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We propose a visual Simultaneous Localization and Mapping (SLAM) algorithm 
that integrates target detection and clustering techniques in dynamic scenarios 
to address the vulnerability of traditional SLAM algorithms to moving targets. The 
proposed algorithm integrates the target detection module into the front end of 
the SLAM and identifies dynamic objects within the visual range by improving the 
YOLOv5. Feature points associated with the dynamic objects are disregarded, 
and only those that correspond to static targets are utilized for frame-to-frame 
matching. This approach effectively addresses the camera pose estimation in 
dynamic environments, enhances system positioning accuracy, and optimizes 
the visual SLAM performance. Experiments on the TUM public dataset and 
comparison with the traditional ORB-SLAM3 algorithm and DS-SLAM algorithm 
validate that the proposed visual SLAM algorithm demonstrates an average 
improvement of 85.70 and 30.92% in positioning accuracy in highly dynamic 
scenarios. In comparison to the DynaSLAM system using MASK-RCNN, our 
system exhibits superior real-time performance while maintaining a comparable 
ATE index. These results highlight that our pro-posed SLAM algorithm effectively 
reduces pose estimation errors, enhances positioning accuracy, and showcases 
enhanced robustness compared to conventional visual SLAM algorithms.
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1 Introduction

Simultaneous Localization and Mapping (SLAM) is a technique where a robot utilizes its 
own sensors to perceive surrounding information, enabling self-localization without prior 
environmental knowledge (Khnissi et al., 2022; Sahili et al., 2023). SLAM can be categorized 
into two main types: laser SLAM and visual SLAM. Visual SLAM employs cameras as data 
acquisition sensors, providing richer image information. Therefore, it has emerged as a 
prominent research and application field (Li et al., 2021; Xing et al., 2022; Xu et al., 2023).

The visual SLAM approaches can also be broadly categorized into two main types: feature 
point method and direct method. In the mainstream feature point method, images captured by 
the camera are extracted and matched to locate corresponding features on a given map (Eslamian 
and Ahmadzadeh, 2022; Jiang et  al., 2023). Building upon the foundation of traditional 
ORBSLAM2 (Mur-Artal and Tardós, 2017), Campos et al. (2021) proposed the ORBSLAM3 as 
an exemplar of the feature point method. The DTAM system proposed by Newcombe et al. (2011) 
serves as the precursor of the direct method, aligning the entire image for obtaining a dense map 
and camera pose, thereby enabling real-time dense 3D reconstruction. The LSD-SLAM system 
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proposed by Engel et al. (2014) leverages grayscale information from 
images to achieve localization and construct a semi-dense point cloud 
map. The DSO system proposed by Matsuki et al. (2018) is a visual 
odometer that combines both the direct and sparse methods, utilizing 
an optimization algorithm to minimize the photometric errors to realize 
construction of a sparse point cloud map.

In addition to input data, alternative approaches have been put up 
to address the SLAM issues. These techniques can be broadly classified 
into two categories: filtering-based and optimization-based techniques 
(Huang et al., 2013; Liang et al., 2014; Tu et al., 2022). Particle filters 
and Extended Kalman filters are two instances of the filtering-based 
technique. Such methods are employed due to the prevalence of noise 
and inconsistencies in sensor data, allowing for modeling of diverse 
sources of noise and their impacts on measurements. The second set, 
the optimization-based technique, has gained significant popularity 
due to their superior stability, efficiency, robustness, and scalability 
compared to the filtering-based technique. In these approaches, 
measurements are typically represented as a graph structure wherein 
nodes correspond to the robot’s poses and edges denote spatial 
constraints between different poses (Chen et al., 2022).

The fundamental assumption underlying most early SLAM 
systems was that the camera constituted the sole moving object within 
the field of view (Soares and Meggiolaro, 2018; Shen et al., 2021), 
while the surrounding environment remained predominantly static 
(Li and Lee, 2016; de Backer et al., 2023). However, both in-door and 
outdoor scenarios present non-ideal conditions for these frequently 
encountered situations. Efforts have been made to treat such moving 
objects, particularly people, as outliers and exclude them from 
environmental representations. To enhance positioning accuracy in 
dynamic context, several other SLAM systems employ frame-works 
that integrate the SLAM system with target tracking and detection 
(Newcombe et al., 2015; Kim and Kim, 2016; Li and Lee, 2017; Ai et 
al., 2020; Cheng et al., 2021; Cui and Ma, 2020; Wu et al., 2021).

