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A novel signal channel attention
network for multi-modal
emotion recognition

Ziang Du, Xia Ye* and Pujie Zhao

Xi’an Research Institute of High-Tech, Xi’an, Shaanxi, China

Physiological signal recognition is crucial in emotion recognition, and recent

advancements in multi-modal fusion have enabled the integration of various

physiological signals for improved recognition tasks. However, current models

for emotion recognition with hyper complexmulti-modal signals face limitations

due to fusionmethods and insu�cient attentionmechanisms, preventing further

enhancement in classification performance. To address these challenges, we

propose a new model framework named Signal Channel Attention Network

(SCA-Net), which comprises three main components: an encoder, an attention

fusion module, and a decoder. In the attention fusion module, we developed

five types of attention mechanisms inspired by existing research and performed

comparative experiments using the public dataset MAHNOB-HCI. All of these

experiments demonstrate the e�ectiveness of the attention module we

addressed for our baseline model in improving both accuracy and F1 score

metrics. We also conducted ablation experiments within the most e�ective

attention fusionmodule to verify the benefits of multi-modal fusion. Additionally,

we adjusted the training process for di�erent attention fusion modules by

employing varying early stopping parameters to prevent model overfitting.

KEYWORDS

hypercomplex neural networks, physiological signals, attention fusion module, multi-
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1 Introduction

Multi-modal signal recognition is a critical area of research within multi-modal fusion,

encompassing fields such as speech signal recognition, physiological signal recognition,

and radar signal recognition. The primary task is to classify multi-modal signals from the

same individual, as individual signals alone often fail to capture the comprehensive features

required for study. Thus, developing multi-modal signal classification models is crucial for

a deeper understanding of these signals.

Using physiological signals for emotion recognition is a significant approach to

studying human emotions. Since expressions and speech can conceal emotions and

behavioral responses can suppress abnormal emotions, the advent of non-invasive and

affordable wearable devices has propelled deep learning-based physiological emotion

recognition into a prominent research area. Common physiological signals used include

electroencephalogram (EEG), electrocardiogram (ECG), galvanic skin response (GSR), and

eye data, etc. In the past, emotion recognition tasks frequently relied on data involving

facial expressions or speech signals. Unlike these outward expressions, EEG signals offer a

direct window into the brain’s physiological activity, making them less prone to artifacts or

manipulation and thus providing a more authentic and unbiased view of one’s emotional

state. ECG signals, on the other hand, directly reflect the heart’s activity, which is closely

tied to emotions, and are adept at capturing physiological responses to emotional shifts.
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ECG typically boasts a higher signal-to-noise ratio than EEG

and is more easily obtained and analyzed non-invasively. GSR is

particularly sensitive to an individual’s emotional arousal, such

as nervousness or excitement, often marked by changes in skin

conductance. Eye movement signals are closely linked to attention

and interest, with emotional states deduced from the duration

and direction of gaze. While each of these modalities offers

unique benefits for emotion recognition, there are relatively few

studies that have harnessed all four signals in tandem for this

purpose. These signals serve as inputs for deep learning models in

emotion classification.

With the rise of deep learning, Advanced neural networks

with attention modules have also proliferated in recent years.

Kalman filters can be combined with residual neural networks

to obtain even better neural networks (Yang et al., 2023a). A

novel deep saliency-aware bi-embedded attention network (SAD-

Net) for non-periodic multivariate time series prediction and has

demonstrated high performance on correlated datasets (Li et al.,

2023). Multi-layer fully connected networks and lightweight graph-

convolutional networks can be fused into a dual-stream graph-

convolutional network fusing potential features, who can solve the

key problem of linear properties and the limitations of implicitly

encoded cooperative QoS signal (Bi et al., 2023). Concurrently,

numerous physiological signal classification models have been

developed annually. Among these, multi-modal hyper complex

neural network models show great potential and have achieved

notable success in physiological signal classification. These models

utilize multi-modal physiological signals from various emotional

states, surpassing previous methods focused solely on EEG signals.

Past research has predominantly remained single-modal and lacked

the capability to extract comprehensive data features using deep

learning models. To address this challenge, the authors proposed

a hyper complex neural network model (Lopez et al., 2023).

