors, in

order to evaluate the impact of WA technologies on the health

and wellbeing is essential. Furthermore, the assessment of the

long-term use of WAs and its impact on the neural body map

in realistic and practical environment represents a venue for

exploration.

• Multimodal fusion: given how WA operate in unstructured

environments and interact closely with humans, incorporating

multi-modal sensors enables WAs to accumulate and process

information from diverse sources, leading to enhanced

reliability and usability. Furthermore, multimodal sensory

feedback (such as proprioceptive and cutaneous) offers the

potential to improve embodiment and influence plasticity

in order to improve performance. Developing algorithms

for information fusion warrants the enhancement of motor

performance and user satisfaction.

• SoftWA: designing softWAs represents a promising direction

toward creating more user-friendly and ergonomic devices.

Recent advancements in soft robotics and material science

could lay the groundwork for this development.

• MI training paradigms: in order to improve the performance

of neuromotor WA control, MI training paradigms must

be developed to reliably and effectively induce distinct

MI signatures for the augmentation. Such a training

paradigm would involve a combination of motor observation,

motor execution, and MI exercises using virtual and

physical environments. Furthermore, training paradigms

should explore the use of positive sensory feedback to promote

kinesthetic MI functions to improve the clarity of MI and the

overall motor performance, as well as the embodiment of the

WA device. Finally, the neurological changes in MI and body

representation over time should be investigated. Machine and

deep learning models can be utilized to extract MI signatures

from EEG data and adapt the positive sensory feedback in

order to accelerate the MI training.

• AI augmentation: with a promise to enable machines to

perform tasks that require human intelligence, AI has

become a hot research topic in recent years. Based on

the results of this review, most of the contemporary WA

technologies are not equipped with the computing power

for AI augmentation in order to fuse multimodal data

from various sensing systems. Advanced AI algorithms are

needed to fuse the collected multimodal raw data and

understand the user and environmental context. Furthermore,

AI methods can monitor the health of the WA device. Repair

and maintenance can then be triggered automatically upon

detecting amalfunction. Finally, with the success of using large

language models in many applications, integrating linguistic

capabilities to the WA could revolutionize the way we interact

with WAs (Yu et al., 2024).
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