In recent years, significant achievements have been made in the 
field of computer vision through the utilization of deep learning 
algorithms. Currently, target detection algorithms based on deep 
learning can be mainly categorized into two types: the traditional 
two-step approaches including R-CNN (Hmidani and Ismaili Alaoui, 
2022) and Fast R-CNN (Girshick, 2015), and the more modern 
end-to-end methods such as YOLO (Han et al., 2023) and SSD (Xiong 
and Fan, 2021). While the former exhibits high precision, they suffer 
from limited real-time performance; whereas the latter have greatly 
improved in real-time capabilities but struggle with detecting small 
tar-gets accurately. However, with continuous development in deep 
neural networks, there has been a notable enhancement in image-
based target detection accuracy (Hary and Mandala, 2022).

Therefore, those deep learning approaches have been introduced 
into visual SLAM in recent years. For example, to mitigate the impact 
of dynamic objects on SLAM, Yu et al. (2018) incorporated semantic 
segmentation and optical flow techniques into ORB-SLAM2, 
proposing a DS-SLAM algorithm to alleviate the influence of moving 
individuals in complex environments. Additionally, they introduced 
the construction of a semantic octree map to enhance positioning and 
mapping accuracy. However, it should be  noted that semantic 
segmentation entails significant computational time, hindering real-
time performance and potentially leading to feature tracking failures 
due to insufficient feature points post-dynamic removal. Bescos et al. 
(2018) pro-posed the DynaSLAM algorithm, which incorporates 
dynamic target detection and background restoration functions into 

traditional ORB-SLAM. Additionally, Mask R-CNN (He et al., 2017) 
is utilized for instance segmentation of dynamic objects. This algorithm 
improves the accuracy of pose estimation localization; however, it also 
increases corresponding computational time, rendering it unsuitable 
for real-time SLAM applications. Zhong et al. (2018) developed the 
Detect-SLAM system by integrating the SSD (Single Shot Multi Box 
Detector) target detection network with a SLAM system to identify 
objects in image sequences using a pre-trained target detection 
network. Dynamic feature points are removed during the ORB feature 
extraction stage to significantly enhance the accuracy and robustness 
of SLAM in dynamic environments. Ran et  al. (2021) introduced 
RS-SLAM as a robust semantic RGB-D SLAM system that improves 
region of interested extraction accuracy by incorporating context 
information based on Bayesian update to modify segmentation results. 
Furthermore, it is capable of constructing a clean static semantic 
OctoMap in a dynamic environment. Some experts and scholars have 
done some research in the field of YOLO and SLAM, such as, Tian 
et al. (2022) proposed a SLAM system based on ORB-SLAM2 for 
dynamic environment, Based on RGB-D camera, the system uses 
YOLOX-S to detect dynamic objects and combines depth information 
to filter dynamic points. Tang et al. (2023) introduced a visual SLAM 
framework designed for dynamic indoor environments. Cong et al. 
(2024) proposed a dynamic visual SLAM (SEG-SLAM) system based 
on the orientated FAST and rotated BRIEF (ORB)-SLAM3 framework 
and you only look once (YOLO)v5 deep-learning method. You et al. 
(2022) proposed a novel multimodal semantic SLAM system (MISD-
SLAM), which removes the dynamic objects in the environments and 
reconstructs the static background with semantic information.

To enhance the positioning accuracy and real-time performance 
of visual SLAM, this study proposes a robust visual SLAM algorithm 
that integrates target detection and clustering in dynamic scenarios by 
incorporating the lightweight YOLOv5 net-work. The primary 
research contributions are as follows:

 1. The original backbone network in YOLOv5 is substituted with 
a Ghost light-weight module to effectively reduce network 
parameters, while simultaneously incorporating the CBAM 
attention mechanism into the Backbone to enhance its ability 
in capturing important information. Additionally, the K-means 
clustering algorithm is employed to determine anchor frame 
sizes that align with the detection scale within the detection 
network. By introducing detection layers and expanding 
detection scales, notable improvements are achieved in terms 
of the network’s detection performance;

 2. The target detection module has been integrated into the front 
end of SLAM, utilizing an improved YOLOv5 algorithm for 
enhanced performance.

2 Visual SLAM algorithm integrating 
target detection and clustering in 
dynamic scenarios

2.1 Visual SLAM mathematical model

SLAM requires the robot to perceive environmental 
information through its in-stalled sensors and subsequently 
accomplish self-localization map construction. This paper utilizes 
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data from the camera sensors, whereby when the robot detects a 
land-mark point y j  at a specific location xk , it generates an 
observation datum zk j,  that can be  represented by an abstract 
function h :

 z h y x vk j j k k j, ,= ( ), ,  (1)

The Equation 1 is the observation equation, where vk j,  represents 
the observation noise.

