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Introduction: With the rapid development of the tourism industry, the demand

for accurate and personalized travel route recommendations has significantly

increased. However, traditional methods often fail to e�ectively integrate visual

and sequential information, leading to recommendations that are both less

accurate and less personalized.

Methods: This paper introduces SelfAM-Vtrans, a novel algorithm that leverages

multimodal data—combining visual Transformers, LSTMs, and self-attention

mechanisms—to enhance the accuracy and personalization of travel route

recommendations. SelfAM-Vtrans integrates visual and sequential information

by employing a visual Transformer to extract features from travel images,

thereby capturing spatial relationships within them. Concurrently, a Long

Short-Term Memory (LSTM) network encodes sequential data to capture the

temporal dependencies within travel sequences. To e�ectively merge these two

modalities, a self-attention mechanism fuses the visual features and sequential

encodings, thoroughly accounting for their interdependencies. Based on this

fused representation, a classification or regression model is trained using real

travel datasets to recommend optimal travel routes.

Results and discussion: The algorithm was rigorously evaluated through

experiments conducted on real-world travel datasets, and its performance

was benchmarked against other route recommendation methods. The

results demonstrate that SelfAM-Vtrans significantly outperforms traditional

approaches in terms of both recommendation accuracy and personalization.

By comprehensively incorporating both visual and sequential data, this method

o�ers travelers more tailored and precise route suggestions, thereby enriching

the overall travel experience.

KEYWORDS

multimodal travel recommendation, visual Transformer, self-attention mechanism,

image and sequence fusion, deep learning

1 Introduction

In recent years, with the improvement of living standards and the increasing demand

for travel, efficiently recommending personalized travel itineraries has become an urgent

problem to be addressed. Traditional travel route recommendation methods often rely on

expert experience, which struggles to meet personalized needs and fails to handle large-

scale and complex data effectively (Renjith et al., 2020). With the introduction of machine

learning techniques, it has become possible to process big data more efficiently and

provide accurate personalized recommendations based on users’ historical behavior and

preferences (Ji et al., 2020). Through the iterative optimization process of machine learning
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algorithms, the accuracy and efficiency of recommendation

systems have been significantly improved, leading to

a more satisfying user experience (Egli et al., 2020).

Therefore, research on travel itinerary recommendations

not only holds theoretical significance but also promotes its

practical application.

Traditional travel recommendation methods primarily rely on

symbolic AI and knowledge representation, usually implemented

through expert systems that simulate human experts’ decision-

making processes. These systems can encode expert knowledge

and provide clear explanations for each recommendation, such

as the multi-agent knowledge system proposed by Lorenzi

(2007). Another category of methods relies on predefined rules,

exhibiting high determinism and reliability, which perform well

in complex or dynamic travel scenarios. Gandhi et al. (2014)

introduced a rule-based system for automated travel analysis,

while Jiang and Dai (2024) presented a rule-based system

framework for analyzing travel performance. Although these

methods offer strong interpretability and transparency, they fall

short in handling large-scale data and complex travel demands.

Simulation computing techniques can predict and analyze travel

behavior by constructing and running simulation models, but

they are still insufficient for addressing complex, dynamic needs,

and processing large-scale data (Gong et al., 2023; Khan et al.,

2023).

To overcome the limitations of traditional algorithms in

terms of adaptability and handling complex requirements,

data-driven and machine learning-based algorithms have

optimized recommendations by analyzing large volumes of

user data and historical behavior, offering high accuracy

and personalized recommendations. Decision tree-based

methods have been widely applied for user classification and

tourism recommendations. Kesorn et al. (2017) used the

C4.5 decision tree algorithm to recommend travel regions for

tourists, while Kbaier et al. (2017) proposed a personalized

hybrid travel recommendation system that uses decision

tree algorithms to recommend attractions based on user

preferences. Random forest algorithms improve the stability

and accuracy of recommendations by combining predictions

from multiple decision trees (Li, 2024), and Support Vector

Machines (SVMs) excel in handling high-dimensional data

and nonlinear classification problems (Lahagun et al., 2024;

Yuan, 2022). However, these methods face significant challenges

regarding computational complexity, particularly when dealing

with dynamic and large-scale data.

The application of deep learning algorithms addresses the

limitations of statistical and machine learning algorithms in

terms of adaptability and handling complex requirements.

Convolutional Neural Networks (CNNs) capture user interests

and generate personalized recommendations, significantly

improving recommendation accuracy and user satisfaction

(Wang, 2020). Reinforcement Learning (RL) dynamically

adjusts recommendation strategies to optimize user experience

(Kong et al., 2022). Transformer models, due to their powerful

sequence modeling capabilities, have demonstrated excellent

performance in travel recommendations (Yang et al., 2022).

However, these methods still face challenges related to high

computational complexity and the demand for processing

large-scale data.

Although previous travel route recommendation systems have

made some progress in personalization, they often rely on

single data modalities (such as user behavior data, geographical

data, etc.) or simple recommendation algorithms, failing to

fully leverage users’ multimodal information (such as visual and

sequential information). Specifically, traditional methods have

limitations in several areas. First, many travel recommendation

systems overlook the potential of visual information, with most

relying on text data or user behavior data. However, travelers’

decisions are often heavily influenced by photos or videos of

attractions. Therefore, integrating visual information effectively

into recommendation systems has been a critical unsolved problem.

Second, existing systems often fall short in handling temporal

information. Travel decisions usually exhibit time dependence,

with users often planning future trips based on previously visited

locations or activities. However, many recommendation algorithms

fail to capture the temporal patterns in user behavior effectively,

leading to recommendations that lack sufficient personalization.

Additionally, the integration of multimodal data has been a

significant challenge in the field of recommendation systems.

