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To ensure the safe operation and dispatching control of a low-voltage distributed

photovoltaic (PV) power distribution network (PDN), the load forecasting

problem of the PDN is studied in this study. Based on deep learning technology,

this paper proposes a robot-assisted load forecasting method for low-voltage

distributed photovoltaic power distribution networks using enhanced long

short-term memory (LSTM). This method employs the frequency domain

decomposition (FDD) to obtain boundary points and incorporates a dense layer

following the LSTM layer to better extract data features. The LSTM is used to

predict low-frequency and high-frequency components separately, enabling

the model to precisely capture the voltage variation patterns across di�erent

frequency components, thereby achieving high-precision voltage prediction. By

verifying the historical operation data set of a low-voltage distributed PV-PDN

in Guangdong Province, experimental results demonstrate that the proposed

“FDD+LSTM” model outperforms both recurrent neural network and support

vector machine models in terms of prediction accuracy on both time scales of

1 h and 4h. Precisely forecast the voltage in di�erent seasons and time scales,

which has a certain value in promoting the development of the PDN and related

technology industry chain.

KEYWORDS

distributed photovoltaic, power distribution network, load forecasting, deep learning,

long short-term memory

1 Introduction

Load forecasting of the power distribution network (PDN) is an important link in

safe operation and dispatching control. With the popularization and application of energy

storage technology and the addition of new dispatchable resources such as electric vehicles,

a large number of interruptible and bidirectional loads appear on the load side (Dairi

et al., 2020; Razavi et al., 2020; Markovics and Mayer, 2022). These load’s randomness and

distributed access characteristics affect the power system regulation of the PDN. Active

distribution network (ADN) uses the core technology of demand response to dynamically

adjust the price of electricity and incentive policies and flexibly manage and control the

original load demand of users. Furthermore, it actively guides users to participate in

the optimization of power dispatching to enhance the synergy and complementarity of
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multiple loads. It not only considers users’ satisfaction with

electricity consumption but also improves the consumption ratio of

distributed renewable energy (Hafiz et al., 2020; Mellit et al., 2021).

Proper planning and useful applications of load forecasting of

the PDN require specific “predicting intervals”. According to the

delivery cycle, load forecasting can be divided into ultra-short-term,

short-term, medium-term, and long-term (Eom et al., 2020). Ultra-

short-term forecasting is employed for real-time control, enabling

rapid adjustments to generation and load to ensure the safe and

stable operation of the power grid. Short-term forecasting is widely

employed in the daily operations of the utility industry, facilitating

dispatch of generation and transmission, optimizing grid resource

allocation and enhancing grid operational efficiency. Medium-

term forecasting is primarily utilized to forecast load variations

over the next few months to a year, providing valuable insights

for fuel procurement, maintenance planning and grid investment

decisions. Long-term forecasting focuses on load growth trends

over the next 1 to 20 years, employed to forecast the need for new

power plants, grid planning and providing strategic guidance for

power system development.

Load forecasting of the PDN is complex for engineers and

academics, and remains an ongoing area of research. Moreover,

the thorough exploration of load-side controllable resources to

achieve optimal dispatch of the power system by the grid has

emerged as a critical research priority for contemporary power

utilities. Nowadays, it is more and more common for low-voltage

PDNs to adopt distributed photovoltaic (PV) access. On this basis,

considering the regularity of PV power generation, the problem

of voltage fluctuation can be solved by predicting the voltage

variation trend.

Accurate load forecasting plays a crucial role in optimizing

the scheduling and management of power resources, effectively

reducing operational costs and enhancing the overall efficiency

of the power system. With the rapid development of deep

learning-based robotic agent technology (Ma et al., 2023, 2024a),

the application of deep learning in load forecasting has gained

significant attention, particularly for approaches based on recurrent

neural networks (RNN). Furthermore, deep learning techniques

can handle complex nonlinear relationships and massive datasets,

thereby improving the accuracy and reliability of predictions,

which are paramount for the stable operation of the power grid.

Deep learning models, however, demand substantial data and

computational resources, while their hyperparameter tuning and

training process necessitate specialized knowledge and expertise.