In current research on multi-modal neural networks, the

varying significance of different information types in determining

data features remains unresolved, limiting the training potential

of these models. Proper deep learning neural network models

can adjust the weights of each modality to optimal values,

and incorporating attention mechanisms can enhance model

performance. However, due to inadequate attention mechanisms,

hyper complex neural networks have not yet achieved their

expected performance. Therefore, increasing attentionmechanisms

will help neural networks better capture key information, thereby

improving model effectiveness.

To this end, we have enhanced the existing multi-modal signal

classification model, specifically the multi-modal hypercomplex

neural network model, by incorporating five newly designed

attention modules. This has led to the development of five

improved models that outperform previous hypercomplex multi-

modal signal models in the realm of physiological signal research.

Crucially, we preserved the original model’s innovative aspects.

Through multiple model comparison experiments and ablation

studies using the publicly available benchmark dataset MAHNOB-

HCI, we verified the efficacy of our approach. Our model

demonstrated significant performance improvements. Figure 1

summarizes the tasks our designed network will undertake, with

the three images illustrating the different classification samples

corresponding to our final three classification tasks. Additionally,

this study identified shortcomings in the data processing and

conclusions of previous research, which we will address in detail

in the paper.

Our contributions can be summarized as follows:

• We have designed a novel framework based on previous

research, named SCA-Net, which achieves higher accuracy

and better prediction balance in the field of multi-modal

physiological signal recognition.

• We discovered that improvements in multi-modal

physiological signal processing models can be attained

through two types of attention methods: channel attention

and self-attention. Incorporating both types of attention

resulted in varying degrees of enhancement in the

model’s performance.

• We conducted comparative experiments on five models using

the publicly available dataset MAHNOB-HCI, both with

and without data augmentation. Additionally, we performed

ablation experiments on the best-performing models to

validate the effectiveness of our approach.

2 Related work

In recent years, the advantages of deep learning have

become increasingly evident, sparking a renewed enthusiasm for

emotion recognition research. Extensive studies have already been

conducted across various domains, including natural language

processing, computer vision, and signal processing. Broadly

speaking, these studies fall into two categories: emotion recognition

based on a single modality and emotion recognition based on

multiple modalities.

2.1 Emotional recognition under single
modality

In the past many studies, and there have been many

methods that can be used for emotion recognition under a single

mode (Rayatdoost and Soleymani, 2018; Wang et al., 2019; Du

et al., 2020; Maeng et al., 2020), but when these neural network

frameworks carry out emotion recognition tasks, they excessively

rely on extracted features, such as power spectral density (PSD)

and differential entropy (DE), which ignore the ability of neural

networks to recognize and extract features. Among the numerous

available data, facial images can be used as an auxiliary means

to preliminarily recognize emotions (Tao et al., 2020), and the

speech signals received by sensors can also be used as a means of

emotion recognition (Sajjad et al., 2020; Shen et al., 2024). ECG

signals also have obvious features for emotion recognition when

humans listen to music (Hsu et al., 2017), and later there were

also many efficient single-mode networks designed for this type of

data (Lv et al., 2022; Ye et al., 2023; Ju et al., 2024; Wang et al.,

2024). The 3D representation of EEG signals is used for learning

3D convolutional neural networks (Salama et al., 2018), thermal

imaging of facial expressions is used for emotion recognition

research (Gupta and Sengupta, 2023), and so on. Continuously

studying emotion recognition methods from new perspectives is
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FIGURE 1

The summary of the model we designed. (A) shows a sample of data predicted as “Clam,” (B) shows a sample of data predicted as “Medium

surrounded,” and (C) shows a sample of data predicted as “Excited.”

worthy of recognition. It fully utilizes neural networks to learn data

features, and related research has also achieved certain results. In a

word, all the above researches are based on the singlemodemethod.

2.2 Emotional recognition in multi-modal
settings

In order to fully utilize the features in the data and enhance

the interactivity between data features, multi-modal fusion between

data is particularly important. Recently, a large number of studies

have used multi-modal fusion methods, some of which rely on

the features extracted by neural networks (Rayatdoost et al., 2020;

Tan et al., 2020; Zhang et al., 2022), while others have undergone

data transformation without using the original data (Nakisa et al.,

2020; ZENG et al., 2020; Dolmans et al., 2021). At the same time,

there have been many advances in the study of modal interactivity,

such as the interaction between acoustic information and natural

language (Sakurai and Kosaka, 2021), modal interaction between

audio and video (Chang and Skarbek, 2021), and the emotional

recognition of gestures and facial expressions (Avula et al., 2022).