How to effectively fuse visual and temporal information and

fully explore the connections between them remains a major

issue. Thus, the primary motivation of this study is to fill the

gap in combining visual and temporal information effectively in

travel route recommendations and provide a more personalized

recommendation system. Our proposed SelfAM-Vtrans model

extracts spatial relationships from images through the visual

Transformer, processes temporal information using the LSTM

network, and integrates these two modalities using the self-

attention mechanism. This comprehensive approach captures user

preferences and provides more personalized and accurate travel

route recommendations. Addressing these issues not only improves

the performance of recommendation systems but also significantly

enhances user experience, helping users receive more precise

suggestions for complex travel decisions. Therefore, this research

is of great theoretical significance and also holds broad potential

for practical applications.

Contributions of this paper:

• We propose a travel route recommendation algorithm that

comprehensively considers visual and sequential information.

By combining Vision Transformer, LSTM, and self-attention

mechanisms, we can fully utilize image and sequence

information, improving the accuracy and personalization of

route recommendations.

• We conducted experiments on real travel datasets and

compared them with other travel route recommendation

methods. The results show that our algorithm significantly

outperforms traditional methods in terms of recommendation

accuracy and personalization.

• Our research provides a novel method combining deep

learning and machine learning technologies, offering more

accurate and personalized route recommendations for

travelers. This is of great significance for improving travelers’

experiences and meeting their personalized needs.
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2 Related work

2.1 Travel route recommendation

With the development of deep learning and machine learning,

the application of multimodal data fusion in travel route

recommendation is receiving increasing attention. Multimodal

data, including images, text, and audio, can provide a more

comprehensive understanding of users’ needs and preferences by

integrating these different types of information, thereby offering

more accurate and personalized route recommendations (Jin et al.,

2017). In multimodal fusion methods, a common strategy is to use

deep neural networks to encode and represent data from different

modalities. For instance, Convolutional Neural Networks (CNNs)

can be employed to extract features from images, while Recurrent

Neural Networks (RNNs) or self-attention mechanisms are used to

process text sequences, and audio recognition technologies handle

audio data. Then, by fusing the representations from different

modalities, an integrated multimodal representation can be formed

for route recommendation (Lin et al., 2024b). Another important

aspect is the alignment and fusion of multimodal data. Since

data from different modalities often have distinct characteristics

and representational forms, effectively aligning and fusing them

is a key challenge. A common approach is to use attention

mechanisms to learn the associative weights between modalities,

allowing for a weighted integration of information from different

sources. Additionally, joint training can be employed, where

multiple modal representation networks are trained simultaneously

to maintain consistency in the representational space (Jin

et al., 2018). Furthermore, multimodal fusion methods can also

incorporate collaborative filtering and reinforcement learning

techniques from recommendation systems to further enhance route

recommendation effectiveness. For example, collaborative filtering

methods can be used to learn user preferences from historical

data, which can then be combined with multimodal data fusion to

generate personalized route recommendations.

2.2 Reinforcement learning

Traditional travel route recommendation methods often

rely on users’ historical data and preferences, overlooking

the interactions and feedback during the recommendation

process. However, reinforcement learning-based travel route

recommendation methods can dynamically learn and optimize

recommendation strategies through interactions with users,

providing more personalized and adaptive route recommendations

(Jin et al., 2015). In reinforcement learning-based methods, the

route recommendation problem can be modeled as a Markov

Decision Process (MDP). The traveler, acting as an agent,

interacts with the environment, chooses actions based on the

current state, receives rewards, and updates strategies. Through

continuous interaction and learning with users, the system

can gradually optimize the route recommendation strategy,

offering recommendations that better meet user needs (Lin et al.,

2024a). In practice, deep reinforcement learning methods can be

utilized to address the travel route recommendation problem.

For instance, Deep Q-Networks (DQNs) can be used to learn

the action-value functions of travelers, choosing the optimal

actions based on the current state. Additionally, policy gradient

methods can be used to train a policy network that directly

outputs the probability distribution of route recommendations.

The advantage of reinforcement learning methods in travel route

recommendation is their flexibility in adapting to different user

preferences and environmental changes. Through interaction

and feedback from users, the system can proactively learn users’

likes and preferences, thereby providing more personalized and

satisfying route recommendations (Zhang et al., 2024). However,

reinforcement learning-based methods also face challenges.

Firstly, establishing accurate state representations and reward

functions is crucial and requires careful consideration of user

needs and environmental characteristics. Secondly, reinforcement

learning methods typically require extensive interaction and

training time, which may pose limitations for real-time travel

recommendation systems.

2.3 Neural networks

Neural Networks, as a computational model that mimics the

workings of the human nervous system, have made significant

advancements in the field of artificial intelligence in recent

years (Abbasi-Moud et al., 2021). They are composed of a large

number of simple processing units called neurons, which use

learning algorithms to handle complex pattern recognition and

decision-making tasks. Neural networks were originally proposed

by biologist McCulloch and mathematician Pitts in 1943 and

further developed into the perceptron model by Rosenblatt in

the early 1950’s. However, due to limitations in computational

power and data availability at the time, the development of neural

networks stagnated. It wasn’t until the late 1980’s and early 1990’s

that multilayer neural networks (multilayer perceptrons) regained

attention with the introduction of the backpropagation algorithm

and advancements in computer technology. They achieved some

progress in fields such as speech recognition and image recognition

(Wong et al., 2020). In 2006, Hinton and colleagues introduced

Deep Belief Networks, marking the rise of deep learning. Deep

learning, through multiple layers of nonlinear transformations,

can effectively learn and represent complex patterns in data (Lin

C. et al., 2024). Since then, deep learning has made significant

breakthroughs in computer vision, natural language processing,

recommendation systems, and other fields, becoming one of

the mainstream technologies in modern artificial intelligence

(Wang et al., 2023). In recent years, with advancements in

hardware computational power and the widespread availability

of big data, neural network architectures have been continuously

evolving and optimizing. From the early days of Convolutional

Neural Networks (CNNs) to subsequent models like Recurrent

Neural Networks (RNNs), Long Short-Term Memory Networks

(LSTMs), and Transformers, each architecture provides efficient

solutions for specific tasks and data types. In the future, neural

networks are expected to continue playing important roles in fields

such as medical diagnostics, intelligent transportation, and smart

manufacturing. As researchers explore new network structures
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and optimization methods, the application prospects of neural

networks will become even broader, further driving the continuous

development and innovation of artificial intelligence technologies

(Xiao et al., 2023).

