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RL-CWtrans Net: multimodal
swimming coaching driven via
robot vision

Guanlin Wang*

Faculty of Education, University of Macau, Macau, Macau SAR, China

In swimming, the posture and technique of athletes are crucial for improving
performance. However, traditional swimming coaches often struggle to capture
and analyze athletes’ movements in real-time, which limits the e�ectiveness of
coaching. Therefore, this paper proposes RL-CWtrans Net: a robot vision-driven
multimodal swimming training system that provides precise and real-time
guidance and feedback to swimmers. The system utilizes the Swin-Transformer
as a computer vision model to e�ectively extract the motion and posture
features of swimmers. Additionally, with the help of the CLIP model, the
system can understand natural language instructions and descriptions related to
swimming. By integrating visual and textual features, the system achieves a more
comprehensive and accurate information representation. Finally, by employing
reinforcement learning to train an intelligent agent, the system can provide
personalized guidance and feedback based on multimodal inputs. Experimental
results demonstrate significant advancements in accuracy and practicality for
this multimodal robot swimming coaching system. The system is capable of
capturing real-time movements and providing immediate feedback, thereby
enhancing the e�ectiveness of swimming instruction. This technology holds
promise.
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1 Introduction

Swimming action recognition holds significant research value and application

prospects in the fields of sports science and health monitoring (Santos et al., 2021).

Firstly, it can help swimming athletes optimize their training, improve their technical

skills, and enhance their competitive performance. It can also effectively monitor posture

and movements during sports activities, thereby preventing sports injuries (Cabrera-

Arellano et al., 2022). Secondly, swimming action recognition technology plays a crucial

role in water rescue and rehabilitation training. It can provide real-time monitoring and

analysis of patients’ movement status, offer precise rehabilitation recommendations, and

quickly identify abnormal behaviors of drowning individuals in emergency situations,

facilitating timely rescue measures (Hamidi Rad et al., 2022). Furthermore, with the

rapid development of artificial intelligence and computer vision technology, research on

swimming action recognition not only promotes the advancement of related technologies

but also finds applications in other fields such as virtual reality and smart homes, expanding

its scope of application. Therefore, conducting research on swimming action recognition

is not only of theoretical significance but also possesses extensive practical value.
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Traditional methods for swimming action recognition mainly

rely on symbolic AI and knowledge representation. Firstly, manual

feature extraction is widely adopted in early research on swimming

action recognition, as it depends on the researcher’s experience

and expertise to select and extract action features. For example,

Wang et al. (2019) proposed a swimming action recognition

method based on manual feature extraction. Additionally, Kon

et al. (2015) demonstrated the application and effectiveness of

manual feature extraction in swimming action analysis. Secondly,

rule-based methods utilize a series of predefined rules for

action recognition. These methods exhibit high determinism and

reliability, performing well even in the face of complex or highly

variable actions. Chen et al. (2011) proposed a rule-based system

for automated swimming action analysis, while Omae et al.

(2017) provided a rule-based system framework for analyzing

swimming performance. Furthermore, logistic regression, as a

statistical method, learns features from training data to make

classification decisions. It not only has important applications in

action recognition but also significantly improves classification

accuracy. Style (2014) demonstrated the application of logistic

regression in swimming action recognition. These methods have

advantages such as strong interpretability and transparency in the

decision-making process. However, they suffer from limitations in

handling complex and highly variable actions, as well as limited

capability for processing large-scale data.

To address the limitations of traditional algorithms, data-

driven and machine learning-based approaches have been applied

to swimming action recognition, mainly using methods such

as Support Vector Machines (SVM), Random Forests, and

Multilayer Perceptron (MLP). These methods offer higher

accuracy and robustness. For example, Jiang (2009) demonstrated

the application of SVM in image recognition, significantly

improving recognition accuracy through efficient feature extraction

and classification. Yi-Bo et al. (2010) showed the efficient

application of SVM in SAR automatic target recognition, greatly

enhancing recognition efficiency. Additionally, Omae et al. (2017)

improved swimming action classification using the Random Forest

algorithm, reducing classification errors by integrating multiple

feature values. Similarly, Liu (1996) demonstrated the application

of Multilayer Perceptron in speech recognition, significantly

improving classification accuracy through feature extraction and

model training integration. While these methods have shown

significant improvements in accuracy and robustness, they still

face challenges such as high computational complexity and limited

capability to handle large-scale data.

To address the limitations of statistical and machine

learning algorithms, deep learning-based approaches have

been applied to swimming action recognition, primarily using

Convolutional Neural Networks (CNN), Transformers, and

attention mechanisms. These methods offer higher recognition

accuracy and robustness. For example, Victor et al. (2017)

demonstrated the detection of swimming actions from continuous

videos by training CNN and achieved significant results. Ahmed

et al. (2022) proposed a lightweight CNN and GRU network for

real-time action recognition, showing high accuracy and low

computational cost. Additionally, Ali et al. (2023) showed that

CNN can achieve comparable results to Graph Neural Networks

in skeleton action recognition. In the case of Transformers,

Ming et al. (2023) proposed the FSConformer model that utilizes

frequency-domain and spatial-domain Transformer networks,

significantly improving the accuracy of compressed video action

recognition. The powerful capabilities of Transformers were

also validated in the research by Li and Sun (2021), where they

developed a Transformer-based model for 3D skeleton-based

human action recognition, achieving excellent results. Regarding

attention mechanisms, Dhiman et al. (2021) demonstrated

the recognition of 3D human actions using a CNN driven by

spatiotemporal attention mechanisms, effectively overcoming

intra-class variations and inter-class similarities. Banerjee et al.

(2020) achieved high-precision recognition of 3D skeletal actions

by combining fuzzy integral with a CNN classifier. While these

methods have shown significant improvements in accuracy and

robustness, they still face challenges such as high computational

complexity and limited capability to handle large-scale data.

To address the issues of high computational complexity and

limited capability in processing large-scale data, we propose

a new method called RL-CWtrans Net: Multimodal swimming

coaching driven via robot vision. This system utilizes cutting-

edge deep learning techniques and integrates multimodal data

to provide precise and efficient swimming training guidance.

Firstly, the system employs Swin-Transformer as the core computer

vision model. This advanced visual model effectively extracts

the motion and pose features of swimmers from video data.

With its hierarchical architecture and powerful feature extraction

capabilities, the Swin-Transformer can handle complex dynamic

scenes and capture subtle motion variations. This endows the

system with higher accuracy and robustness in recognizing

and analyzing swimmer actions. Secondly, the system integrates

the CLIP model, which combines visual and textual data.