The nonlinearity and time dependence of load data increase the

complexity of predictions. As the data dimensions increase, deep

learning models need to possess enhanced learning capabilities,

thereby avoiding overfitting and performance degradation. While

significant progress has been made in load forecasting techniques,

several challenges remain that require further attention to enhance

the accuracy and efficiency.

To address the specific scenario of load forecasting in low-

voltage distributed photovoltaic power distribution networks, we

customized a load forecasting model and employed a long short-

term memory (LSTM) network architecture for forecasting. To

enhance feature extraction, we placed a fully connected layer,

denoted as dense layer, after the LSTM layer. Additionally, we

integrated the frequency domain decomposition (FDD) method

to obtain the amplitude and phase of each frequency component,

and utilized LSTM to individually forecast low-frequency and high-

frequency components, ultimately improving the model’s accuracy.

This study is expected to offer a new idea for the low-voltage

distributed PV-PDN to meet the forecast. The contributions of this

paper can be summarized as follows:

1) FDD-enhanced LSTM for load forecasting in PV-PDN: to

address the load forecasting of low-voltage distributed PV-

PDN, we propose a novel FDD-enhanced LSTM model.

The proposed model outperforms conventional support

vector machine (SVM) and RNN models, particularly in

long-term forecasting scenarios. This method represents

a significant advancement in the application of deep

learning techniques in the distribution network domain,

providing a novel approach to enhance grid reliability and

operational efficiency.

2) A new benchmark for load forecasting in PV systems: the

integration of FDD and LSTM networks has revolutionized

load forecasting in low-voltage distributed PV systems,

establishing a new benchmark for forecasting methodologies

in distributed PV systems.

3) Comparative analysis of FDD-enhanced LSTM for load

forecasting: to objectively evaluate the performance of the

enhanced LSTM model in complex low-voltage distributed

PV forecasting scenarios, we conducted a comprehensive

comparative analysis of the mean absolute error (MAE)

across different time scales. The results demonstrate the

model’s superior performance and reliability in complex

voltage forecasting environments.

The rest of the paper is organized as follows: Section 2 reviews

the related work of load forecasting and scene image monitoring

analysis. Section 3 describes the proposed methods in detail.

Section 4 reports the experimental result and analysis. Section 5

represents the conclusion and future work.

2 Related work

Low-voltage load forecasting is an intelligent technique

that utilizes historical load data, weather information and

socioeconomic factors to forecast future low-voltage load levels.

This technique possesses extensive application value in power grid

scheduling, grid planning and electricity pricing.

Statistical and time series methods are widely employed

techniques for short-term load forecasting, with linear models

being the most prevalent approach. Linear models typically

employ linear parameters. Litjens et al. (2018) have utilized some

of the simplest linear models, including seasonal persistence

models and simple average models, often in conjunction with

meteorological data. Borges et al. employed linear models with

varying feature subsets for short-term load forecasting and missing

data imputation in substation data (Borges et al., 2020).Their

model utilized historical load data, meteorological data and

neighboring substation data. While standard linear regression has
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proven successful in demand forecasting for all levels of low-

voltage networks, nonlinear regression models have also gained

attention due to their inherent flexibility. Hayes et al. employed

a nonlinear autoregressive exogenous (NARX) model for smart

meter load forecasting and demonstrated its superior performance

compared to traditional NARX models and neural network models

(Hayes et al., 2014). Tsekouras et al. (2007) employed nonlinear

multiple regression, selecting a model based on testing various

combinations of nonlinear functions for mid-term load forecasting.

Nonlinear models, despite their wide applicability, are susceptible

to overfitting issues.

Among time series forecasting models, ARIMA stands out

due to its exceptional performance and has been widely adopted

across various applications (Marinescu et al., 2013). Researchers

have successfully integrated online ARIMA models into short-

term forecasting of electricity systems in public school buildings

(Lee et al., 2013). Leveraging historical load and temperature data,

this model effectively captures energy efficiency, forecasts energy

consumption and detects anomalies in energy usage. Furthermore,

Espinoza et al. proposed a unified modeling framework based on

periodic autoregressive models, enabling the effective integration

of data from multiple entities to achieve load curve forecasting and

clustering analysis (Espinoza et al., 2005).