In recent studies, features of human facial data, speech data,

and EEG signals have been fused at the decision level through

three branches, and very significant breakthroughs have been

made in utilizing such data for multi-modal emotion recognition

tasks (Pan et al., 2023). Faced with the difficulty of using

physiological signals to solve research gap of emotional recognition,

Parameterized hypercomplex neural networks (PHNN) is proposed

as an emerging family of models which operate in a hypercomplex

number domain (Zhang et al., 2021; Grassucci et al., 2022). In the

study of using hypercomplex theory to solve multi-modal signal

emotion recognition, the focus of data feature learning is on the

parameterized hypercomplex multiplication (PHM) layer in the

latter half of the network (Lopez et al., 2023).

One of the key steps to improve the effectiveness of multi-

modal learning is the attention network, which can simulate

human behavior to classify the information we obtain, filter

secondary information, and grasp the main information. The

use of attention can effectively enable the model to grasp the

key parts of the many features in the data (Chen et al., 2020).

Secondly, fusion strategy is also a key step that affects multi-modal

networks. Early fusion methods did not consider the properties of

different modalities, which can easily overlook the complementary

information between modalities. Later fusion methods can easily

cause network complexity, and more importantly, they cannot fully

utilize crossmodal information (Kaliciak et al., 2014; Gadzicki et al.,

2020). A fusion strategy that combines the advantages of the above

two methods, namely hybrid fusion, also known as intermediate

fusion, is relatively complex and requires full consideration of

various complexity issues (Stahlschmidt et al., 2022). In this paper,

we propose a new network model based on the theory of hyper

complex multi-modal emotion recognition networks. This network

model can not only grasp the weight relationship of multiple

modalities through attention, but also interact the fused modal

information with the PHM layer in the decoder to obtain better

modal interaction information.

3 Method

3.1 Framework overview

In Figure 2, we present a streamlined and efficient architecture

for emotion recognition of multi-modal signals, utilizing a novel

fusion approach and attention mechanisms. This architecture,

termed the multi-modal hyper complex fusion network, optimizes

the integration of modal information from various physiological

signals to enhance sentiment classification accuracy. The

framework comprises three main components: (i) a data encoder,
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FIGURE 2

Overall framework of our proposed approach. We extract multi-modal features of signals through the following methods. The signals of four modes

are used as inputs and converted into features for fusion by their respective encoders. The architecture of the encoders includes a linear layer and a

batch normalization layer. The main features is emphasized in our designed attention fusion module. The fused features of the final signal are refined

by a decoder containing a PHM layer, and ultimately mapped to the output.

which extracts features from the modal data of each signal while

converting its represented feature dimensions into consistent ones

through linear layers. (ii) Attention fusion module, which aims

to multiply the fused multi-modal data with the weight matrix.

Through continuous training of the model, the final model will

focus on the main features when processing information. (iii)

Feature decoder, which decodes the output from the attention

fusion module and further transforming dimensions through

the PHM layer and linear layer for comprehensive sentiment

recognition of multi-modal signal data.

Firstly, we extract features from the data of four physiological

signals using an encoder, comprising linear mapping and

normalization operations.Among these, the EEG, ECG, and EYE

encoders traverse the data through the linear layer and batch

normalization layer within the module twice, whereas GSR only

requires a single pass. This encoder standardizes the feature

dimensions of all four modalities to 512, followed by feature-level

fusion to create features of 8 × 4 × 512 dimensions. Secondly, we

employ five attention modules to focus on the fused main features

across the four channels, assigning weights to modal features from

different channels. This module is collectively referred to as the

attention fusion module within the model. Finally, we utilize the

PHM layer in the feature decoder to capture both local and global

information from the fused features, and a linear layer to map the

weighted features into dimensions, culminating in the downstream

task of sentiment recognition.