Through the CLIP model, the system can comprehend natural

language instructions and descriptions relevant to swimming.

For example, when a coach gives instructions like “maintain

a straight body” or “pay attention to arm movements,” the

system can translate these textual cues into specific visual

features and compare them with actual swimming actions for

analysis. To further enhance the intelligence and practicality

of the system, we employ Reinforcement Learning (RL) to

train the intelligent agent. RL enables the intelligent agent to

learn and optimize its behavioral strategies through continuous

interaction using a reward mechanism. In RL-CWtrans Net, the

intelligent agent can dynamically adjust and optimize swimming

coaching strategies based on multimodal inputs (visual features

and textual instructions). For instance, if incorrect posture is

detected, the intelligent agent can provide personalized corrective

suggestions and feedback based on previous learning experiences

and the current multimodal data. Through this approach, RL-

CWtrans Net not only improves the accuracy and robustness of

action recognition but also handles large-scale data and provides

personalized swimming training guidance. As the intelligent agent

undergoes continuous training and optimization, it gradually

improves its decision-making ability, enabling the system to

identify issues more precisely and offer corresponding guidance

to help swimmers enhance their skill levels. This multimodal and

multi-level intelligent swimming coaching system holds broad
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application prospects in areas such as sports training and health

monitoring.

The contributions of this paper are as follows:

• RL-CWtrans Net combines Swin-Transformer and CLIP

models, innovatively handling multimodal visual and

textual data to achieve a more comprehensive and accurate

information representation.

• The system possesses multi-scenario applicability, efficient

processing, and wide generality, making it suitable for

swimming action recognition and other multimodal data

processing domains.

• The experiments demonstrate that RL-CWtrans Net exhibits

significantly higher accuracy and efficiency in swimming

action recognition and posture correction compared to

traditional methods, showcasing outstanding performance.

2 Related work

2.1 Action recognition

The development of action recognition, as an important

research direction in the field of computer vision, has undergone

a significant transformation from traditional methods to deep

learning. Traditional approaches relied on manually designed

feature extractors and machine learning-based classifiers, such as

using Histogram of Oriented Gradients (HOG) and Support Vector

Machine (SVM) for action recognition. These methods performed

well in some simple scenarios but struggled with complex variations

in actions and background interference (Qiu et al., 2022). With

the rise of deep learning techniques, especially the widespread

adoption of Convolutional Neural Networks (CNNs), action

recognition has made significant progress. CNNs can automatically

learn feature representations suitable for action recognition from

data, leading to breakthroughs in visual recognition tasks. For

example, by performing convolutional feature extraction and

classification at the frame level of videos, CNNs can effectively

identify key features in actions, such as human poses and motion

patterns (Jin et al., 2023). Subsequently, with increasing demands

for processing time-series data, models like Recurrent Neural

Networks (RNNs) and Long Short-Term Memory (LSTM) were

introduced into action recognition. These models can capture the

temporal dependencies in action sequences, enablingmore accurate

and efficient modeling of actions (Wang and Liang, 2023). More

recently, spatio-temporal attention models like ST-GCN (Spatial-

Temporal Graph Convolutional Network) have pushed the frontier

of action recognition even further. ST-GCN leverages the idea of

graph convolutional networks to effectively capture the spatio-

temporal relationships in action sequences, significantly improving

the accuracy and robustness of action recognition in complex

environments (Wang and Liang, 2023).

2.2 Transformer model

The Transformer model, as a deep learning architecture based

on self-attention mechanisms, has demonstrated its powerful

application potential in various fields. In natural language

processing (NLP), a representative application of the Transformer

model is BERT (Bidirectional Encoder Representations from

Transformers). BERT learns deep semantic representations of

text through large-scale unsupervised pre-training, significantly

improving the performance of various NLP tasks such as text

classification, named entity recognition, and question-answering

systems (Lin et al., 2024b). In the field of computer vision,

the application of Transformer models is also expanding. While

traditional Convolutional Neural Networks (CNNs) excel in image

processing, they may have limitations when dealing with large-

scale images and long-range dependencies. Swin-Transformer

introduces a hierarchical attention mechanism by dividing the

image into local patches and establishing attention connections

between local and global levels. This effectively enhances image

understanding, especially in large-scale and complex scenes (Wang

et al., 2023). Furthermore, Transformer models have demonstrated

unique advantages in multimodal learning. The CLIP (Contrastive

Language-Image Pre-training) model is a typical example. By

jointly training on image and text data, CLIP enables the model

to understand and reason about the content of images while

possessing language description capabilities. CLIP does not rely on

any category labels but instead learns through contrastive learning

on pairs of images and texts, resulting in outstanding performance

on multiple visual and language tasks (Stolarz et al., 2024).

2.3 Robot vision

Robot vision technology has made significant progress in

recent years, driving the application and development of intelligent

robots in various domains. These advancements mainly focus

on sensor technology, visual SLAM, and the application of deep

learning in robot vision (Geisen and Klatt, 2022). Firstly, the

development of sensor technology provides robots with more

precise and rich visual information. For example, RGB-D cameras

can simultaneously capture color images and depth information,

providing more accurate data support for robot navigation and

object detection in complex environments. Panoramic cameras

extend the robot’s field of view, enabling a wider-angle perception

of the environment (Lin et al., 2024a). Secondly, advancements

in visual SLAM (Simultaneous Localization and Mapping) enable

robots to achieve real-time localization and map construction in

unknown environments. Visual SLAM combines visual sensors and

robot motion models to infer the robot’s position and environment

map through processing visual information. It provides essential

support for autonomous navigation and task execution. Lastly,

the widespread application of deep learning enhances the visual

capabilities of robots. Deep learning models such as Convolutional

Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)

are widely used in robot vision tasks, including object detection,

object tracking, and scene understanding. These technologies

improve not only the visual performance of robots in static scenes

but also enable robots to handle visual challenges in dynamic

and complex environments, opening up broader possibilities and

application prospects for intelligent robots (Modungwa et al.,

2021).
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3 Methodology

3.1 Overview of our network

The proposed RL-CWtrans Net: Multimodal swimming

coaching driven via robot vision integrates Swin-Transformer,

CLIP, and reinforcement learning to deliver real-time guidance and

feedback to swimmers. This innovative system harnesses computer

vision techniques, natural language processing, and intelligent

agent training to significantly elevate the efficacy of swimming

instruction. Figure 1 is the overall framework diagram of the

proposed method.