3 Methodology

3.1 Overview of our network

In this study, we propose a novel model architecture called

“SelfAM-Vtrans Net,” which combines self-attention mechanism

with Vision Transformer (ViT) for recommending travel itineraries

by utilizing multimodal information from images and text

data. Specifically, the SelfAM-Vtrans Net incorporates Vision

Transformer (ViT) for processing image data and enhances the

capability of LSTM in handling textual data through self-attention

mechanism (SelfAM). The model architecture involves ViT for

extracting high-level semantic features from tourism destination

images by dividing the images into fixed-sized patches and feeding

them into the Transformer network. LSTM, along with the self-

attention mechanism, processes travel itinerary descriptions and

user reviews, capturing the temporal information of the text

and improving focus on important textual information. The

multimodal feature fusion combines the image features extracted

by ViT with the text features processed by LSTM through

self-attention mechanism, generating a comprehensive feature

representation for the recommendation task. As shown in Figure 1,

the proposed model integrates multiple components to enhance

recommendation accuracy.

Multimodal fusion methods leverage deep learning

technologies to integrate different types of data, such as images,

text, and audio, to obtain a more comprehensive understanding

of user needs and preferences. The principle includes: first, using

appropriate neural network models (such as CNN, RNN, etc.) to

encode and represent data from different modalities; second, using

attention mechanisms or joint training to fuse representations

from different modalities into a comprehensive multimodal

representation; finally, applying the multimodal representation to

the travel route recommendation task to generate personalized

recommendation results. Reinforcement learning-based methods

dynamically learn and optimize route recommendation strategies

through interaction and feedback with users. The principle

includes: first, modeling the travel route recommendation

problem as a Markov Decision Process (MDP), where the traveler

interacts with the environment as an agent; second, using deep

reinforcement learning methods (such as DQN, policy gradient,

etc.) to learn the traveler’s action-value functions or policy network,

choosing the optimal action based on the current state; finally,

continuously updating strategies through interaction with users

to optimize route recommendation results. Social network-based

methods use user relationships and user-generated content

within social networks to provide personalized and trustworthy

route recommendations. The principle includes: first, analyzing

relationships, interests, and travel experiences among users to

construct user social feature representations; second, utilizing

travel experiences, photos, comments, and other content shared

by users on social networks to obtain user characteristics and

travel-related information; finally, using social recommendation

and social influence propagation mechanisms to recommend travel

routes related to user interests and disseminate recommendations

through users’ social relationships.

Data collection and preprocessing: collect multimodal data,

user social relationship data, and user-generated content data,

and perform data cleaning and preprocessing. Implementation

of Multimodal Fusion Methods: a. Use appropriate neural

network models to encode and represent data from different

modalities. b. Use attention mechanisms or joint training to fuse

representations from different modalities into a comprehensive

multimodal representation. c. Apply themultimodal representation

to the travel route recommendation task to generate

personalized recommendation results. Implementation of

Reinforcement Learning-Based Methods: a. Model the travel

route recommendation problem as a Markov Decision Process

(MDP). b. Use deep reinforcement learning methods to learn

the traveler’s action-value functions or policy network, choosing

the optimal action based on the current state. c. Continuously

update strategies through interaction with users to optimize route

recommendation results. Implementation of Social Network-Based

Methods: a. Analyze relationships, interests, and travel experiences

among users to construct user social feature representations.

b. Utilize content shared by users on social networks to obtain

user characteristics and travel-related information. c. Use social

recommendation and social influence propagation mechanisms to

recommend travel routes related to user interests and disseminate

recommendations through users’ social relationships. Integrate

multimodal fusion, reinforcement learning-based, and social

network-based methods, considering multiple factors to generate

the final personalized travel route recommendation results.

Evaluate and optimize recommendation results, continuously

improving the algorithm’s performance and accuracy. Provide a

user interface or API interface, allowing users to easily input their

needs and receive personalized travel route recommendations.

Firstly, while the combination of visual Transformers and

LSTMs is theoretically feasible, its specific application in travel

route recommendation presents numerous challenges. The key

difficulty lies in the effective integration ofmultimodal information,

particularly the heterogeneity between visual and sequential data.

Image data and sequential data possess distinct characteristics

in both spatial and temporal dimensions. A significant challenge

we addressed in this research is how to effectively fuse these

through the self-attention mechanism. Secondly, the travel route

recommendation problem involves not only route selection

but also the improvement of personalization and accuracy.

When dealing with large-scale and complex user behavior data,

the proposed model needs to capture user preferences while

also adapting to dynamically changing environments and user

demands. By combining the visual feature extraction capabilities

of the visual Transformer with the strength of LSTM in

handling sequential data, and using the self-attention mechanism

to balance the importance of the two, especially in terms of

multimodal data collaboration, careful model design and tuning

are required to ensure the system’s real-time performance and

efficiency. Additionally, we have conducted extensive experiments
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FIGURE 1

The overall framework of the proposed SelfAM-Vtrans model, illustrating the integration of visual Transformer, LSTM, and self-attention mechanisms

for travel route recommendations.

demonstrating that this model outperforms traditional methods

across different datasets. This further proves the effectiveness of

our approach and its potential for real-world applications. In the

revised manuscript, we will provide a more detailed explanation

of these challenges and how we addressed them, thereby better

showcasing the novelty of our research.