3.2 Input and output modeling

Our model begins with four distinct dimensions of signal

modal data, all comprising waveform data. In the preprocessing

stage prior to model input, we adopted processing methods from

prior studies on this dataset. Specifically, for EEG, ECG, and GSR

signals, we conducted downsampling operations, reducing their

frequencies from 256Hz to 128Hz. Conversely, for eye data, we

retained its original frequency and applied relevant filters. Thus, the

dimensions of the input data are as follows: EYES [8,600,4], GSR

[8, 1,280], EEG [8, 1,280, 10], and ECG [8, 1280, 3]. By utilizing

encoders tailored to each of the four signal modes, we standardized

the signals into unified [8, 512] dimensional features, ensuring

suitable data input for the attention fusion module.

Moreover, we preserved the linear mapping aspect of the PHM

layer from the original hyper-complexmulti-modal fusionmodel to

apply to the fused features. This ensures that our model’s decoder

maintains the original mapping relationship with the output of the

attention fusion module.

3.3 Early interaction

In previous research on hyper-complex multi-modal fusion

networks, these four modal data types were fused via batch

alignment. However, only the PHM layer could map the feature

vectors of the four modalities in the fused data, which did not

effectively capture the impact of each modality on final emotion

recognition. To address this, we employed modal fusion by

stacking. The fused modal features were then processed through

our designed attention module, which includes five types of

attention based on the fused features. We conducted experiments

using these attention mechanisms, which were developed from

channel attention, self-attention, and enhanced modal frameworks.

With our proposed fusion method and attention model, each

modality can be assigned its respective weight before entering the

PHM layer. Finally, guided by the decoder, emotion recognition is

performed, establishing a novel multi-modal emotion recognition

network. Additionally, we adjusted the early stopping parameter

based on the model’s adaptation to various attention levels to

mitigate potential overfitting issues.

3.4 Attention fusion module

The attention fusion module we designed encompasses five

types of attention tailored for multi-modal physiological signal

research. Each type of attention network is individually used
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as our attention fusion module to realize its own function in

the network. Drawing inspiration from channel attention, self-

attention, and their variant frameworks, our aim is to enhance

the training performance of hyper-complex multi-modal neural

network models. The following is an in-depth explanation

of our proposed Species Attention Fusion Module, including

the framework for modeling and the underlying principles of

the formulas.

3.4.1 Signal channel squeeze and excitation
attention

We drew inspiration from the block design in SE net (Hu et al.,

2018) and identified that extracting channel features for modal

weighting could enhance training performance. Consequently, we

devised the Signal Channel Squeeze and Excitation Attention

(SCSEA) module, comprising three pivotal steps. The module’s

framework diagram is illustrated in Figure 3. The initial step

maximizes input feature pooling to derive channel features,

followed by channel feature extraction via linear layers in the

second step. Finally, the third step involves channel feature

extraction from functions processed by activation functions.

Assuming x is the input signal fusion feature. x ∈ RB∗C∗F .

Where B represents batch size, C represents channel, and F

represents the characteristics of the channel.After performing

global average pooling, the features of x are preliminarily extracted

now x ∈ R1∗1∗C∗1. Before that, there was actually a dimension

extension operation that changed x0 ∈ RB∗C∗F∗1 to x1 ∈
R1∗1∗C∗1.Then, the feature is further transformed into x2 ∈
R1∗1∗C/r∗1 with the aim of having the activation function act on it

and then restore it to the same dimension as x1 through a linear

layer. We assume it as x3, and the entire process of this attention

can be expressed by the following formula:

x1 = GAP(x0) (1)

y = f (σ (f (x1))) ∗ x0 (2)

where GAP is the global average pooling operation, σ is the

activation function, and f is the linear mapping function.

Using the data from our research as an example, the fusion

features of the four signals need to undergo dimension expansion

from [8, 4, 512] to [8, 4,512, 1] before entering the attention

module. This expansion aims to allow the attention module to

adjust the weight of the channel dimension. Initially, the input data

is represented as channel features via a max-pooling layer, altering

the data dimension to [1, 1, 4, 1]. Here, each modality’s data is

compressed into a single dimension, making its scattered features

more accessible. Next, a linear layer squeezing operation extracts

the four most prominent channel features, followed by activation

with a ReLU function for nonlinear mapping. Subsequently, the

dimension of the weight matrix obtained from this extraction

changes to [1, 1, 4, 1], and itmultiplies with the original input fusion

features to fulfill the attention module’s final objective. Lastly, a

summation in the channel dimension is performed to assist the

encoder in decoding the features.