With the continuous advancement of deep learning (Ma et al.,

2021, 2024b; Li et al., 2023; Jin et al., 2024; Liufu et al., 2024),

deep learning-based load forecasting has also gained widespread

attention from researchers. Deep learning-based load forecasting

methods, with their ability to capture complex data patterns

and extract deep-level features, have gradually become a research

hotspot in the field of power load forecasting and have achieved

remarkable results. Shivam et al. (2021) discuss a predictive energy

management strategy for residential PV-battery systems using

RNN model, it has a deep inner hidden layer, which imitates the

neural network inside humans to think like the human brain. Luo

et al. (2021) enhance photovoltaic power generation forecasting

by incorporating domain knowledge into deep learning models

(Kim et al., 2020). The limitation of machine learning (ML) lies in

the need for more learning ability for high-dimensional data. The

purpose of representative learning is to simplify complex original

data, remove invalid or redundant information from original data,

and refine effective information to form features. The purpose of

representative learning is to simplify complex raw data, remove

redundant or invalid information from the data, and extract

effective information to form features. In addition, SVM and LSTM

have been widely used in load forecasting. Kabilan et al. (2021) and

Feng et al. (2020) both employ machine learning models for short-

term power prediction and quantifying daily global solar radiation,

respectively, highlighting the potential of computational methods

in optimizing and accurately forecasting solar energy production.

Kim et al. (2020) focus on very-short-term photovoltaic forecasting

for smart city energy management through multiscale LSTM-based

deep learning.

In the realm of load forecasting, traditional methods have

often faced limitations in capturing the intricate patterns and

underlying relationships within complex electricity consumption

data. To address these shortcomings, we propose a novel deep

learning-based load forecasting framework that leverages the

powerful capabilities of RNN and LSTM cells to effectively capture

temporal dependencies.

3 Methods

3.1 Features of distributed PV-PDN

PV power generation is essentially a power technology that

uses the photoelectric or photochemical effect of PV modules

(semiconductor materials) to convert light energy directly into

electric energy. Distributed PV power station usually refers to a

power generation system with a small installed scale that uses

distributed resources and is located near the user. Ordinarily,

the power grid with a voltage level of <35 kV or lower is

connected. The heart of a PV facility is solar panels. The

semiconductor materials adopted for power generation principally

cover polysilicon, monocrystalline silicon, amorphous silicon and

cadmium telluride (Lopes et al., 2022). Solar panels are the core and

most valuable part of a solar power system. Its role is to convert

the radiant power of the sun into electrical energy, feed it into

a storage battery or promote load operation. The function of the

solar controller is to control the working state of the entire system

and protect the battery from overcharge and discharge (Alipour

et al., 2020; Korkmaz, 2021; Qadir et al., 2021). Qualified controllers

should also have a temperature compensation function in places

with large temperature differences.

The PV cell’s equivalent circuit (EC) is shown in Figure 1. Iph
and Id refer to the photo-generated and diode junction currents; Cj

means the junction capacitance (negligible); Rs and Rsh stand for

series and parallel resistors. Typically, distributed PV projects have

a capacity of within a few kilowatts. Unlike centralized plants, the

scale of PV plants has little effect on power generation efficiency.

Therefore, its influence on the economy is also tiny, and the return

on investment of small PV systems will not be lower than that of

large ones.

Solar energy’s direct output is generally 48 VDC, 24 VDC and

12 VDC. To power an appliance at 220 VAC, direct current (DC)

generated by a solar power system needs to be converted into

alternating current (AC). To avoid power backflow, it is necessary

to configure an anti-flow device for alarm, and the inverter then

adjusts its capacity according to the received signal. To connect

the distributed PV system to the PDN, it first needs to output

the PV cells through the DC/DC converter, then connected to

the DC/AC inverter, and next connected to the external PDN.

Taking a household small distributed PV system as an example,

the typical grid-connected PV structure is displayed in Figure 2.

The grid-connected access information acquisition system of small

distributed PV power stations is applied to transmit the collected

information to the monitoring platform and display it to users or

power grid enterprises intuitively and clearly. This can provide

grid enterprises with grid-connected data of PV power stations,

eliminate the “blind adjustment” phenomenon of PV power

generation, assist power grid operation analysis and decision-

making, and promote the operation of the power grid safe and

stable (Karimi et al., 2020; Ding et al., 2021; Khan et al., 2022).
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FIGURE 1

EC of PV cell.