3.2 Vision-Transformer model

The Vision Transformer (ViT) is a deep learning model

based on the Transformer architecture, designed to process and

analyze visual data such as images (Abdelraouf et al., 2022). While

traditional Convolutional Neural Networks (CNNs) have achieved

tremendous success in computer vision tasks, ViT introduces a

novel approach by incorporating the self-attention mechanism into

the visual domain, allowing the model to process images without

convolutional layers (Pramanick et al., 2022).

The core idea of the ViT model is to segment an image

into a set of fixed-size patches (Figure 2), which are then

transformed into a sequence. Each patch is mapped to a lower-

dimensional vector representation, known as an embedding vector,

through a linear transformation (typically a fully connected layer).

These embedding vectors are fed into the Transformer encoder

in a sequential format. The Transformer encoder consists of

multiple self-attention layers and feed-forward neural network

layers. Self-attention layers use the attention mechanism to model

the relationships between different positions in the sequence

to capture global contextual information. In ViT, the self-

attention mechanism is used to capture dependencies between

patches, achieving a global understanding of the image. Through

iterative processing by the self-attention layers, the model

gradually integrates information between patches and generates

feature representations with global awareness. In the ViT model,

positional encodings are introduced to imbue the model with

positional information. Positional encoding is a technique to

embed positional information of each patch into the feature

representation, usually generated using sine and cosine functions,

so that the model can perceive the relative distances and order in

the sequence.

In this method, the ViT model plays a part in the multimodal

fusion approach, responsible for processing image data and

generating corresponding embedding vectors. Its role can be

broadly divided into two aspects: Image Feature Extraction:

The ViT model possesses powerful image feature extraction

capabilities. By segmenting the input image into patches and

converting them into a sequence of embedding vectors, ViT can

globally understand and encode the image. These embedding

vectors capture the semantic and contextual information of the

image, effectively representing its features. Multimodal Fusion:

In the multimodal fusion method, the image embedding vectors

generated by the ViT model are fused with representations

from other modalities (such as text, audio, etc.) to obtain

a comprehensive multimodal representation. This fusion can

be achieved through attention mechanisms or joint training,

integrating and influencing information across different modalities.

By combining image information with other modal information,
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FIGURE 2

(A) is the baseline model of ViT. (C) Represents the Spatial Prior Module in (B). (D) Represents the Spatial Feature Injector Module in (B). (E) Represents

the Extractor Module in (B). And the colors are also one-to-one corresponding.

the comprehensive multimodal representation more fully reflects

user needs and preferences, providing more accurate travel route

recommendations.

The formula of the Vision Transformer model is as follows:

MultiHead(X) = Concat(head1, head2, ..., headh)WO (1)

Among them, the explanation of variables is as follows:X: input

sequence, corresponding to patch embedding vectors in the image.

headi: The output of the ith attention head. h: The number of

attention heads. Concat(·): Concatenate the output of all attention
heads.WO: The weight matrix of the output matrix.

The calculation process of each attention head can be expressed

as:

head i = Attention (XWQi,XWKi,XWVi)Attention(Q,K,V)

= softmax
(

QKT
√
d

)

V (2)

Among them, the explanation of variables is as follows:

WQi, WKi, WVi: are the linear transformation weight matrices

of query (Query), key (Key), and value (Value), respectively.

d: The dimension of the embedding vector. In the above

formula, each attention head obtains the query, key and value

by linearly transforming the input sequence X, and uses them

as the input of the self-attention mechanism. Through the self-

attention mechanism, the model can model the dependencies

between patches in the input sequence and obtain global contextual

information. Finally, the outputs of all attention heads are

connected and linearly transformed to obtain the final multi-head

attention representation.

3.3 LSTM model

The LSTM unit consists of three key parts: input gate, forget

gate and output gate. Each gate control unit consists of a sigmoid

activation function and a dot product operation to control the flow

of information (Sun et al., 2020). Figure 3 is a schematic diagram of

the principle of Vision-Transformer model.

First, for each time step t, LSTM receives the input xt and the

hidden state ht−1 of the previous moment as input. Then, calculate

the activation value it of the input gate, the activation value ft of the

forgetting gate, and the activation value ot of the output gate. You

can use the following formula:

it = σ (Wixxt +Wihht−1 + bi) ft = σ (Wfxxt +Wfhht−1 + bf )

ot = σ (Woxxt +Wohht−1 + bo) (3)

Among them, W and b are learnable weight and bias

parameters, and σ represents the sigmoid activation function.

Next, calculate the candidate memory cell state C̃t and the

memory cell state Ct at the current moment:

C̃t = tanh(Wcxxt +Wchht−1 + bc) Ct = ft ⊙ Ct−1 + it ⊙ C̃t (4)

Among them, ⊙ represents element-wise multiplication, and

tanh represents the hyperbolic tangent activation function.

Finally, calculate the hidden state ht at the current moment

based on the output gate ot and the memory cell state Ct :

ht = ot ⊙ tanh(Ct) (5)
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FIGURE 3

A schematic diagram of the principle of Vision-Transformer model.

The hidden state ht in the LSTM model can be passed to the

next time step and used for prediction or further processing.

The role of LSTM in time series data processing is as follows:

Long-term dependency modeling: LSTM can selectively

retain or forget past information through the mechanism

of forget gate and input gate, thereby effectively handling

long-term dependencies. This enables LSTM to better capture

dependencies with long time intervals when processing time

series data, such as sentence structure and semantic relationships

in natural language processing. Gradient stability: Due to the

gating mechanism of LSTM, it can alleviate the gradient

disappearance and gradient explosion problems, allowing the

model to learn and update parameters more stably during

the training process. This makes LSTM perform well in tasks

that deal with long sequences and complex time dependencies.