It can also be described by an abstract function f :

 x f x u wk k k k= ( )−1, ,  (2)

The Equation 2 is the motion equation, where xk−1 and xk denote 
the states of the robot at k −1 and k  respectively; uk denotes the input 
of the motion sensor; and wk  denotes the noise added in the process.

The SLAM process can be summarized into Equation 3:

 

x f x u w
z h y x v
k k k k

k j j k k j

= ( )
= ( )







−1, ,

, ,, ,  
(3)

where u  represents the measured motion value and z the sensor 
reading. The above two equations explain the methodology for solving 
the positioning problem (estimation x) and the mapping problem 
(estimation y) when u  and z are known. This is formulated as a state 
estimation problem, typically addressed through extended Kalman 
filter and nonlinear optimization techniques. Considering the superior 
performance of nonlinear optimization in visual SLAM, this paper 
adopts a nonlinear optimization scheme.

In this approach, all variables to be estimated are consolidated into 
a single state variable, the process is shown in Equation 4:

 x x x x x y y yN N= ( )1 2 1 2, , , , , ,   (4)

When the input data u  and the observation data z are known, the 
conditional probability distribution of state x  is P x u z|, |,( ).

2.2 Traditional visual SLAM framework

The classic SLAM system is usually composed of a front end and 
a back end. The primary function of the front end is to construct the 
map by utilizing the sensor data to obtain initial state estimates and 
establish constraints between states. On the other hand, the back end 
employs the nonlinear optimization to mitigate cumulative errors. The 
algorithm framework is illustrated in Figure 1.

Firstly, feature points are extracted from the images captured 
by the camera. Subsequently, feature matching is performed on 
the two consecutive images to eliminate mismatched feature 
points. Then, estimation of pose changes for the mobile robot at 
the current moment is conducted based on these adjacent images. 
The pose changes estimated by the visual odometry typically 
represent short-term variations and are prone to cumulative errors 
as the robot moves. Therefore, closed-loop detection and back-end 

optimization are employed in the SLAM system to reduce these 
cumulative errors.

ORB-SLAM3 is the pioneering feature-based tightly coupled VIO 
system. The Threads and structure diagram of ORB-SLAM3 is shown 
in Figure 2. It incorporates three concurrent threads for tracking, 
local mapping, closed-loop detection, and map fusion. The tracking 
thread extracts and matches ORB feature points while estimating the 
relative pose between two frames by minimizing the reprojection 
error. The local mapping thread integrates new keyframes and Map 
Points into the active map, eliminates redundancy, and updates the 
map using BA within a sliding window. The closed-loop detection 
and map fusion thread identifies keyframes to detect potential closed 
loops, and continuously corrects the accumulated drift errors through 
pose graph optimization. Finally, the global BA considers medium- to 
long-term matches from a closed-loop detection to provide an 
optimized MAP estimate.

2.3 Lightweight target detection algorithm 
based on YOLOv5s

The YOLO series serves as an exemplary representative of the 
first-order target detection algorithms. Compared with traditional 
algorithms, the YOLO algorithm exhibits a simple structure, faster 
detection speed, and higher detection accuracy in detecting targets. 
Building upon YOLOv4, YOLOv5 further enhances its network 
architecture, training strategy, and data augmentation techniques to 
achieve improved speed and accuracy. Due to its lightweight 
characteristics and low memory usage, YOLOv5 proves advantageous 
for application scenarios involving mobile devices or resource-
constrained systems. Among the YOLOv5 series models, YOLOv5s 
stands out with faster runtime performance while imposing lower 
hardware requirements; thus making it more suitable for deployment 
on mobile terminals. Considering that the indoor dynamic 
environment primarily consists of large targets and mobile devices 
have limited computing power, this section proposes an enhanced 
lightweight target detection algorithm based on YOLOv5s network 
to cater to the demands of real-time target detection in dynamic 
scenarios. The improvements include: (1) Replacing common 
convolutions with more lightweight Ghost convolutions to reduce 
computational complexity and enhance system performance; (2) 
Incorporating CBAM attention mechanism into Backbone for 
improved information capture capability; (3) Introducing the 
K-means clustering algorithm for better effects, adding detection 
layers and scales to enhance network’s detection performance. The 
modified structure of the YOLOv5s network is illustrated in 
Figure 3.