FIGURE 2

Grid-connected structure of household small distributed PV system.

FIGURE 3

The overall diagram of the method in this study.

The overall diagram of the method in this study is shown

as Figure 3. The method involves meticulous data collection and

preprocessing to ensure high-quality inputs, followed by strategic

feature selection via the XGBoost algorithm to optimize data

relevancy. Then an advanced LSTMmodel is designed and refined,

augmented with FDD, for enhanced predictive accuracy.

3.2 Voltage data preprocessing and feature
selection

As a kind of clean energy, the high proportion of PV connected

to a low-voltage PDN will bring huge power generation benefits.

However, due to its own uncertainty, it may bring a series of

problems to the stable and safe operation of the PDN, such as

voltage over the limit, line overload and power quality reduction.

Thus, it is essential to accurately evaluate the acceptance capacity

of PV in a low-voltage PDN. More importantly, to further improve

the benefits of PV power generation, it is urgent to improve the

acceptance capacity of distributed PV based on accurate assessment

(Rana and Rahman, 2020). Before voltage prediction of distributed

PV-PDN, data mining and preprocessing should be carried out,

ensuring that it is in a suitable form for analysis. This step involves

removing outliers, handling missing values, and normalizing data,

which helps reduce variability and improve the model’s accuracy.

It also includes feature selection and transformation to identify

and utilize the most relevant information for forecasting, thereby

enhancing the prediction model’s effectiveness and efficiency.
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The missing data is filled using the cubic spline interpolation

fitting function fθ (x), and the equation for filling the value is

Equation (1):

D(tmiss ) = f θ (tmiss) (1)

tmiss indicates the time point at which load data is missing.

For data satisfying normal distribution, standardized methods

are used for dimensionless processing, with the specific equation

as follows Equation (2):

x
∗

=
x−X

S
(2)

x and x∗ refer to the original and the processed feature data,

respectively; X and S represent the mean and standard deviation of

the feature, respectively.

DL model has advantages in capturing power voltage

fluctuation in distributed PV voltage prediction due to their ability

to model complex, nonlinear relationships within large datasets.

They excel in identifying patterns and dependencies in temporal

data, such as those found in voltage series, by leveraging multiple

layers of processing. This capability allows DL models to provide

more accurate and reliable forecasts of voltage fluctuations, which

is essential for maintaining grid stability and optimizing energy

distribution in distributed PV-PDN. At this time, dimensionless

standardization of different power characteristics can significantly

accelerate the optimization speed of the gradient descent algorithm.

The maximum and minimum rescaling method of voltage and

power is illustrated in Equations (3) and (4):

v
∗

=
v−vmax

vmax − vmin

(3)

p
∗

=
p−pmax

pmax − pmin

(4)

v & p and v∗ & p∗ represent time-series raw data and

dimensionless data for voltage and power; vmax & vmin and pmax

& pmin refer to the voltage data’s and power data’s maximum and

minimum values, respectively.

Generally speaking, the power load is filled with data of similar

size. Because the power load has a certain periodicity, it can be filled

and replaced with similar load data of the same cycle. The power

load has a regular periodicity, that is, the data of different periods at

the same time should be very different. If the difference between the

two data exceeds the threshold, the vertical method can be used for

processing. For the PV system, the light intensity in winter is lower

than that in summer, and the maximum light intensity is usually at

noon, so the voltage will rise in this period. It can be seen that the

time feature vector is very vital in the voltage prediction process,

and it is a key factor in improving the prediction accuracy.

Considering various types of features in the voltage prediction

process, this study will adopt the feature selection method based

on the Extreme Gradient Boosting (XGBoost) algorithm (Bae

et al., 2021), a method chosen for its efficiency and effectiveness

in handling high-dimensional data. XGBoost is renowned for

its ability to improve model performance by selecting the most

relevant features, reducing noise and preventing overfitting.

This approach aids in identifying the key predictors of voltage

fluctuations in distributed PV systems, thus enhancing the

predictive accuracy of the deep learning model. In the course of

multiple iterations, the probability distribution (PD) of the training

data used in the current iteration will be regulated based on

the results of the previous iteration. That is to say, each sample

of training data has a weight, which itself will be adjusted with

iteration. As suggested in Figure 4, Dm is the training dataset’s PD.