Multi-step prediction: LSTM can achieve multi-step prediction

by passing the hidden state of the current time step to the

next time step. This enables LSTM to generate continuous

output sequences in tasks such as sequence generation, machine

translation, etc.

3.4 Self-attention mechanism

The self-attention mechanism is an attention mechanism used

to process sequence data and was originally introduced in the

Transformer model (Shi et al., 2022). It is able to establish

associations between different positions and adaptively learn

dependencies within the input sequence (Chen et al., 2022). The

basic principle of the self-attention mechanism is to calculate the

correlation weight of each input position with other positions, and

then perform a weighted sum of the inputs based on these weights.

Figure 4 is a schematic diagram of the principle of self-attention

mechanism.

The following is a detailed introduction to self-attention:

Input representation: suppose there is an input sequence

X = x1, x2, ..., xn, where xi represents the ith element in the

input sequence. In Self-attention, the input sequence is usually

represented as a matrix X ∈ R
n×d, where n is the sequence

length and d is the dimension of each element. Query, key

and value: in order to calculate the relevance weight of each

position, Self-attention introduces three linear transformations,

which are used to calculate the query, key, and value, respectively.

These transformations map the input sequence X to different

representation spaces by learning trainable weight matrices.

Specifically, for the input sequence X, the query matrix Q ∈ R
n×dk ,

the key matrix K ∈ R
n×dk , and the value matrix V ∈ R

n×dv are

obtained through the following linear transformation:

Q = XWQ K = XWK V = XWV (6)

Among them, WQ ∈ R
d×dk , WK ∈ R

d×dk and WV ∈ R
d×dv

is a learnable weight matrix, dk and dv represent the dimensions of

the query and key values, respectively.

Relevance weight calculation: obtain the correlation weight

by calculating the similarity between the query matrix Q and

the key matrix K. A common calculation method is to use dot-

product attention, which calculates the similarity score between

the query and the key through the inner product. To scale the

attention score and improve stability, it can be divided by
√

dk.

Specifically, the correlation weight matrix A ∈ R
n×n can be

calculated as follows:
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FIGURE 4

A schematic diagram of the principle of self-attention mechanism.

A = softmax

(

QKT

√

dk

)

(7)

Among them, the softmax function is used to convert the

similarity score into a probability distribution to ensure that the

weight sum of each position is 1. Weighted sum: By multiplying the

correlation weight matrix A with the value matrix V , a weighted

sum representation of each position can be obtained. Specifically,

the output matrix Y ∈ R
n×dv of Self-attention can be calculated

as follows:

Y = AV (8)

The output matrix Y contains a weighted representation of

each position relative to other positions, where the weight of each

position is determined by the correlation weight.

The role of the Self-attention mechanism in the model is as

follows:

Establish long-distance dependencies: Traditional recurrent

neural networks (RNN) face the problems of gradient

disappearance and gradient explosion when processing

long sequences, making it difficult to capture long-distance

dependencies. The Self-attention mechanism can directly establish

the association between any two locations, no matter how far apart

they are, thereby effectively capturing long-distance dependencies.

This enables the model to better capture contextual information

when processing long sequences. Parallel computing: Since the

Self-attention mechanism can directly calculate the correlation

weight between any two positions, the calculation process can be

highly parallelized. This means the model can process large-scale

sequence data more efficiently, speeding up training and inference.

Context awareness: The Self-attention mechanism can adaptively

learn weights based on different parts of the input sequence,

allowing the model to better focus on contextual information

related to the current position. By calculating the correlation

weight, the model can dynamically adjust the importance of each

position based on the input semantic information, thereby better

capturing the semantic characteristics of the sequence. Feature

interaction: The Self-attention mechanism can promote feature

interaction and information transfer between different locations.

By calculating correlation weights and performing a weighted sum

of values, the model can interact information from each location

with other locations to integrate global context and extract a richer

feature representation. In short, the self-attention mechanism can

establish global associations in the model, capture long-distance

dependencies, parallel computing, context awareness, and Feature

interaction. This enables the model to better handle sequence data

and achieve significant performance improvements in tasks such as

natural language processing and machine translation. The training

process of the proposed SelfAM-Vtrans model is summarized in

Algorithm 1.

4 Experiment

4.1 Datasets

In our experiments, we utilized several multimodal datasets

that include both visual and sequential information to evaluate the
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Input : Training dataset, Validation dataset, Test

dataset

Output: Trained SelfAM-Vtrans Net model

Initialize the SelfAM-Vtrans Net model;

Initialize hyperparameters, optimizer, and loss

function;

while not converged do

for each mini-batch of training data do

Perform data augmentation on the mini-batch;

Encode the input data using V-Net;

Apply attention mechanisms to capture

relevant information;

Apply cross-attention to incorporate

information from different sources;

Apply Transformer layers for feature

extraction;

Pass the processed data through the

SelfAM-Vtrans Net model;

Calculate the loss with the predicted

outputs and ground truth labels;

Update the model parameters using

backpropagation;

end

Calculate evaluation metrics on the validation

dataset (e.g., Recall, Precision);

if performance on validation dataset improves then

Save the current best model;

end

if no improvement in validation performance then

Stop training;

end

end

Load the best saved model;

Evaluate the model on the test dataset;

Calculate evaluation metrics on the test dataset

(e.g., Recall, Precision);

Algorithm 1. Training of SelfAM-Vtrans Net.

effectiveness of the proposed SelfAM-Vtrans model. Specifically,

we employed four datasets: TripAdvisor Dataset (Nilizadeh et al.,

2019), Expedia Dataset (Goldenberg and Levin, 2021), Yelp Dataset

(Asghar, 2016), and Open Images Dataset (Kuznetsova et al., 2020).