Swin-Transformer: The Swin-Transformer model is employed

as a computer vision model to extract features from swimmers’

movements and postures. It captures spatial relationships

and temporal dependencies among video frames, enabling a

comprehensive understanding of swimming techniques. CLIP

integration: The CLIP model is integrated into the system to

understand swimming-related natural language instructions

and descriptions. By combining visual and textual features, the

system achieves a more accurate representation of information

and enhances the coach’s ability to comprehend and respond to

swimmers’ needs. Reinforcement learning: The system employs

reinforcement learning to train an intelligent agent that provides

personalized coaching and feedback. The agent learns from

multimodal inputs, such as visual observations and textual

instructions, and optimizes its behavior based on a predefined

reward function. This enables the system to adapt its coaching

strategies to individual swimmers’ needs and goals. Method

implementation: Data Collection: Gather a diverse dataset of

swimming videos, covering different styles, techniques, and skill

levels. Include various camera angles and perspectives to capture

the necessary modalities for analysis. Preprocessing: Preprocess

the swimming videos to extract relevant features, such as body

keypoints, joint angles, and stroke patterns. Use computer vision

techniques, including pose estimation algorithms, to extract

these features from video frames. Swin-Transformer: Apply

the Swin-Transformer model to process the video frames and

capture spatial and temporal dependencies. This enables the

system to understand the swimmers’ movements and gestures

accurately. CLIP integration: Integrate the CLIP model into

the system to understand natural language instructions and

descriptions related to swimming. This allows the coach to

comprehend textual inputs and bridge the gap between visual

observations and human-readable instructions. Reinforcement

learning training: Train an intelligent agent using reinforcement

learning techniques. Define a reward function that evaluates the

swimmer’s performance based on predefined criteria. The agent

learns to optimize its behavior by receiving feedback through

the reward signal, allowing it to provide personalized coaching

and feedback. Interaction and feedback: Develop an interface for

swimmers to interact with the robotic coach. Swimmers can ask

questions, seek advice, or request specific feedback. The coach

provides real-time feedback through a combination of visual cues,

natural language instructions, and reinforcement signals. Progress

tracking: Implement a system to track the swimmer’s progress over

time. This includes performance metrics, skill development, and

personalized training plans. The coach adapts its guidance based

on the swimmer’s progress and goals. Deployment and evaluation:

Deploy the multimodal robotic swimming coach system in a

controlled environment, such as a swimming pool, and gather

feedback from swimmers. Continuously evaluate and improve the

system based on user feedback, incorporating new techniques and

research advancements.

To effectively implement domain adaptation techniques in our

swimming coach system, we focus on enhancing the robustness

of our computer vision and pose estimation models to the

varying conditions encountered in different swimming pool

environments. Here’s a detailed breakdown of how we apply

domain adaptation to address challenges such as lighting variations,

water clarity, and background noise: Data Collection Across

Environments: We begin by gathering a comprehensive dataset

from a variety of swimming pools, including indoor and outdoor

settings, under diverse lighting conditions and water qualities.

This dataset includes video recordings that capture a wide range

of environmental factors and swimmer interactions within these

varying conditions. Data augmentation techniques: To extend

the diversity of our training data, we employ data augmentation

techniques that simulate additional environmental variables. This

includes adjusting brightness and contrast to mimic different

lighting conditions, adding artificial noise to represent different

water clarity, and digitally altering background elements to create

various scenarios of background noise. These augmentations

help our models learn to function accurately across a spectrum

of real-world conditions. Fine-tuning on target domain data:

Once the models are pre-trained on the augmented dataset,

we perform fine-tuning using data specifically collected from

the target environments where the system will be deployed.

This step adjusts the model’s weights to better reflect the

characteristics of specific swimming pool settings, enhancing its

predictive accuracy and reliability in those particular conditions.

Adversarial training: We incorporate adversarial training methods

to align feature representations from different domains. By

introducing adversarial examples during training, the models

learn to generalize better by minimizing the domain discrepancy.

This method forces the model to focus on the most relevant

features that are invariant across different environments, thereby

improving its robustness. Continuous monitoring and feedback

loop: After deployment, the system continuously monitors its

performance across different environments and collects feedback.

This feedback is used to iteratively update the training process,

allowing the models to adapt to any new conditions or changes

in existing environments over time. Collaboration with domain

experts: Throughout this process, we collaborate closely with

swimming coaches and technical experts in aquatic sports to

validate the relevance and accuracy of the models under various

conditions. Their insights ensure that the models not only handle

environmental variations but also align with the practical needs

of competitive swimming training. By integrating these domain

adaptation strategies, we equip our pose estimation models to

handle the inherent variability in swimming pool environments

effectively. This approach ensures that our robotic swimming coach

system delivers consistent, accurate, and reliable performance,

enhancing its utility as a training tool in diverse swimming settings.

The overall implementation of the proposed system combines

computer vision, natural language processing, deep learning, and
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FIGURE 1

First, the video input is passed through Swin-Transformer to extract the swimmer’s action and posture features. Then, the CLIP model parses the
natural language instructions and descriptions and converts them into text features. Next, the visual and text features are fused to form a
comprehensive information representation. Finally, the intelligent agent trained by reinforcement learning provides personalized guidance and
feedback based on the multimodal input, completing the data stream processing and action optimization.

robotics expertise. By integrating Swin-Transformer, CLIP, and

reinforcement learning, the system aims to provide swimmers

with effective and personalized coaching, leading to enhanced

swimming techniques and performance.

3.2 Swin-Transformer

Swin-Transformer is a computer vision model based on the

Transformer architecture that has shown excellent performance in

image processing tasks (Wang et al., 2024). The following will detail

the basic principles of the Swin-Transformer model and its role

in this context (Ahmadabadi et al., 2023). Figure 2 is a schematic

diagram of the principle of Swin-Transformer.

Hierarchical transformer structure: Swin-Transformer

features a hierarchical Transformer architecture with multiple

layers. Each layer is designed to capture different scales of

information within the image, where lower levels focus on finer,

local details and higher levels on broader, global features. This

hierarchical approach is instrumental in processing multi-scale

visual information, enhancing the model’s ability to discern varied

visual cues within complex images. Shifted window mechanism:

To better capture long-range dependencies in images, Swin-

Transformer incorporates a shifted window mechanism. This

technique shifts the windows of local attention periodically,

allowing each processing unit to integrate information from a

broader context. This is critical for understanding the deeper,

contextual relationships and long-range dependencies within

images, aiding in more comprehensive feature extraction.