3.4.2 E�cient signal channel attention
Inspired by EC Attention (Wang et al., 2020), our approach

for signal fusion features calculates the attention matrix from

a different perspective, focusing on the convolution angle. For

sequential data like signals, an appropriate convolutional kernel

proves more effective. Building upon the methods and principles

of EC Attention, we’ve devised an attention module tailored for our

fusion signal, termed Efficient Signal Channel Attention (ESCA).

Refer to Figure 4 for the module’s framework diagram.

Given our input feature x0, similar to the previous SCSEA,

we perform an average pooling operation to preliminarily extract

channel features, resulting in x1. Then, through a linear mapping,

it is transformed into a dimension that can interact with

the convolution kernel, and then subjected to one-dimensional

convolution. We have designed a convolution layer for x1, called

AC Layer, which includes using appropriate convolution kernels

for convolution operations. After performing one-dimensional

convolution, we obtained result x2 and obtained the weight matrix

of attention through non-linear mapping using an activation

function. By multiplying it with the original input features, we

obtained the purpose of our attention. This process can be

expressed as a function:

y = σ (fAC(GAP(x0))) ∗ x0 (3)

where GAP is the global average pooling operation, 6 is the

activation function, and fAC is the adaptive convolution function.

3.4.3 Signal feature dot product block
Both of the approaches mentioned above involve attention

calculation at the channel level. Building on the principles of SDP

Attention (Vaswani et al., 2017), we’ve revamped our strategy by

integratingQ,K, andV as input matrices for the attention function,

dubbing it Signal Feature Dot Product Block (SFDPB).

Refer to Figure 5 for the module’s framework diagram. This

shift stems from our team’s recognition of the benefits of self-

attention, particularly in capturing global features and showcasing

exceptional adaptability. Given the sequential nature of signal data,

besides global features, capturing its inherent characteristics poses

a significant challenge. Moreover, the psychological signal data we

examine also displays substantial volatility, necessitating attention

functions with robust adaptability. The calculation method of this

attention function is:

f (Q,K,V) = V ∗ softmax(
QKT

√
dk

) (4)

where Q is the query matrix, K is the key matrix, and V is the

value matrix. dk is the dimension of the key matrix. We have

maintained the same approach as the original author in calculating

this attention function, as this method has been proven to be more

effective. Even with the use of previous methods, we have fine

tuned the internal attention of the signal fusion feature format in

this study to make it effective in the network we are studying. For

example, we set the dv, dk, and h parameters during the calculation

process to 64, 64, and 8, respectively, and we add and sum the

dim=1 dimension of the attention calculation result to facilitate

addition at the decoder level.
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FIGURE 3

Overall framework of our proposed SCSEA. The input feature data is channel-level extracted through Global Average Pooling (GAP). Squeezing and

extraction are performed in two separate linear layers, with non-linear activation applied using an activation function. The resulting attention weight

matrix is then multiplied with the original feature data.

FIGURE 4

Overall framework of our proposed ESCA. We’ll extract channel features from the input feature data using the GAP method. This method conducts

convolutional extraction of local features within the channel in our designed AC Layer, resulting in a weight matrix under the activation function’s

influence. This tensor is then multiplied with the original input to generate our output.

FIGURE 5

Overall framework of our proposed SFDPB.The input feature data undergoes linear mapping across three designated linear layers to derive Q, K, and

V matrices. Q and K undergo operations and dropout within specific attention functions to bolster feature representation. The resultant matrix is then

multiplied by the V matrix, and the data is permuted and concatenated to restore the feature dimension. Lastly, we sum up the dimensions with

dim = 1 to yield the output result.

3.4.4 Signal attention free block
Following the previous calculation approach, the matrices

Q, K, and V are derived through linear transformation of the

original data features. In contrast to SDP attention, AFT attention

employs a different attention function calculation method (Zhai

et al., 2021). Inspired by the structure of AFT attention, we
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FIGURE 6

Overall framework of our proposed SAFB. The input feature data is mapped linearly across three designated linear layers to derive Q, K, and V

matrices. Initially, a weight is initialized and operated on with Q, K, and V within specific attention functions to obtain preliminary weighted features.