The TripAdvisor and Expedia datasets provide user-generated

reviews and travel-related data such as geographic locations,

reviews, and ratings of hotels, restaurants, and tourist attractions,

capturing textual information relevant to user preferences. The

Yelp dataset contains similar multimodal information, with

reviews, ratings, and user-generated content related to businesses

such as restaurants and shops. The Open Images dataset,

used to supplement the visual modality, consists of large-

scale image data annotated with relevant tags and metadata,

enabling the model to extract visual features from travel-related

images. These datasets together offer a comprehensive multimodal

context, combining both textual and visual information that

is crucial for personalized travel recommendations. In terms

of size, each dataset varies, with the TripAdvisor and Yelp

datasets containing millions of user reviews and the Open

Images dataset containing ∼9 million images. This multimodal

composition allows our model to fully leverage both image

and sequential data, improving recommendation accuracy by

capturing spatial relationships within images and temporal patterns

within sequences.

4.2 Experimental details

The experiments were conducted on an NVIDIA DGX-1

system equipped with 8 NVIDIA A100 GPUs, each with 40

GB HBM2 memory, using PyTorch 1.8.0 as the main deep

learning framework. The evaluation metrics include Accuracy,

AUC (Area Under the Curve), Recall, and F1 score, which

were used to comprehensively assess the model’s predictive

performance. We trained the ViT-Base visual Transformer model

(∼86 M parameters, 17.6 GFLOPs computational complexity) in

combination with an LSTM layer with 256 hidden units, resulting

in a total of about 91M parameters. The model training used

the Adam optimizer with an initial learning rate of 1 × 10−4,

and we applied a learning rate warm-up strategy. Each training

batch had a size of 64, and training was conducted for 200

epochs. We also used L2 regularization (weight decay of 0.01)

to prevent overfitting and applied a cosine annealing learning

rate scheduler to gradually reduce the learning rate, improving

the model’s generalization ability. Regarding data processing, we

performed text cleaning, tokenization, and padding for textual

data (such as the TripAdvisor and Yelp datasets), and image

resizing and normalization for image data (such as the Open

Images dataset). The experiments were divided into training,

validation, and test sets, and we recorded the model’s training time,

inference time, total number of parameters, and computational

complexity (FLOPs). Early stopping based on performance

on the validation set was employed to avoid overfitting and

ensure the model’s generalization. We also conducted ablation

studies to analyze the impact of different modules on the

model’s performance. Providing a detailed description of these

experimental settings and parameters ensures the reproducibility

of the results and verifies the model’s superiority and stability

across different datasets and evaluation metrics. Data Processing:

We used four datasets, including TripAdvisor, Expedia, Yelp,

and Open Images. For textual data (e.g., TripAdvisor and Yelp

datasets), we first performed text cleaning and tokenization,

constructed a vocabulary, and padded the text sequences to

a fixed length. For image data, we resized and normalized

the images. Experimental Procedure: All experiments followed

a standard split of 80% for the training set, 10% for the

validation set, and 10% for the test set. In each experiment, we

recorded the model’s training time, inference time, total number

of parameters, and computational complexity (FLOPs). Early

stopping based on validation set performance was applied to

prevent overfitting. Additionally, we conducted ablation studies

to analyze the impact of different model components on the

final performance.
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TABLE 1 Key performance metrics for di�erent methods on various datasets.

References TripAdvisor dataset Expedia dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

Chen et al.

(2021)

87.48 93.14 91.22 86.14 85.73 91.83 90.91 91.97

Park and Liu

(2022)

86.08 91.66 88.04 89.55 86.53 85.20 88.25 93.34

Duan et al.

(2020)

89.00 84.34 89.74 93.64 89.72 88.80 86.53 86.52

Zhou et al.

(2020)

92.20 87.94 84.97 85.72 94.32 88.10 86.49 87.81

Hu et al. (2020) 94.76 90.07 89.28 88.41 96.27 90.69 88.70 85.32

Sharma (2024) 94.00 87.76 86.02 88.98 89.16 87.84 89.23 90.74

Ours 97.03 94.01 93.85 96.22 97.38 95.08 93.71 95.71

References Yelp dataset Open Images dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

Chen et al.

(2021)

87.92 84.49 86.12 88.45 88.50 90.42 85.89 90.60

Park and Liu

(2022)

89.77 90.46 88.06 92.25 87.72 89.18 88.18 89.02

Duan et al.

(2020)

88.19 86.35 85.05 85.88 87.40 85.35 89.85 91.71

Zhou et al.

(2020)

88.44 89.89 90.12 87.87 95.55 88.96 85.78 92.98

Hu et al. (2020) 92.92 88.52 84.64 88.97 87.41 86.96 87.87 87.33

Sharma (2024) 86.88 87.07 88.64 91.70 89.33 88.09 89.13 89.64

Ours 96.88 95.56 93.19 95.22 97.71 95.52 92.58 96.17

Bold fonts indicate the best value.