2.3.1 Replace ghost convolution
The original backbone network is partitioned, and then the feature 

maps of three scales of 128 80 80× × , 256 40 40× × , and 512 20 20× ×  
are obtained through three rounds of downsampling. To reduce 
computational load, a lightweight module Ghost Bottleneck is 
introduced to replace the BottleneckCSP convolution module in the 
backbone network. The Ghost module primarily ensures network 
detection accuracy while employing less computationally intensive 
linear operations instead of the original convolution operation, 
achieving feature map generation via a convolution kernel. 
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Furthermore, the depth wise convolution is employed to perform 
linear operations on each channel of the feature map for channel 
expansion, thereby effectively con-ducting hierarchical convolution 
processing on the input feature map.

The Ghost lightweight module structure diagram is depicted on 
the left in Figure 4, while the improved backbone network structure 
is presented on the right. By incorporating a lightweight network, 
computational load of the network is effectively reduced.

FIGURE 1

Classic visual SLAM framework.

FIGURE 2

Threads and structure diagram of ORB-SLAM3 system.
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The ordinary convolution operation, the parameter 
NUM parameters , and the calculation FLOPs expression 
are respectively:

 NUM k k c cparameters size size in out= × × ×  (5)

 FLOPs c h w c k kout out out in size size= × × × × ×  (6)

Where: ksize is the size of the convolution kernel; cin and cout are 
the number of input channels and output channels, respectively; hout  
and wout  are the height and width of the output feature map, 
respectively.

The expressions of parameter G NUM parameters_  and 
computation G FLOPs_  of the GhostMoudle network are:

 
G NUM c c k k c

parameters in
out

size size
out

_ = × × × × × ×1 1
2 2  

(7)

 

G FLOPs c h w c

c h w k k

out
out out in

out
out out size siz

_ = × × × × × +

× × × ×

2
1 1

2
ee

 (8)

Through the comparison Eqs. (5–8), it can be  seen that the 
calculation amount and parameter number of the GhostBottleneck 
network are 1/(2ksize×ksize) + 1/(2cin) times that of the ordinary 
convolution operation, which can achieve the purpose of 
network lightweight.

The network proposed in this paper fully leverages the feature 
map generated during the sampling process on the backbone network. 
Building upon the original YOLOv5 three-layer detection layer, 
we  combine the downsampling-generated feature map with its 
corresponding scale feature map from the head to form a minimum 
scale detection layer.

FIGURE 3

Improved YOLOv5s network structure diagram.
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2.3.2 Add K-means clustering
The YOLOv5-based detection network in this study enhances the 

detection net-work by integrating the detection characteristics of 
target objects. In the original detection network, the anchor frame size 
is predetermined, and target objects are detected across different 
feature maps. Specifically, a smaller anchor frame is employed to 
detect small target objects on larger feature maps that contain more 
intricate details, while the larger anchor frame is set to detect large 
target objects on smaller feature map.

The detection network is designed to detect human objects, and 
the size of different types of objects varies greatly, requiring calculation 
of new anchor frame sizes ac-cording to the annotation information 
in the dataset. To obtain a more suitable anchor frame size for 
detection scale matching, the K-means clustering algorithm is utilized 
to divide annotated anchor frames in the dataset into clusters that 
match network detection scales.

The specific process of the K-means algorithm is as follows. 
Firstly, a value is randomly selected from the sample as the 
clustering center C1, and the minimum IoU distance d x( ) between 
all samples and the existing clustering center is calculated. The 
clustering center C1 is selected according to the probability by using 
the Eq. (9). Repeat this step until K cluster centers are found. For 

each sample xi in the data set, the IoU distance from xi to K cluster 
centers is calculated, and it is divided into the category 
corresponding to the cluster center with the smallest distance. 
According to the division result, K clustering centers are 
recalculated by using Eq. (10), and the operation is repeated until 
the position of the clustering center does not change, and the final 
clustering center is output. Through the K-means clustering 
algorithm, the anchor box suitable for the TUM RGB-D dataset is 
finally generated.

 
C C xi

x C
= ( )

∈
∑1 1

1

/

 
(9)

 
p d x d x

x B
= ( ) ( )

∈
∑2 2
/

 
(10)

2.3.3 Add CBAM attention mechanism
The Convolutional Block Attention Module (CBAM) attention 

mechanism ad-dresses both the channel and spatial dimensions in the 

FIGURE 4

Ghost backbone network structure diagram.
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feature graphs obtained through convolutional operations. In the channel 
attention module, the spatial dimension of the feature maps is 
compressed, assigning weights to different channels based on their 
respective features. Similarly, within the spatial attention module, the 
feature map is compressed along the channel dimension while obtaining 
an attention map with varying weights for different spatial positions.