To aid the decoder’s final linear mapping, we then sum the dimensions with dim = 1 to produce the output result.

devised our Signal Attention Free Block (SAFB), as depicted

in Figure 6.

For data signals, each feature within a single channel undergoes

a weighted average of AFT execution values, which are then

combined with element-wise multiplication queries. This attention

calculation method simplifies the weight computation, relying

solely on a key and a set of learned paired positional deviations,

offering the direct advantage of avoiding the need to compute and

store costly attention matrices. We also drew on its advantages to

produce this attention block that resonates with the model we are

studying. The calculation of this attention function is as follows:

youtput = σ (Q)⊙
N∑

i=1

[softmax(Q+ w)⊙ V] (5)

where Q is the query matrix, K is the key matrix, and V is the

value matrix. dk is the dimension of the key matrix. ⊙ represents

the product of two elements before and after and w is the weight

matrix generated by initialization.

3.4.5 Multiscale signal transformer block
When we don’t focus on processing signal sequence data,

attention in the field of computer vision will also achieve good

results. MVITv2attention is an example of using matricesQ, K, and

V (Li et al., 2022). The way we obtain these three matrices in our

designed attention remains consistent with the previous text, but

it reduces pooling operations compared to MVITv2attention, so

we will not elaborate on it here. We found that MVITv2 attention

changed the calculation method of the Q, K, and V matrices.

Our research retained some of its advantages in the module and

designed a new attention, which is Multiscale Signal Transformer

Block (MSTB). Its framework diagram is shown in Figure 7.

The expression for this attention is as follows:

yc = K ⊙ softmax(I) (6)

youtput = fdsum(fdsum(yc)⊙ V) (7)

where Q is the query matrix, K is the key matrix, and V is the

value matrix. yc represents context score, which is an intermediate

variable for us to calculate the weight matrix. ⊙ represents the

product of two elements before and after and w is the weight

matrix generated by initialization. yc is a function that sums up a

specific dimension. In this module, we default to summing up in

the sum = 1 dimension.The main function of MSTB is to capture

the contextual features of each modality, sum them up in specific

dimensions, and reduce the space occupation of features, which is

more conducive to the decoder’s feature classification.

4 Experiments

4.1 Dataset and evaluation metrics

4.1.1 Dataset
All experiments in this study were conducted using the publicly

available MAHNOB-HCI dataset, consistent with the original

research on hypercomplex multi-modal emotion recognition

networks. This dataset encompasses diverse physiological response

data alongside subjective emotional reports from participants.

Specifically, it serves as a multi-modal resource for emotion

recognition, comprising synchronized recordings of facial videos,

audio signals, eye gaze data, and peripheral/central nervous system

physiological signals from 27 participants viewing emotional

video clips. Eye gaze data includes attributes like eye distance,

pupil size, and gaze coordinates. For our physiological signal

recognition study, we focused solely on EEG, ECG, and GSR due

to their strong correlation with human emotions. Additionally, the

dataset provides relevant labels including calm, moderate arousal,

excitement, and valence categories (unpleasant, neutral, and

pleasant). However, within our multi-modal model, our emphasis

was on validating method effectiveness, thus concentrating on

emotion recognition for three specific labels: Calm, Medium

Aroused, and Excited.The whole dataset was processed through

data processing on the basis of the original MAHNOB-HCI dataset,

80% of the data was constructed as a training set, and 20% of the

data was constructed as a test set. The divided training and test sets

are then put into the model for training.
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FIGURE 7

Overall framework of our proposed MSTB. The input feature data undergoes linear mapping across three specific linear layers to derive Q, K, and V

matrices. The Q matrix requires non-linear mapping through an activation function to obtain its corresponding weight matrix. This weight matrix is

then multiplied with the K matrix to obtain the context score matrix. Summation along dim = 1 is performed to reduce feature space occupation,

followed by multiplication with the V matrix to yield preliminary results. Similarly, akin to the previous module, dimension summation with dim = 1

occurs, followed by linear layer mapping to obtain the final result.