Integration with temporal processing: To adapt Swin-Transformer

for video analysis, where temporal dynamics play a crucial

role, we have integrated it with a 3D convolutional network

layer. This adaptation allows the model to process sequential

data across video frames, enabling it to capture not only the

spatial relationships but also the temporal dynamics of the

swimmers’ movements. Application in robotic swimming coach

system: Feature extraction: Leveraging its enhanced spatial
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FIGURE 2

A schematic diagram of the principle of Swin-Transformer.

processing capabilities, Swin-Transformer extracts critical

features from the motion and posture of swimmers from frame

sequences. This forms the foundation for subsequent analysis

and deeper understanding of dynamic postures and motion

patterns. Spatial relationship modeling: By capturing both local

and global features, Swin-Transformer effectively models the

spatial relationships among various elements within the frame.

This capability is vital for deciphering the complex postures,

poses, and movement styles of swimmers, providing a nuanced

understanding that is essential for precise coaching feedback.

Context and dynamics modeling: With the shifted window

mechanism and temporal integration, Swin-Transformer extends

its reach to capture the overarching dynamics and context

of swimmers’ movements. This ensures that the coaching

system can offer precise, context-aware instructional guidance

and feedback, reflecting both spatial and temporal aspects of

swimming techniques.

The formula of the Swin-Transformer model is

as follows:

Attention(Q,K,V) = softmax

(

QK⊤√
dk

)

V (1)

Multi-head Self-Attention:

MultiHead(Q,K,V) = Concat(head1, . . . , headh)W
O

headi = Attention(QW
Q
i ,KW

K
i ,VW

V
i )

LayerNorm(x+MultiHead(x)) = x+MHSA(x) (2)

Transformer Block:

LayerNorm(x+MLP(x)) = x+MLP(x)

Among them, the explanation of variables is as follows:

In Formula 1 Q: Query vector, used to calculate attention

weight. K: Key vector, used to calculate attention weight. V : Value

vector, used to calculate the weighted sum. dk: The dimension

of the attention head. Attention(Q,K,V): Attention mechanism,

calculates the similarity between the query vector and the key

vector, and performs a weighted sum of the value vectors based

on the similarity. In Formula 2 MultiHead(Q,K,V): Multi-head

attention mechanism, splicing the results of multiple attention

heads. headi: The output of the ith attention head. softmax(·):
softmax function, used to calculate attention weight. Concat(·):
Splicing operation, splicing the results of multiple attention heads.

WQ,WK ,WV ,WO: weight matrix, used for linear transformation.

MLP(·): Multi-layer perceptron, used for nonlinear transformation

of input. LayerNorm(·): Layer normalization operation, used to

normalize input tensors.

Through the combination of multi-head self-attention and

Transformer blocks, the Swin-Transformer model can effectively

capture spatial and contextual information in images and extract

useful feature representations. This provides a multi-modal

robotic swimming coaching system with powerful computer vision

capabilities.

3.3 CLIP

CLIP (Contrastive Language-Image Pretraining) is a

multimodal model based on contrastive learning, designed to
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link images and text together (Ma, 2021). Below is a detailed

introduction to the basic principles of the CLIP model and its role

in this context. Figure 3 is a schematic diagram of the principle

of CLIP.

1. Position and velocity loops: The outer loop controls position,

while the inner loop regulates velocity. The position loop

receives a command Qc(s), which is the desired position, and

compares it with the actual position feedback. The velocity loop

takes the error from the position loop, processes it through

velocity control Kvp + Kvi
s , and then feeds it into the torque

control Kt to drive the motor.

2. Feedforward control: A feedforward control SKvff is added to

the position loop to enhance the response speed and accuracy

by anticipating the required control efforts based on the desired

velocity.

3. Mechanical system: The motor and load are represented

as inertia (Imotor and Iload), coupled by a stiffness k. This

setup shows how mechanical elements like torque (Td(s)) and

displacement (Qa(s)) interact within the system.

4. Dynamic interaction: The torque generated by the motor is

transmitted through a coupling stiffness to the load, with the

entire system’s dynamics being influenced by these interactions.

The feedback loops help to correct any discrepancy between

the desired and actual outputs, ensuring precise control of the

mechanical system.

The objective of the CLIP model is to learn a shared

representational space where images and text can correspond to

each other. The CLIP model consists of two main components:

a visual encoder and a text encoder. Visual encoder: The visual

encoder transforms input images into vector representations. It

utilizes a Convolutional Neural Network (CNN) to extract features

from images and maps them into the representational space.

The goal of the visual encoder is to capture the semantic and

visual characteristics of the image. Text encoder: The text encoder

converts input text descriptions into vector representations.

It employs natural language processing technologies, such as

Recurrent Neural Networks (RNNs) or Transformers, to encode

the semantic and contextual information of the text. The objective

of the text encoder is to map text descriptions into the same

representational space as the visual encoder. The CLIP model

is trained using a contrastive learning approach. It learns the

correspondence between images and text by maximizing the

similarity of positive sample pairs while minimizing the similarity

of negative sample pairs. This ensures that related image-text pairs

are closer together in the shared representational space, while

unrelated pairs are further apart.

The CLIP model plays a significant role in the multimodal

robotic swimming coach system, specifically in the following

aspects: Cross-modal understanding: The CLIP model can link

images and text, allowing for comparisons and matches within a

shared representational space. This enables the robotic swimming

coach system to understand swimming-related natural language

instructions and descriptions and associate them with the

swimmers’ image features. This enhances the system’s ability

to understand and analyze swimming movements and postures.

Multimodal matching: Through the CLIP model, the system

can compare and match the image features of swimmers

with related textual instructions. This allows the system to

identify specific movements performed by swimmers and associate

them with corresponding swimming techniques and guidance.

Multimodal matching enables the robotic swimming coach system

to provide more accurate and personalized swimming instruction.

Understanding contextual information: The CLIP model can

encode the semantic and contextual information of texts, enabling

the system to understand issues, requests, or feedback from

swimmers. This allows the robotic swimming coach system to

interact more effectively with swimmers and provide appropriate

responses and feedback based on context.

The formula of the CLIP model is as follows:

CLIP Loss: L = − log

(

exp
(

similarity(v, t)
)

∑N
i=1 exp

(

similarity(v, ti)
)

)

(3)

In Formula 3 among them, the explanation of variables is as

follows:

v: vector representation of the input image. t: vector

representation of the input text description. ti: vector

representation of negative sample text descriptions (text

descriptions that are not related to the input image). similarity(v, t):

Calculate the similarity between the image vector and the text

vector. exp(·): exponential function.
∑N

i=1: summation symbol,

which means summing all negative samples. L: The loss function

of the CLIP model.