The processing of the input feature map is illustrated in Figure 5, 
where CBAM exhibits a structured architecture comprising two 
interconnected components: the channel attention module and the 
spatial attention module. The input feature map is divided into two 
branches. One branch represents the feature map from the previous 
stage, which undergoes channel attention module to acquire attention 
weights of equal dimensions. The other branch corresponds to the 
original feature map, and their respective outputs are multiplied 
together to yield the input for the next stage. In the next stage, it 
further bifurcates into two branches: one for generating a feature map 
with spatial attention, and the other for a feature map with channel 
attention for the preceding stage. By multiplying these branch-specific 
feature maps, a composite feature map encompassing both channel 
and spatial attention is ultimately obtained.

The following will introduce the access attention structure and the 
spatial attention structure, respectively.

Where: F is the input feature map; Mc is the feature map output 
after passing through the channel attention structure; ′F  represents 
the result of the multiplication of Mc and F; Ms represents the feature 
map output after the CBAM attention mechanism; AvgPool represents 
the average pooling operation; MaxPool represents the maximum 
pooling operation; MLP represents multi-layer perceptron (fully 
connected layer); σ  is the Sigmoid activation function.

As shown in the figure, the channel attention module in the CBAM 
attention mechanism extracts the spatial information of the feature map 
by summing the input feature map F through global average pooling and 
global maximum pooling to obtain two-channel feature maps Fcmax  and 
Favgc . Then, the shared network hidden layer MLP will process the two 
features passed in turn. Once the function σ  is activated, the attention 
channel feature map Mc will be obtained. The two-layer parameters in 
the multi-layer perception model are represented by W0 and W1. The 
Channel Attention Module-specific calculation formula is shown in 
Equation 11:

 

M MLP AvgPool F MLP MaxPool F

W W F W

s

avg
c

F( ) = ( )( ) + ( )( )( )
= ( )( ) +
σ

σ 1 0 1 WW Fc0 max( )( )( )
 
(11)

The Spatial Attention Module module in the CBAM attention 
mechanism first performs global maximum addition and global mean 
addition on each channel to obtain two H W× ×1 feature maps and 
then performs channel splicing. After 7 7×  convolution, the dimension 
is reduced to H × W × 1. Next, the spatial attention feature is generated 
by the Sigmoid activation function, and finally, the final feature output 
is obtained by multiplying the input feature map. The specific calculation 
formula of the Spatial Attention Module module is shown in 
Equation 12:

 

( ) ( ) ( )( )( )
( )( )

7 7

7 7 s
max

F ;

;

s

s
avg

M f MaxPool F AvgPool F

f F F

σ

σ

∗

∗

=   

 =    
(12)

where σ  represents the sigmoid function; Fcmax and Favgc  represent 
the maximum pooling operation and the average pooling operation 
in the Channel Attention Module, respectively. F smax  and Favgs  
represent the maximum pooling operation and the average pooling 
operation in the Spatial Attention Module, respectively. f 7 7∗  denotes 
a convolution kernel of size 7 × 7.

2.3.4 Add detection scale
During the target detection process, the network is required to 

simultaneously detect targets of different sizes, and the proportions of 
these targets can significantly impact the detection accuracy of the 
network model. In our dataset, mice constitute a relatively small 
proportion compared to other objects with larger proportions. As 
we increase the depth of the network, both the detailed and semantic 
information about target objects undergo continuous changes. Shallow 
layers in the network tend to pro-vide better semantic information for 
small target objects; however, deeper layers may diminish their semantic 
information while causing loss of details. On the other hand, larger 
target objects necessitate a deeper network to capture their semantic 
information effectively. To better improve the detection accuracy of 
convolutional neural networks, we design a network structure tailored 
o the size characteristics specific to four types of target objects present 
in the TUM RGB-D dataset: person, chair, computer, and keyboard.

As shown in Figure 3, the network architecture consists of three 
components arranged from left to right: the network backbone for 
image information acquisition, the network neck for feature fusion, 
and the network head for computational processing to detect target 
object category and position. Moreover, a four-scale detection 
hierarchy is incorporated into the design of the network to enable 

FIGURE 5

CBAM module structure diagram.
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compatible detection of both large and small target objects. By 
effectively fusing the shallow detail information with the deep 
semantic information, valuable image details extracted from feature 
maps are retained, thereby facilitating simultaneous detection of target 
objects with significant proportion differences and ultimately 
enhancing overall network detection performance.

2.4 Robust visual SLAM based on target 
detection and clustering

To enhance the positioning accuracy and robustness of the 
traditional ORB-SLAM system in dynamic environments, we integrate 
the above improved YOLOv5 algorithm as an object detection module 
into SLAM. The target detection module is incorporated into the 
tracking thread to identify and eliminate the dynamic ORB feature 
points on moving targets, ensuring that only the static feature points 
contribute to the pose estimation. The improved SLAM tracking 
thread in this paper is shown in Figure 6.