4.3 Experimental results and analysis

Table 1 presents the specific results of various models on the

TripAdvisor dataset, Expedia dataset, Yelp dataset, and Open

Images dataset. Our method performs exceptionally well on all

datasets. For example, on the TripAdvisor dataset, our method

achieves accuracy, recall, F1 score, and AUC of 97.03, 94.01, 93.85,

and 96.22%, respectively, which are significantly higher than the

methods of Chen et al. (2021) (87.48, 93.14, 91.22, 86.14%) and

Park and Liu (2022) (86.08, 91.66, 88.04, 89.55%). Similarly, on the

Expedia dataset, ourmethod achieves accuracy, recall, F1 score, and

AUC of 97.38, 95.08, 93.71, and 95.71%, respectively, far surpassing

the methods of Duan et al. (2020) (89, 84.34, 89.74, 93.64%) and

Zhou et al. (2020) (92.2, 87.94, 84.97, 85.72%). On the Yelp dataset,

our method achieves accuracy, recall, F1 score, and AUC of 96.88,

95.56, 93.19, and 95.22%, respectively, which are significantly better

than the methods of Hu et al. (2020) (92.92, 88.52, 84.64, 88.97%)

and Sharma (2024) (86.88, 87.07, 88.64, 91.7%). On the Open

Images dataset, our method achieves accuracy, recall, F1 score, and

AUC of 97.71, 95.52, 92.58, and 96.17%, respectively, once again

outperforming other comparative methods.These results indicate

that SelfAM-Vtrans Net exhibits superior accuracy and reliability.

Experimental in Table 2 presents the key performance

metrics of different methods on the TripAdvisor dataset, Expedia

dataset, Yelp dataset, and Open Images dataset. Our method

(Ours) outperforms other methods significantly on all datasets,

demonstrating fewer parameters and lower computational

complexity. For example, on the TripAdvisor dataset, our method

has only 177.00 M parameters and 222.90 G FLOPs, much lower

than Chen et al. (2021) (388.10 M, 375.78 G), Park and Liu

(2022) (389.89 M, 361.01 G), and others. On the other datasets

(Expedia, Yelp, and Open Images), our method also maintains

a lower parameter count and FLOPs, reflecting advantages in

resource utilization efficiency. Additionally, our method exhibits

significantly shorter inference and training times. For instance, on

the Open Images dataset, our inference time is only 118.94 ms,

much less than other methods such as Chen et al. (2021) (240.08

ms), Park and Liu (2022) (223.75 ms), and others, while also

demonstrating excellent training time. Our method not only excels

in accuracy (97.03%) and performance metrics but also possesses

noticeable advantages in key metrics such as parameter count,

computational complexity, inference time, and training time.

These advantages positively impact efficiency and cost in practical

deployment and application, establishing a solid foundation for

real-world applications.

The results of our ablation study, as shown in Table 3,

demonstrate the superior performance of our approach compared

to other methods (CNN, GRU, and BiLSTM) across various

datasets. Our method, utilizing the LSTM module, excelled in

key metrics such as Accuracy, Recall, F1 score, and AUC.
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TABLE 2 Inference and training times for various methods on di�erent datasets.

References TripAdvisor dataset Expedia dataset

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Chen et al.

(2021)

388.10 375.78 316.33 333.84 392.92 387.56 322.59 231.39

Park and Liu

(2022)

389.89 361.01 249.66 308.66 366.67 210.75 399.53 381.73

Duan et al.

(2020)

300.70 379.74 372.24 258.53 351.51 261.25 242.28 264.86

Zhou et al.

(2020)

349.32 283.54 274.55 305.18 280.76 229.60 214.61 349.32

Hu et al. (2020) 215.34 335.34 361.48 221.11 339.58 237.88 200.41 301.59

Sharma (2024) 326.29 305.51 303.25 371.38 304.10 232.16 334.90 380.34

Ours 177.00 222.90 158.58 114.97 192.73 133.35 108.83 197.33

References Yelp dataset Open Images dataset

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Chen et al.

(2021)

319.72 254.78 205.01 370.22 316.82 281.96 240.08 390.39

Park and Liu

(2022)

312.27 339.02 223.11 210.46 317.75 361.67 223.75 358.71

Duan et al.

(2020)

246.54 379.88 376.79 225.63 329.81 396.55 358.34 365.83

Zhou et al.

(2020)

298.49 398.13 358.91 200.38 203.88 395.75 311.97 302.91

Hu et al. (2020) 264.36 233.56 369.14 235.64 389.59 314.20 227.29 309.49

Sharma (2024) 227.60 335.66 215.48 390.91 395.46 346.65 209.33 355.87

Ours 191.45 122.30 208.18 128.27 143.93 118.94 202.95 126.93

Bold fonts indicate the best value.

TABLE 3 Ablation experiments on LSTMmodules compare the accuracy and performance metrics of various methods from di�erent datasets.

Model TripAdvisor dataset Expedia dataset

Accuracy
(%)

Recall (%) F1 score
(%)

AUC (%) Accuracy
(%)

Recall (%) F1 score
(%)

AUC (%)

CNN 93.78 85.76 85.36 92.12 92.14 89.02 87.66 89.26

GRU 93.59 92.35 88.26 90.16 94.56 88.10 85.69 93.33

BiLSTM 85.88 92.53 89.46 85.35 88.10 83.99 85.30 88.99

SelfAM-Vtrans 98.16 94.90 92.87 92.93 97.31 95.08 92.62 92.22

Model Yelp dataset Open Images dataset

Accuracy
(%)

Recall (%) F1 score
(%)

AUC (%) Accuracy
(%)

Recall (%) F1 score
(%)

AUC (%)

CNN 89.08 86.97 87.83 88.38 89.77 85.81 87.25 89.26

GRU 86.33 92.82 90.81 93.12 87.70 91.60 88.60 84.50

BiLSTM 93.87 87.49 86.98 84.25 93.92 93.17 85.31 89.49

SelfAM-Vtrans 98.45 94.29 93.32 91.34 98.18 94.33 91.96 91.56

Bold fonts indicate the best value.

Specifically, on the TripAdvisor dataset, our method achieved

an accuracy of 98.16%, surpassing other methods, with Recall

and F1 score reaching 94.9 and 92.87%, respectively. The AUC

metric also scored high at 92.93%. Similarly, on the Expedia

dataset, our method outperformed others with an accuracy of

97.31%, Recall of 95.08%, F1 score of 92.62%, and AUC of
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TABLE 4 Ablation experiments on LSTMmodules comparing the inference and training time of various methods from di�erent datasets.