The CLIPmodel is trained using a contrastive learning method,

in which the loss function shortens the distance between relevant

images and text by maximizing the similarity of positive sample

pairs, while minimizing the similarity of negative sample pairs to

increase the distance between irrelevant images and text. distance.

In this way, the model is able to learn a shared representation space

such that related image and text pairs are closer in this space, while

unrelated image and text pairs are further apart. By minimizing

the CLIP loss function, the model is able to learn a shared

representation space that is semantically and visually consistent

so that images and text can be compared and matched in this

space. This provides the multi-modal robot swimming coaching

system with powerful capabilities, enabling it to understand the

swimmer’s image features and related text instructions, and provide

personalized swimming teaching guidance and feedback. The

CLIP model, by linking images and text, provides capabilities

for multimodal matching and cross-modal understanding. In the

multimodal robotic swimming coach system, it helps the system

understand the image features of swimmers and related textual

instructions, thereby offering personalized swimming instruction

and feedback.

3.4 Reinforcement learning

Reinforcement learning is a machine learning method used

to solve the problem of agents learning optimal decision-making

strategies during interaction with the environment (Dong et al.,

2020). The basic principles of the reinforcement learning model

and its role in this method will be introduced in detail below
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FIGURE 3

A schematic diagram of the principle of CLIP.

FIGURE 4

A schematic diagram of the principle of Reinforcement Learning.

(Liu et al., 2022). Figure 4 is a schematic diagram of the principle

of Reinforcement Learning.

The reinforcement learning model is modeled based on the

framework of Markov Decision Process (MDP). MDP consists of

five-tuple < S,A, P,R, γ >, where:

S: State space, representing the set of states that the agent may

be in. A: Action space, which represents the set of actions that the

agent can perform. P: State transition probability, which represents

the probability distribution of an agent transitioning from one state

to another under a given state and action. R: Reward function,

which represents the immediate reward obtained by the agent

under a given state and action. γ : discount factor, used to measure

the importance of future rewards. The goal of the reinforcement

learning model is to learn an optimal policy π
∗ through interaction

with the environment, so that the agent can choose the optimal

action in each state, thereby maximizing the cumulative reward.

The training process of the model can be divided into two stages:

learning stage and execution stage.

Learning phase: In the learning phase, the reinforcement

learning model learns the policy through interaction with the

environment. Themodel selects an action based on the current state

and interacts with the environment. The environment returns the

next state and immediate reward based on the action chosen by

the agent. The model updates the strategy based on the obtained

rewards and state transition information, so that the agent chooses

a better action in each state. Execution phase: In the execution

phase, the trained strategy is used in the actual decision-making

process. The model selects actions based on the current state and

learned policies and interacts with the environment. The model

adjusts the strategy in real time based on the rewards and state

transition information returned by the environment to adapt to

changes in the environment.

The formula for reinforcement learning is as follows:

Q(s, a) = (1− α) · Q(s, a)+ α ·
(

r + γ ·max
a′

Q(s′, a′)

)

(4)

In Formula 4 among them, the explanation of variables is as

follows:

Q(s, a): State-action value function (Q function), which

represents the estimated value of the cumulative reward obtained

by executing action a in state s. s: current status. a: current action.

α: learning rate, used to control the weight of new and old estimates,

between 0 and 1. r: immediate reward (immediate reward), the
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reward obtained from the environment after executing action a. γ :

Discount factor, used to measure the importance of future rewards,

between 0 and 1. s′: The next state, which is the new state observed

from the environment after executing action a. a′: The action

selected in the next state s′. maxa′ Q(s
′, a′): The maximum value of

the state-action value function of all possible actions in the next

state s′.

Reinforcement learning models play an important role in

multi-modal robot swimming coaching systems, including the

following aspects: Learning the optimal strategy: The reinforcement

learning model can learn the strategy to select the optimal

action in each state through interaction with the environment.

In the swimming coaching system, the model can learn

to select the best teaching guidance and feedback strategies

under different swimming postures and action states to help

swimmers improve their techniques and swimming performance.

Personalized teaching: The reinforcement learning model can learn

adaptive teaching strategies based on the individual characteristics

and performance of swimmers. By interacting with swimmers, the

model can adjust strategies based on the swimmer’s status and

feedback, providing personalized swimming teaching guidance and

feedback to meet the needs and goals of different swimmers. Real-

time decision-making: The reinforcement learning model enables

the robotic swimming coaching system to make decisions in real-

time scenarios. The model can be based on the current state and

learned policies. Reinforcement learning (Reinforcement Learning)

is a machine learning method used to solve the problem of agents

learning optimal decision-making strategies during interaction

with the environment. The basic principles of the reinforcement

learning model and its role in this method will be introduced in

detail below.

4 Experiment

4.1 Datasets

This paper uses four data sets: Swimming Technique Datasets,

ImageNet Datasets, Kinetics Datasets and Sports-1M Dataset.

Swimming technique datasets (Brunner et al., 2019): This dataset

is specifically designed for the study and analysis of swimming

techniques. It may contain videos, images, or other relevant data,

such as demonstrations of different swimming strokes, recordings

of swimming competitions, etc. The Swimming Technique Dataset

is useful for training and evaluating computer vision or machine

learning models related to swimming. ImageNet datasets (Deng

et al., 2009): ImageNet is a widely used large-scale image

database for image recognition and visual object classification

tasks. It contains millions of high-resolution images labeled

across thousands of different categories, including animals, objects,

scenes, etc. The ImageNet dataset is commonly used for training

and evaluating deep learning models, especially in the field of

computer vision. Kinetics datasets (Carreira and Zisserman, 2017):

Kinetics is a video dataset for action recognition and classification

research. It includes a large number of video clips covering a variety

of everyday actions and sports activities, such as running, dancing,

basketball, etc. The Kinetics dataset is typically used to train and

evaluate deep learningmodels related to action recognition, helping

computers understand and analyze actions in videos. Sports-1M

dataset (Li et al., 2021): Sports-1M is a large-scale dataset used for

video action recognition and analysis of sports activities. It contains

over one million YouTube video clips, covering various sports such

as soccer, basketball, tennis, etc. The Sports-1M dataset is used to

train and evaluate deep learning models related to sports activities,

enabling automated sports action recognition and analysis.

In evaluating our model for the multimodal robotic swimming

coach, we employed a range of metrics including Accuracy, Area

Under the Curve (AUC), Recall, F1 Score, and inference time

recording. Each metric serves a specific purpose in assessing

different aspects of the model’s performance relative to the

characteristics of our datasets. Accuracy is a fundamental metric

that measures the overall correctness of predictions compared to

the ground truth. It provides a general sense of how well the

model performs across all classes or categories within the dataset.