3 Results and discussion

3.1 Experiment setting

We implement all experiments on a computer with Intel Core 
i7-11700 CPU, Nvidia GTX 3060 GPU, 32 GB RAM. The operating 
system is Ubuntu 18.04 with ROS Melodic.

The input image size is 640 480× , the initial learning rate is 0.01, 
the learning rate momentum is 20.8, the weight attenuation coefficient 
is 0.0005, the batch_size is 4, the workers is 1, and the epoch is 300.

3.2 Experimental datasets

The TUM dataset, widely employed for evaluating SLAM 
performance in dynamic scenarios, is selected for this experiment. 
The TUM RGB-D dataset comprises two types of scenes: high 
dynamic scenes and low dynamic scenes. The high dynamic scene 
is denoted as “walking,” while the low dynamic scene is referred to 
as “sitting.” Each type of dynamic scene is further divided into four 
image sequences: halfsphere, xyz, rpy, and static. These sequences 
represent distinct camera movements during image acquisition: 
traversing in a 1 m hemisphere, moving along coordinate axes, 

rotating on rolling, pitch and yaw axes, or remaining stationary. In 
the sitting (S) sequence, two individuals are seated at a table 
engaged in conversation and gesturing, resulting in minimal 
movement. In the walking (W) sequence, two individuals 
simultaneously traverse the background and foreground before 
eventually taking their seats in front of the table. This dataset 
exhibits highly dynamism, posing significant challenges for 
conventional SLAM systems.

3.3 Lightweight target detection algorithm 
verification

3.3.1 Dataset
Considering that the primary dynamic objects in the indoor scene 

are predominantly individuals, this experiment aims to assess the 
efficacy of the enhanced Yolov5s algorithm by selecting a total of 1,000 
images from the TUM dataset, specifically from the ‘people’ category, 
for training and testing purposes. All tests are conducted 5 times, and 
the final results are averaged.

3.3.2 Performance evaluation
The performance of the target detection algorithm is usually 

evaluated by mean average precision (mAP), which reflects the 
accuracy performance of the model under different recall rates. A 
higher mAP value indicates that the model can maintain high 
accuracy even under a high recall rate. Therefore, the higher the mAP 
value, the better the performance of the model. The calculation 
procedure is outlined in Equatin 13:

 
mAP

n
AP

i

n
i=

=
∑1

1  
(13)

Where m  represents ‘mean’, and AP  represents the average 
accuracy of a certain type of sample. In this paper, ablation 
experiments are carried out to compare the impacts of different 
strategies (replacing Ghost convolution, incorporating CBAM 
attention mechanism, and adding a detection layer) on model 
performance. The evaluation metric used is mAP@0.5 with an IoU 
threshold set at 0.5.

The results in Table 1 demonstrate that the replacement of the 
original convolution with Ghost convolution in the Yolov5s algorithm 
leads to a reduction in model parameters to 4.88 M, an increase in 

FIGURE 6

The improved SLAM tracking thread in this paper.
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detection speed by 7 FPS, and a slight decrease in detection accuracy 
by 2.4%. Furthermore, incorporating CBAM attention mechanism 
and detection layer can further enhance the detection accuracy. 
Compared with the original algorithm, our proposed algorithm 
increases the mAP by 7%, reduces model size by 28.9%, and enhances 
detection speed by 6FPS. These improvements effectively address the 
demand for lightweight target detection algorithms on mobile devices 
as they not only improve the detection accuracy but also meet the 
real-time requirements.

3.3.3 Dynamic target detection experiment
The improved lightweight YOLOv5s network is employed for 

target detection, and the resulting detection performance is 
illustrated in Figure 7. As depicted, the category of the detection 
result is presented within the figure. In dynamic scenes, humans are 
considered as high-mobility targets; thus, the target detection 
network is configured exclusively for human recognition. The 
comparison test results before and after adding K-means clustering 
are shown in Figure  8, (a) listed as the test results after adding 
K-means, and (b) listed as the test results without adding K-means. 
It can be  observed that on the one hand, the large target can 
be  completely detected, and on the other hand, it still has high 
confidence when only the exposed head, arm or leg parts of the 
human body are visible.

The comparative performance results between our algorithm and 
the traditional ORB-SLAM3 algorithm on the f3 dataset are illustrated 
in the Figure 9: (a) is the original image, (b) is the feature points 

extracted by the original ORB-SLAM3, and (c) is the feature points 
extracted by our proposed algorithm.