4.1.2 Evaluation
We utilize accuracy and F1 score as evaluation metrics for our

model. Accuracy indicates the percentage of correct predictions

made by the model across the entire sample, while the F1 score,

being the harmonic mean of accuracy and recall, offers a balanced

assessment of model prediction performance. The F1 score can be

calculated using the following formula:

Pr =
TP

TP + FP
(8)

Re =
TP

TP + FN
(9)

F1 = 2 ∗
Pr ∗ Re
Pr + Re

(10)

Where TP (True Positive) is the number of true positive classes

that were correctly predicted, FP (False Positive) is the false positive

class prediction, and FN (False Negative) is the false negative class

prediction. Pr and Re represent precision and recall.

These metrics together provide a comprehensive evaluation

of the model quality. Moreover, to address overfitting concerns,

various early stopping parameters were employed for different

attention modules in our study. Ablation experiments were

conducted using the attention module that exhibited the best

classification performance.

4.2 Implementation details

4.2.1 Architecture
The input signal comprises four modes: EYES with dimensions

[8, 600, 4], GSR with dimensions [8, 1,280], EEG with dimensions

[8, 1,280, 10], and ECG with dimensions [8, 1,280, 3]. Utilizing

encoders corresponding to each signal mode, we convert these

signals into unified features of dimensions [8, 512]. In the feature

fusion module, we merge features of the same dimension at

the feature level before inputting them into the attention fusion

module. Our study employs five distinct types of attention fusion

modules, each with its unique structure. The decoder consists

of multiple n = 4 PHM layers and intersecting normalization

layers. In each PHM layer and normalization layer within the

decoder, the feature dimension is halved, culminating in the final

prediction output.

TABLE 1 The table illustrates the performance of each attention module

with augment data, with model evaluation metrics categorized into

accuracy and F1 score.

Attnetion
module

Early
stopping

Accuracy F1
score

Parameters

Baseline 20 34.4482 0.3196 19663747

ESCA 20 42.4749 0.3251 18506051

SFDPB 20 40.1338 0.1909 17913091

SAFB 8 38.4615 0.2308 17913091

MSTB 20 40.1338 0.1909 17913091

SCSEA 8 43.1438 0.3328 17847451

“Early stopping” represents the number of training iterations needed for the model when

the training loss shows signs of increase. “Parameters” represents the number of parameters

included in the model. The bold values means that the corresponding model has the best

performance for the corresponding metrics.

4.2.2 Training
In our model, we employed the Adam optimizer with

a fixed learning rate of 0.000000796 and zero weight decay.

Training was conducted on a single Nvidia RTX4090 GPU,

utilizing a total batch size of 8, with all networks operating

on this GPU. Optimization was achieved using CrossEntropy

Loss, aligning predicted physiological signal labels with actual

emotional categories.

4.3 Comparison with previous works

From the results of this experiment, we observed variations

in replicating the original hypercomplex neural network model’s

results. Further analysis unveiled missing and erroneous data

within our study. Consequently, we purged these data points,

obtaining a clean dataset suitable for training, albeit influencing our

final model predictions. Notably, the original paper didn’t address

this issue or offer solutions based on their findings. We reproduced

the initial hypercomplex neural network model (Lopez et al., 2023),

which is named “Baseline” in our experiment. The most notable

differences from our study are the modal fusion approach and the

lack of an attentional module. Our experiments encompassed both

unaugment and augment datasets, with the comparative results

detailed in Table 1.

Utilizing five types of attention, the highly intricate multi-

modal physiological signal sentiment classification model
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TABLE 2 Results table of modal ablation experiment.

Modal Results

EYES GSR ECG EGG Accuracy F1
score

Exp1 - + - - 37.4581 0.3299

Exp2 - + + - 33.1104 0.3206

Exp3 - + + + 41.1371 0.2972

Exp4 + + + + 43.1438 0.3328

The “+” represents the use of the corresponding modality, while the “-” corresponds to the

removal of the corresponding modality. The bold values means that the corresponding model

has the best performance for the corresponding metrics.

demonstrated notable enhancements, particularly with SCSEA

and ESCA, resulting in substantial overall improvements in

accuracy and F1 score. Additionally, the five attention modules we

developed each contributed to a reduction in the model’s parameter

size to varying extents, with the SCSEA module demonstrating the

most substantial decrease. Furthermore, as indicated in Table 1, the

attention modules SFDPB, SAFB, and MSTB exerted a comparable

impact on the model’s parameter size, a result of their similar

design principles. Although they differ slightly in computation

methodology, the specifics can be referenced in the module

framework diagram provided above. While the remaining three

attention types exhibited accuracy improvements, their F1 scores

notably declined. The reason for this phenomenon should be the

following two reasons:

1) When dealing with a modest amount of data, certain

discrepancies become more pronounced. This is particularly

true for the F1 score calculation, which includes inverse

operations, making the disparities in predictive balance

particularly evident.