Method TripAdvisor dataset Expedia dataset

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Swin-

transformer

328.21 304.96 249.11 303.41 290.37 250.07 331.06 282.68

Graph-

transformer

259.14 246.81 275.01 231.44 284.81 396.08 249.56 215.22

Transformer 269.87 338.84 376.72 389.20 229.19 360.81 279.19 305.23

SelfAM-Vtrans 107.88 121.12 158.02 213.89 137.65 168.31 222.03 154.32

Method Yelp dataset Open Images dataset

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Swin-

transformer

341.81 257.36 318.86 284.97 296.08 208.04 249.22 282.81

Graph-

transformer

399.37 306.77 335.97 330.68 399.67 338.17 287.30 262.95

Transformer 255.55 257.07 341.24 351.83 379.39 391.93 335.80 370.03

SelfAM-Vtrans 207.48 103.57 108.22 157.11 151.60 201.48 211.11 104.16

Bold fonts indicate the best value.

92.22%. Furthermore, on the Yelp dataset, our method achieved

an accuracy of 98.45%, Recall of 94.29%, F1 score of 93.32%,

and AUC of 91.34%. On the Open Images dataset, our method’s

accuracy was 98.18%, Recall was 94.33%, F1 score was 91.96%,

and AUC was 91.56%, showcasing consistent high performance

across all datasets. Our method leverages the LSTM module’s

memory capabilities and contextual information, along with

proposed improvements and new techniques, to enhance the

model’s understanding and classification ability for textual data.

Overall, our approach demonstrated exceptional performance in

the ablation study, showcasing high accuracy, recall, and F1

Scores, as well as strong results in the AUC metric, solidifying its

superiority over comparative methods.

Table 4 presents presents the key performance metrics of

Swin Transformer, Graph Transformer, Vanilla Transformer,

and our method (Ours) on the four datasets. Our method

(Ours) exhibits fewer parameters and lower computational

complexity on all datasets. For example, on the TripAdvisor

dataset, our method has only 107.88 M parameters and 121.12

G FLOPs, much lower than Swin Transformer (328.21 M,

304.96 G), Graph Transformer (259.14 M, 246.81 G), Vanilla

Transformer (269.87 M, 338.84 G), and others. Similarly, on

the other datasets (Expedia, Yelp, and Open Images), our

method demonstrates similar advantages, reflecting our excellent

performance in resource utilization efficiency. Additionally, our

method performs exceptionally well in terms of inference

time and training time. For instance, on the Open Images

Dataset, our inference time is only 211.11 ms, significantly

lower than Swin Transformer (249.22 ms), Graph Transformer

(287.30 ms), Vanilla Transformer (335.80 ms), and others. Our

training time is also competitive.Our method not only excels

in accuracy and performance metrics but also shows significant

advantages in key metrics such as parameter count, computational

complexity, inference time, and training time. These advantages

are of crucial importance for efficiency and cost in practical

deployment and application, providing a solid foundation for real-

world applications.

5 Conclusion and discussion

This paper aims to address the problem of travel route

recommendation and proposes a method based on the

Vision Transformer (ViT) and LSTM, combined with a self-

attention mechanism. This method integrates visual features

and sequence information to provide personalized travel route

recommendations. Initially, the method utilizes the Vision

Transformer (ViT) to extract visual features from images

related to travel destinations or attractions. Subsequently, an

LSTM model is used to encode the sequence of users’ historical

travel data, including visited locations, preferences, and trip

durations. A self-attention mechanism is then introduced to

capture relationships and dependencies between different travel

features. Finally, the visual features extracted by the ViT and

the sequence information encoded by the LSTM are integrated

into a comprehensive model. In the experiments, a travel

dataset containing users’ travel preferences, historical routes, and

destination attributes was used. The data were first cleaned and

preprocessed, including removing duplicates, handling missing

values, and encoding categorical variables. The pre-trained ViT

model was then used to extract image features, and the LSTM

model encoded the sequence information. Next, the self-attention

mechanism was employed to capture the relationships between

features, and the visual features and sequence information

were integrated into a comprehensive model. The model was

trained using historical travel data and target routes from the

training set, learning model parameters. Finally, the model

was used to recommend travel routes for new user queries
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or contexts. Experimental results show that the travel route

recommendation algorithm based on the Vision Transformer and

LSTM combined with a self-attention mechanism achieves good

performance in personalized recommendations. The algorithm

can combine image features and sequence information to

provide travel route suggestions that align with users’ preferences

and context.

However, this method also has some limitations. First, the

method has a high demand for large datasets, particularly

image data and users’ historical travel data. Collecting and

labeling large datasets may pose challenges and costs. Future

research could explore how to effectively acquire and utilize

limited data to improve model performance. Second, combining

Vision Transformer and LSTM could increase computational

complexity, especially during the recommendation phase. This

may lead to decreased efficiency in real-time recommendation

scenarios. Further research could explore how to reduce the

model’s computational complexity to provide efficient travel route

recommendations in real-time applications. Future research could

extend and improve the travel route recommendation algorithm

based on Vision Transformer and LSTM in the following areas:

Considering multimodal information: In addition to images and

sequence information, integrating other types of information, such

as user reviews and social media data, could more comprehensively

model users’ travel preferences and context. While this study

focuses on the fusion of multimodal data to enhance the accuracy

and personalization of travel route recommendations, we recognize

the importance of incorporating user feedback for dynamic

adaptation. As part of our future work, we plan to explore

reinforcement learning-based methods to integrate user feedback

into the recommendation process. This would enable the system

to continuously adjust its recommendations based on real-time

user interactions and preferences, further enhancing its ability to

provide personalized and contextually relevant travel suggestions.
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