3.4 Pose estimation accuracy experiment

3.4.1 Comparison of trajectory error results
Absolute Trajectory Error (ATE) is commonly employed to 

evaluate the positioning accuracy of the SLAM systems. In our pose 
estimation error analysis experiment, we  utilize the evo tool to 
evaluate and compare the camera pose CameraTrajectory.txt estimated 
by the ORB-SLAM system with the true pose groundtruth.txt given 
by the dataset. The ATE enables us to quantify the disparity between 
the true and estimated values of the camera pose, thereby assessing 
global consistency of the trajectory. We compute the root mean square 
error (RMSE), median (Median), mean (Mean), and standard 
deviation (Std) as evaluation metrics for quantifying errors.

Figure  10 presents the comparison results between the real 
trajectory and the trajectory estimated by, respectively, the 
ORB-SLAM3 and our algorithm in a low dynamic scene. Figure 11 
demonstrates such comparison results in a high dynamic scene. The 
first and second columns of these figures represent the trajectory and 
error of ORB-SLAM3 respectively, while the third and fourth columns 
are the trajectory and error of our proposed algorithm. The gray 
dashed line represents the true camera trajectory, whereas the colored 
line represents the estimated trajectory. In the high dynamic scene, it 
can be observed from the trajectory map that our proposed algorithm 
exhibits minimal deviation from the actual gray trajectory with higher 
stability. Furthermore, compared to ORB-SLAM3 algorithm, our 
proposed approach demonstrates significantly improved positioning 
accuracy and robustness.

The results presented in Tables 2, 3 demonstrate that when 
compared with the ORB-SLAM3 system, the average improvement 
rates of RMSE, Median, and Mean for the four high dynamic test 
datasets are up to 85.70, 95.58 and 95.45%, respectively. Upon 
analyzing the images processed by the target detection network and 
observing the system’s operational state, it is found that in the 
walking_static dataset, a significant number of image frames have 
figures occupying an excessively large frame area. Consequently, this 

TABLE 1 Comparative results of ablation experiments.

Models mAP% Parameters/MB FPS

YOLOv5s 85.5 7.06 22

Ghost 83.1 4.88 29

CBAM 86.7 7.23 19

Detection layer 91.8 7.42 20

Improved YOLOv5s 92.5 5.02 28

A B

FIGURE 7

Example of improved YOLOv5s detection effect.
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A B C

FIGURE 9

The comparison of feature point extraction between the proposed algorithm and the ORB-SLAM3 algorithm.

leads to a reduced detection of static feature points. Under the four 
low dynamic test datasets, the average improvement rates of RMSE, 
Median, and Mean are 35.16, 41.73, and 38.71% respectively, less 
significant than those in high dynamic scenes. In the low dynamic 
sequences, the majority of objects exhibit relatively fixed positions 
and attitudes, posing challenges in identifying objects or regions with 
significant dynamic characteristics within the sequence. 
Consequently, the availability of feature points suitable for tracking 
is severely limited.

The visual SLAM algorithm proposed in this paper is 
compared with other SLAM algorithms in dynamic scenes, such 
as DynaSLAM and DS-SLAM. The experimental results and 
comparisons are presented in Table  4, where the bold fonts 
indicate the best performance while the underlined texts represent 
the second-best results. The top-performing results in the tables 
are primarily attributed to DynaSLAM and the algorithm proposed 
in this paper. Compared with the DS-SLAM algorithm, our 
pro-posed algorithm exhibits significantly improved localization 

A B

FIGURE 8

Results of detecting people in motion.
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accuracy and runtime efficiency in high dynamic scenarios, 
resulting in a reduction of 91.8 and 29.6%, respectively, for RMSE 
of absolute trajectory error on walking_xyz and walking_static 
sequences. Compared with the DynaSLAM algorithm, our 
algorithm achieves similar positioning accuracy while 
demonstrating faster runtime and processing speed due to 
avoiding the time-consuming image processing involved in  
the Mask R-CNN instance segmentation utilized by 
DynaSLAM. Table 5 lists the time required for the four algorithms 
to process each frame of picture under the walking_xyz sequences. 
So, our algorithm achieves a good balance between accuracy and 
real-time performance, and it can effectively deal with the effects 

of moving objects on the stability of SLAM systems in a 
dynamic environment.