2) The F1 score serves as a holistic measure of both precision

and recall. Incorporating the three sub-attention modules

leads to a reduction in recall, consequently boosting the

accuracy, which inversely affects the F1 score, causing it

to decline.

Consequently, integrating these three attention types enhanced

the model’s prediction accuracy, albeit resulting in a more

unbalanced prediction compared to the other two attention types.

4.4 Ablation study

From the preceding analysis, it’s evident that SCSEA

experienced the most significant improvement post-model

addition. We conducted ablation experiments on multi-modal

physiological signals, comparing single-mode (GSR signal),

dual-mode (GSR and ECG signals), three-mode (GSR, EEG, and

ECG signals), and four-mode (EYES, GSR, EEG, and ECG signals)

scenarios. The Table 2 showcases the experimental results under

consistent experimental conditions and parameters.

The results of the ablation experiment clearly indicate

the necessity of modal synergy. Despite poorer dual-modals

performance in the “exp2” experiment, the overall trend highlights

that leveraging interaction among the four modalities is the

most effective approach for improving emotion signal recognition.

Compared to initial single-mode results, interaction among the

four physiological signals yielded superior accuracy and F1

scores. Boosted by our optimal attention module from “exp4,”

accuracy improved by approximately 6% compared to single-mode

experiments, while the F1 score rose by 0.004. However, significant

enhancement of the F1 score remains limited by data diversity.

Despite efforts to enrich existing data, this limitation persists.

4.5 Discussion

Our proposed SCA-Net offers three key advantages:

1) It integrates the features of the four modalities-EEG, ECG,

GSR, and EYE-along the channel dimension, enabling the

attention fusion module to assign weights directly to each

modality. This allows the primary modality to take precedence

while secondary modalities contribute differently to the final

classification task in emotion recognition.

2) We have validated multiple attention methods and

demonstrated that channel attention is more appropriate for

our network design than self-attention, as evidenced by its

superior accuracy, F1 score, and parameter count. Specifically,

the SCSEA module we developed compresses and extracts

features from individual channels, providing a more direct

response to the core characteristics of each modality. As a

result, SCSEA outperforms all other attention modules.

3) For the output of the attention fusion module, we have

adapted its overall dimensionality to align with the features of

the PHM layer, which in turn facilitates the PHM’s decoding

and pattern recognition tasks on the weighted data features.

These three complementary advantages collectively enhance

the performance of SCA-Net, surpassing that of the original

hypercomplex multi-modal neural network model in the realm of

emotion recognition using multichannel physiological signals.

5 Conclusion

In this study, we introduce five novel attention-based

hypercomplex models for sentiment recognition of physiological

signals. After conducting our experimental research, we’ve found

that SCA-net, as a multi-modal neural network, exhibits the

most significant enhancement in model performance. These signal

models are trained on data from four physiological signals. By

incorporating an attention layer into the hypercomplex layer,

which already captures feature relationships, each modality is

appropriately weighted before entering the linear layer, effectively

enhancing model predictive performance. However, we observed

that while partial attention improves accuracy, it doesn’t ensure

balanced predictions. Additionally, even in attention networks

with strong predictive performance, there’s room to improve F1

scores. Thus, achieving a balanced prediction in the hypercomplex

physiological signal emotion classification model represents a

significant research milestone. In future research, we will aim to

Frontiers inNeurorobotics 09 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1442080
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Du et al. 10.3389/fnbot.2024.1442080

streamline the model parameters and refine its structure, ensuring

concurrent enhancements in both accuracy and F1 score. In

addition, we would like our proposed attention module to be

utilized in more advanced fusion networks, such as Fuzzy-Based

Deep Attributed Graph Clustering (Yang et al., 2023b), in order

to facilitate the accuracy of the corresponding models. The novel

network architecture we proposed in our study also has the

potential to be used in the field of RNA N6-methyladenosine

modification site prediction and drug repositioning in the future

after our improvement and refinement (Li et al., 2022, 2024).
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