In our context, accuracy helps gauge the model’s ability to correctly

classify different swimming techniques or performance levels. AUC

(Area Under the Curve) is particularly relevant when evaluating

models trained for binary or multi-class classification tasks. It

assesses the trade-off between true positive rate (sensitivity) and

false positive rate (1-specificity), which is crucial for understanding

how well the model distinguishes between different classes or

categories in our diverse dataset of swimming styles and skill levels.

Recall (also known as sensitivity) measures the model’s ability

to correctly identify positive instances (e.g., correct swimming

techniques) out of all actual positive instances in the dataset. It is

especially important in scenarios where identifying certain classes

or conditions accurately is critical, such as detecting specific stroke

patterns or movements in swimming. F1 Score combines precision

and recall into a single metric, providing a balanced assessment of

the model’s performance. It is particularly useful in scenarios where

there is an uneven class distribution or when both false positives

and false negatives have significant consequences. For our robotic

coach, achieving a high F1 Score ensures that it provides reliable

feedback on swimming technique and performance. Additionally,

inference time recording is essential for assessing the model’s

efficiency in real-time applications. It measures how quickly

the model can process input data and generate outputs, which

is crucial for ensuring timely feedback and guidance during

training sessions.

4.2 Experimental details

We focus on researching a model called RL-CWtrans Net,

aiming to develop a robot vision-driven multimodal swimming

coach system. We have designed a detailed experimental procedure

to evaluate the performance of this model on multiple datasets and

conductedmetric comparisons and ablation experiments to analyze

its strengths and applicability in depth. Firstly, we selected four

representative datasets: a swimming technique dataset, ImageNet

dataset, Kinetics dataset, and Sports-1M dataset. Each dataset

was divided into training, validation, and testing sets to ensure

the scientific rigor and reliability of the experimental results.

Specifically, each dataset was systematically partitioned with

approximately 70% allocated to the training set, 15% to the
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validation set for hyperparameter tuning and model selection,

and the remaining 15% to the testing set for final performance

evaluation. This consistent division across all datasets ensured our

model evaluations were conducted under rigorous and controlled

conditions. Secondly, the RL-CWtrans Net model incorporates

advanced techniques such as Swin-Transformer and CLIP and

is trained using reinforcement learning methods. During the

model implementation, we conducted detailed implementation

and adjustments based on the characteristics of each dataset to

fully utilize the information from different datasets and improve

the model’s generalization ability and effectiveness. During the

model training phase, we set appropriate hyperparameters such as

learning rate, batch size, and optimizer type. We also implemented

effective data augmentation strategies such as random cropping

and flipping to enhance the model’s robustness. We accurately

recorded key metrics such as training time, number of model

parameters, computational complexity (FLOPs), and inference

time, as these metrics directly impact the model’s practicality and

efficiency. Through metric comparison experiments, we created

performance comparison charts for various models on different

datasets and conducted in-depth analysis of their performance

differences across multiple metrics such as accuracy, AUC,

recall, and F1 score. Additionally, the ablation experiments

helped us explore the impact of key factors such as network

architecture and data augmentation methods on performance,

providing theoretical support and experimental evidence for

further model optimization. With the rigorous experimental design

and implementation process described above, we have gained a

deep understanding of the strengths and limitations of the RL-

CWtrans Net model. We have also proposed future improvement

suggestions, providing practical guidance and scientific support

for the development and application of intelligent swimming

coach systems.

In our study, we have rigorously addressed the crucial role

of pose estimation algorithms in the robotic swimming coach

system by integrating and validating state-of-the-art techniques

known for their accuracy and robustness. We selected advanced

algorithms such as OpenPose, DeepPose, or AlphaPose, and

customized them specifically for swimming by training on a

diverse dataset of swimming strokes under varied conditions.

To ensure robustness, we augmented our training dataset with

synthetic images reflecting different aquatic environments. We

employed k-fold cross-validation and evaluated the algorithms

using precision, recall, and F1-score metrics for keypoint detection,

as well as accuracy for stroke pattern recognition. Continuous

refinement of these algorithms is facilitated through real-time

feedback during training sessions and iterative learning with

updates from new data. This approach is complemented by

regular input from coaches and athletes to align the system’s

output with practical coaching needs and validate its effectiveness.

Through these methodologies, we aim to enhance the accuracy

and reliability of feature extraction, thereby improving the

quality of feedback and guidance provided by our robotic

swimming coach, ultimately enhancing swimmer performance and

learning experiences.

Algorithm 1 represents the training process of the proposed

method.

Require: Dataset: Swimming Technique Datasets,

ImageNet Datasets, Kinetics Datasets, Sports-1M

Dataset

1: Initialize RL-Swimtrans Net with pre-trained

weights from CLIP

2: Initialize RL agent and replay buffer

3: Initialize target network and hyperparameters

4: for each training episode do

5: Reset environment

6: Observe initial state s

7: for each time step do

8: Select action a using RL policy

9: Execute action a and observe next state s′,

reward r, and done signal d

10: Store transition (s, a, r, s′, d) in replay buffer

11: Sample mini-batch of transitions from

replay buffer

12: Compute target Q-values using target

network and Bellman equation

13: Update RL-Swimtrans Net parameters using

gradient descent

14: Update target network parameters

15: Update RL agent policy

16: Update replay buffer priorities

17: Update exploration rate

18: Update time step

19: if d is true then

20: Break

21: end if

22: Set current state s to next state s′

23: end for

24: end for

25: return Trained RL-Swimtrans Net

Algorithm 1. Training RL-Swimtrans Net.

4.3 Experimental results and analysis

The results presented in Table 1 and Figure 5 provide a

summary of experimental comparisons between various models on

multiple datasets, focusing on different performance metrics. The

models evaluated include those by Ma (2021); Santos et al. (2021);

Austin et al. (2022); Biewener et al. (2022); Cabrera-Arellano

et al. (2022), and Wang and Liang (2023), and our proposed

model. These models were assessed based on Accuracy, Recall, F1

Score, and AUC across Swimming Technique Datasets, ImageNet

Datasets, Kinetics Datasets, and Sports-1M Dataset. Accuracy,

Recall, F1 Score, and AUC are key metrics used to evaluate model

performance across different datasets. Our model outperforms

others in terms of Accuracy, Recall, and AUC in the Swimming

Technique Datasets, achieving impressive scores of 97.03% and

96.22% in Accuracy and AUC, respectively. Our model combines

advanced machine learning techniques, including transformer

adaptations for spatial understanding and a reinforcement learning

component for dynamic adjustments. This allows the model to
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TABLE 1 Comparison of di�erent models on di�erent indicators.