4 Conclusion

This paper presents a robust visual SLAM algorithm that 
combines target detection and clustering in dynamic scenarios to 
address the challenge of reduced positioning accuracy and robustness 
by dynamic objects. Our algorithm employs a lightweight target 
detection algorithm based on YOLOv5s for real-time detection of 
dynamic objects. We replace the backbone network of YOLOv5s with 

FIGURE 10

The trajectory and error map in a low dynamic scene (the first and second columns are, respectively, the trajectory and error of ORB-SLAM3; the third 
and fourth columns are, respectively, the trajectory and error of the proposed algorithm).
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FIGURE 11

The trajectory and error map in a high dynamic scene (the first and second columns are, respectively, the trajectory and error of ORB-SLAM3; the third 
and fourth columns are, respectively, the trajectory and error of the proposed algorithm).

TABLE 2 Comparison of absolute trajectory error between ORB-SLAM3 and our proposed algorithm.

Sequence ORB-SLAM3 Ours

RMSE Median Mean Std RMSE Median Mean Std

fr3/w/hs 0.4566 0.4607 0.4422 0.1136 0.0296 0.0189 0.0236 0.0178

fr3/w/rpy 0.6833 0.5470 0.5831 0.3563 0.0364 0.0218 0.0292 0.0218

fr3/w/static 0.1947 0.1926 0.1862 0.0568 0.0815 0.0063 0.0071 0.0040

fr3/w/xyz 0.4952 0.1940 0.3604 0.3397 0.0174 0.0123 0.0146 0.0095

fr3/s/hs 0.0347 0.0298 0.0313 0.0149 0.0166 0.0129 0.0143 0.0084

fr3/s/rpy 0.0385 0.0296 0.0333 0.0194 0.0264 0.0148 0.0194 0.0178

fr3/s/static 0.0102 0.0082 0.0089 0.0049 0.0072 0.0055 0.0062 0.0036

fr3/s/xyz 0.0123 0.0099 0.0109 0.0056 0.0089 0.0072 0.0078 0.0043
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a Ghost lightweight module to reduce network parameters, while 
adding CBAM attention mechanism to enhance the network’s ability 
to capture important information. Additionally, we incorporate the 
K-means clustering algorithm to obtain anchor frame size matching 
the detection scale in the detection network, thereby improving 
network detection performance through addition of detection layers 
and increased detection scales.

The proposed algorithm is evaluated on the TUM RGB-D 
dataset in this study. The test results demonstrate a significant 
reduction of 85.7 and 30.9%, respectively, in the absolute 
trajectory error of our algorithm as compared with the 
ORB-SLAM3 and DS-SLAM algorithms under high dynamic 
scenarios. Moreover, the proposed algorithm exhibits comparable 
positioning accuracy to DynaSLAM but with improved 
computational efficiency. These findings validate the superior 
positioning accuracy and robustness of our proposed visual SLAM 
algorithm that integrates target detection and clustering 
techniques for dynamic scenes, thereby highlighting its promising 
practical applications. Future research directions may involve 
exploring more advanced semantic segmentation networks and 
multi-sensor fusion approaches to further optimize and enhance 
the algorithm’s performance.
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TABLE 3 The absolute trajectory error performance improvement of the proposed algorithm compared to ORB-SLAM3.

Sequence RMSE Median Mean Std

fr3/w/hs 93.5173 95.8976 94.6631 84.3301

fr3/w/rpy 94.6729 96.0146 94.9923 93.8816

fr3/w/static 58.1407 96.7290 96.1869 92.9578

fr3/w/xyz 96.4863 93.6598 95.9490 97.2034

fr3/s/hs 52.1614 56.7114 54.3131 43.6242

fr3/s/rpy 31.4286 50.0000 41.7417 8.2474

fr3/s/static 29.4118 32.9268 30.3371 26.5306

fr3/s/xyz 27.6423 27.2727 28.4404 23.2143

TABLE 4 Comparison of absolute trajectory errors of different algorithms.

Sequence ORB-SLAM3 DynaSLAM DS-SLAM YOLO  +  SLAM Ours

fr3/w/hs 0.4566 0.0226 0.0303 0.0335 0.0296

fr3/w/rpy 0.6833 0.0400 0.4442 0.0423 0.0364

fr3/w/static 0.1947 0.0090 0.0081 0.0136 0.0081

fr3/w/xyz 0.4952 0.0135 0.0247 0.0196 0.0174

fr3/s/hs 0.0347 0.0179 - 0.0176 0.0166

fr3/s/rpy 0.0385 0.0482 - 0.0332 0.0264

fr3/s/static 0.0102 0.0058 0.0065 0.0078 0.0072

fr3/s/xyz 0.0123 0.0134 - 0.0098 0.0089

TABLE 5 Comparison of tracking time of different algorithms.

Algorithm Time (ms)

ORB-SLAM3 16.9

DynaSLAM 1,020

DS-SLAM 300

Ours 21.2
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