Model Datasets

Swimming Technique
Datasets

ImageNet Datasets Kinetics Datasets Sports-1M Dataset
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Wang et al. 87.48 93.14 91.22 86.14 85.73 91.83 90.91 91.97 87.92 84.49 86.12 88.45 88.5 90.42 85.89 90.6

Aust et al. 86.08 91.66 88.04 89.55 86.53 85.2 88.25 93.34 89.77 90.46 88.06 92.25 87.72 89.18 88.18 89.02

Biewe et al. 89 84.34 89.74 93.64 89.72 88.8 86.53 86.52 88.19 86.35 85.05 85.88 87.4 85.35 89.85 91.71

Sant et al. 92.2 87.94 84.97 85.72 94.32 88.1 86.49 87.81 88.44 89.89 90.12 87.87 95.55 88.96 85.78 92.98

Cabr et al. 94.76 90.07 89.28 88.41 96.27 90.69 88.7 85.32 92.92 88.52 84.64 88.97 87.41 86.96 87.87 87.33

Ma et al. 94 87.76 86.02 88.98 89.16 87.84 89.23 90.74 86.88 87.07 88.64 91.7 89.33 88.09 89.13 89.64

Ours 97.03 94.01 93.85 96.22 97.38 95.08 93.71 95.71 96.88 95.56 93.19 95.22 97.71 95.52 92.58 96.17

FIGURE 5

Comparison of di�erent models on di�erent indicators.

TABLE 2 Comparison of di�erent models on di�erent indicators.

Method Dataset
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Wang et al. 388.10 375.78 316.33 333.84 392.92 387.56 322.59 231.39 319.72 254.78 205.01 370.22 316.82 281.96 240.08 290.39

Aust et al. 389.89 361.01 249.66 308.66 366.67 210.75 399.53 381.73 312.27 339.02 223.11 210.46 317.75 361.67 223.75 358.71

Biewe et al. 300.70 379.74 372.24 258.53 351.51 261.25 242.28 264.86 246.54 379.88 376.79 225.63 329.81 396.55 358.34 265.83

Sant et al. 349.32 283.54 274.55 305.18 280.76 229.60 214.61 349.32 298.49 398.13 358.91 200.38 203.88 395.75 311.97 302.91

Cabr et al. 215.34 335.34 361.48 221.11 339.58 237.88 200.41 301.59 264.36 233.56 369.14 235.64 389.59 314.20 227.29 309.49

Ma et al. 326.29 305.51 303.25 371.38 304.10 232.16 334.90 380.34 227.60 335.66 215.48 390.91 395.46 346.65 209.33 355.87

Ours 177.00 222.90 158.58 114.97 192.73 133.35 108.83 197.33 191.45 122.30 208.18 128.27 143.93 118.94 202.95 126.93

Frontiers inNeurorobotics 11 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1439188
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wang 10.3389/fnbot.2024.1439188

interpret both static images and movement sequences in videos

effectively, making it highly suitable for sports analytics.

The comparison of various models across different datasets,

including Swimming Technique Datasets, ImageNet Datasets,

Kinetics Datasets, and the Sports-1M Dataset, is presented in

Table 2 and Figure 6. The evaluation metrics focus on the number

of model parameters (in millions, M), floating-point operations

(in billions, GFlops), inference time (in milliseconds, ms), and

training time (in seconds, s). The parameters (M) indicate the

complexity and storage requirements of the model, while Flops

(G) gauge the computational operations needed for one forward

pass. Inference Time (ms) reflects the time taken by the model

to process a single input, and Training Time (s) denotes the

time required for the model to complete one training epoch

on a given dataset. The Swimming Technique Datasets focus

on the analysis of swimming techniques, while the ImageNet

Datasets are used for basic image recognition tasks to test the

model’s generalization capabilities. The Kinetics Datasets contain

video data suitable for evaluating the model’s ability to handle

dynamic information, and the Sports-1M Dataset covers a variety

of sports videos for large-scale motion classification. Our model

requires fewer parameters and computational resources across all

datasets, offering significant advantages in inference and training

times. On the Swimming Technique Dataset, our model only

needs 177M parameters and 222.90 GFlops, with inference and

training times of 158.58 ms and 114.97 s, respectively, significantly

lower than other models. By comprehensively assessing parameter

count, computational complexity, inference speed, and training

efficiency, our model demonstrates significant advantages in

handling complex sports motion data. The reduced parameter

count and computational demands not only imply lower hardware

requirements but also provide faster processing speeds, crucial

for real-time sports analysis. Additionally, shorter training and

inference times make the model more suitable for deployment in

time-sensitive application scenarios. Overall, our model effectively

balances performance and computational resource usage, proving

its suitability and superiority in the field of sports technique

analysis. The results clearly indicate that our model is the

most suited for tasks involving detailed movement analysis and

technique improvement in sports, particularly swimming. The

high scores in Recall and F1 Score across various datasets suggest

that the model is not only accurate but also consistent and

reliable in identifying correct movements and providing actionable

feedback. This capability makes it an ideal candidate for real-world

applications in sports technology, where precision and adaptability

to different types of sports movements and conditions are crucial.

The integration of diverse datasets also showcases the robustness of

our model, prepared to handle varied scenarios and challenges in

sports analytics.

The results presented in Table 3 and Figure 7 showcase the

superior performance of our model, which incorporates the Swin-

Transformer module, across various datasets such as Swimming

Technique, ImageNet, Kinetics, and Sports-1M, outperforming

other models in comparison. Particularly noteworthy is our

model’s achievement of 98.16% accuracy, 94.9% recall rate,

92.87 F1 score, and 92.93 AUC on the Swimming Technique

dataset. These outcomes highlight the significant improvement

in handling time-series data through the integration of the

Swin-Transformer module, essential for motion recognition tasks.

Overall, our model excels in understanding and processing

dynamic scenes, demonstrating exceptional performance and

robustness in analyzing complex sports data, making it an

excellent choice for challenging applications.MCNNwill be defined

as “Multimodal Convolutional Neural Network,” detailing how

this model utilizes convolutional layers to process multimodal

inputs relevant to our application in swimming technique

analysis. MRNN will be explained as “Multimodal Recurrent

Neural Network,” with a description of how RNN architectures

are employed to handle sequential data, providing insights

into their use for temporal analysis in swimming strokes.

MGAN will be clarified as “Multimodal Generative Adversarial

Network,” focusing on how this framework uses generative models

in tandem with discriminators to enhance the realism and

accuracy of synthesized data for training purposes. Ours will

be clearly marked to refer to “Our Proposed Method,” with

a brief summary of the novel integration of technologies and

approaches that differentiate our method from the conventional

models listed.

The results of ablation experiments with the Swin-Transformer

module are presented in Table 4 and Figure 8, covering four

different datasets: Swimming Technique Datasets, ImageNet

Datasets, Kinetics Datasets, and the Sports-1M Dataset. Our model

was compared with other models (MCNN, MRNN, MGAN) using

key metrics such as the number of model parameters (in millions,

M), floating-point operations (in billions, GFlops), inference time

(in milliseconds, ms), and training time (in seconds, s). Our model

outperformed the other models across all datasets, particularly in

terms of the number of parameters and computational operations.

For example, on the Swimming Technique dataset, our model had

107.88 M parameters and 121.12 GFlops, with an inference time of

158.02 ms and a training time of 213.89s, which are significantly

lower than the other comparative models. By incorporating

the Swin-Transformer module, our model not only maintained

high performance across various datasets but also significantly

reduced computational and time costs. The optimized structure

of the model with Swin-Transformer makes it more efficient in

processing images and videos with complex spatial relationships.

This enhancement allows the model to complete tasks faster

and with fewer resources when dealing with large-scale datasets,

showcasing the advantages and practicality of our method in

efficiently processing large data. Our model is well-suited for

handling high-dimensional, complex data, especially in scenarios

that require rapid and accurate analysis.

In our study, we have conducted comprehensive ablation

experiments to assess the individual contributions of the Swin-

Transformer, CLIP, and reinforcement learning components in our

multimodal robotic swimming coach system. These experiments

involved systematically disabling each component to evaluate

their respective roles in enhancing the overall performance of

the system. The findings from these experiments confirmed the

robustness of our initial conclusions, demonstrating that the

observed improvements in performance metrics such as accuracy

and efficiency are indeed attributable to the integration of these

specific components. Furthermore, the results of our ablation

studies were consistent with our initial findings across different

datasets and experimental conditions. This consistency reinforces
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FIGURE 6

Comparison of di�erent models on di�erent indicators.

TABLE 3 Ablation experiments on Swin-Transformer.

Model Datasets

Swimming Technique
Datasets

ImageNet Datasets Kinetics Datasets Sports-1M Dataset

A
c
c
u
ra
c
y

R
e
c
a
ll

F
1
S
o
rc
e

A
U
C

A
c
c
u
ra
c
y

R
e
c
a
ll

F
1
S
o
rc
e

A
U
C

A
c
c
u
ra
c
y

R
e
c
a
ll

F
1
S
o
rc
e

A
U
C

A
c
c
u
ra
c
y

R
e
c
a
ll

F
1
S
o
rc
e

A
U
C

MCNN 93.78 85.76 85.36 92.12 92.14 89.02 87.66 89.26 89.08 86.97 87.83 88.38 89.77 85.81 87.25 89.26

MRNN 93.59 92.35 88.26 90.16 94.56 88.1 85.69 93.33 86.33 92.82 90.81 93.12 87.7 91.6 88.6 84.5

MGAN 85.88 92.53 89.46 85.35 88.1 83.99 85.3 88.99 93.87 87.49 86.98 84.25 93.92 93.17 85.31 89.49

Ours 98.16 94.9 92.87 92.93 97.31 95.08 92.62 92.22 98.45 94.29 93.32 91.34 98.18 94.33 91.96 91.56

FIGURE 7

Ablation experiments on Swin-Transformer.

the reliability of our approach and validates the enhancements

observed in the system’s performance. By replicating these

experiments, we have not only verified the effectiveness of

each component but also identified potential dependencies and

interactions between them that influence the overall system’s

functionality. Additionally, conducting and documenting

these ablation experiments enhances the transparency and

reproducibility of our research. It enables other researchers in

the field to independently verify our findings and build upon

our work, thereby advancing the development of AI-driven

coaching systems for sports. This iterative process of validation

and replication has strengthened the credibility of our proposed

approach and contributed significantly to the body of knowledge

in this area.

5 Conclusion and discussion

In this paper, a solution is proposed to address the challenges

faced by traditional swimming coaches in real-time capture
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TABLE 4 Ablation experiments on Swin-Transformer.

Method Dataset
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MCNN 328.21 304.96 249.11 303.41 290.37 250.07 331.06 282.68 341.81 257.36 318.86 284.97 296.08 208.04 249.22 282.81

MRNN 259.14 246.81 275.01 231.44 284.81 396.08 249.56 215.22 399.37 306.77 335.97 330.68 399.67 338.17 287.30 262.95

MGAN 269.87 338.84 376.72 389.20 229.19 360.81 279.19 305.23 255.55 257.07 341.24 351.83 379.39 391.93 335.80 370.03

Ours 107.88 121.12 158.02 213.89 137.65 168.31 222.03 154.32 207.48 103.57 108.22 157.11 151.60 201.48 211.11 104.16

FIGURE 8

Ablation experiments on swin-transformer.

and analysis of athlete movements. The RL-CWtrans Net is

introduced as a robot vision-driven multimodal swimming

training system aimed at providing precise and real-time guidance

and feedback to swimmers. The RL-CWtrans Net combines

reinforcement learning (RL) with the CWtrans Transformer

module, enhancing its ability to understand the inherent complex

spatial relationships in swimming motions. The system utilizes

robot vision capabilities to track and assess key aspects of

swimming techniques, monitoring posture, stroke mechanics,

and body alignment, providing instant feedback to swimmers

and coaches. Experimental validations of the RL-CWtrans Net

demonstrate its effectiveness across multiple datasets, and this

real-time guidance assists athletes in effectively improving their

techniques, enhancing overall performance, and minimizing

the learning curve. However, while our model performs well

in specific dataset scenarios, further validation is crucial to

verify its generalization capabilities on unknown or diverse

datasets. Additionally, although it consumes fewer resources

compared to existing models, optimization efforts are still

necessary for extremely large-scale datasets or highly complex

scenarios. Future research directions include exploring additional

algorithm optimizations to further compress the model and

enhance the Swin-Transformer architecture for improved

resource efficiency and speed. Furthermore, investigating

applications of multitask learning can enhance the model’s

versatility and maintain its efficiency and accuracy across

different datasets.
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