In the first iteration, the classification error of basic classifier C1 is

employed to adjust D2; In the second iteration, the base classifier

C2 is used for iteration D3, and so on.

XGBoost is the use of multiple base learning. Each base learning

is relatively simple. To prevent overfitting, the next learning is the

result of learning the previous base learning. The loss function of

XGBoost algorithm reads Equations (5) and (6):

L =

n
∑

i=1

l(yi, ŷi) +

M
∑

m=1

�(bm) (5)

�(bm) = γT +
1

2
λ ‖w‖2 (6)

n refers to the number of samples; yi and ŷi represent the label

value of the i-th sample and output value predicted by the model,

respectively; l means the squared error function; �(bm) expressed

a regularized term for the tree model. T displays the leaf nodes’

quantities for a single tree model; w signifies the output vector

of the leaf node; γ are λ parameters that control the weights of

regularized terms.

After the model is initialized, it needs to carry out M-

round cycle calculation, so the objective function Obj(t) should be

minimized during the t-round calculation Equations (7) and (8):

Obj(t) =

n
∑

i=1

l(yi, ŷi
(t−1)

+ bt(xi))+�(bt )+ C (7)

C =

t−1
∑

i=1

(bi) (8)

bt represents tree model in the t-round training; ŷi
(t−1) denotes

the predicted output value of the model obtained from the previous

round;�(bt) indicates the complexity of the tree model obtained in

t-round; C is a constant.

When solving the objective function of a binary tree, it is

necessary to know the first-order and second-order derivatives of

the loss function, and on which leaf node the sample is located. It is

also necessary to find the first and second derivatives of the sample

at each leaf node to find the objective function. In this way, it is

possible to decide whether to split the node and according to the

characteristic values of which node to split.

The voltage, power of key nodes and time characteristics of

prediction points in PDN are selected and taken as input feature

vector x after series. When forecasting, the higher the prediction

accuracy of 1 h ago, the higher the multiple time scales’ prediction

accuracy. The dimensionless node voltage and net power data of

the complete PDN are obtained through data preprocessing. The
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FIGURE 4

Training flow of XGBoost algorithm.

voltage eigenvector Vi of the node, the net power eigenvector Pi
and the corresponding label yi are obtained as follows Equations

(9–11):

V i =
[

vi+t−H ,...,vi+t−2,vi+t−1

]

(9)

V i =
[

pi+t−H ,...,pi+t−2,pi+t−1

]

(10)

yi = vi+t (11)

H represents the length of the sliding window, Vi and Vi are

eigenvectors with dimension H.

The time variable of discretization is processed by unique

thermal coding. Time eigenvector Ti is constructed to predict time

points. Finally, the input feature vector xi of the i-th sample can be

expressed as Equation (12):

xi = [V i,Pi,Ti] (12)

xi and yi together constitute the training sample set of the

XGBoost algorithm, which can be written as Equation (13):

{(

xi,yi
)}n

i=1
(13)

Additionally, XGBoost suggests two ways to avoid overfitting.

The first is Shrinkage, namely, the learning rate. In each tree

iteration, each leaf node’s weight is multiplied by a reduction

coefficient. This way, the impact of each tree will not be too large,

leaving more space for optimization for the trees below (Wang

et al., 2017; Liu et al., 2022). Another way is Column Subsampling,

which is similar to random forest selection for tree construction.

There are two methods: (1) Random sampling by layer. Before

splitting nodes of the same layer, some eigenvalues are randomly

selected for traversal to calculate information gain (IG); (2) Some

eigenvalues are randomly sampled before building a tree. Then the

tree’s all-node splits traverse these eigenvalues to compute IG.

TheMeanAbsolute Error (MAE) to validate the performance of

prediction methods, which is an objective function used to measure

the average absolute difference between predicted and true values in

regression problems. It can measure the average error size between

predicted values and true values, and has good robustness. The

calculation formula for MAE is written as Equation (14):

MAE =
1

N

N
∑

i=1

∣

∣yi − ŷi
∣

∣ (14)

N represents the number of samples, yi is the true value, and ŷi
is the predicted value.

The smaller the value of MAE, the smaller the average

difference between the predicted value and the true value,

indicating higher accuracy of the prediction.

3.3 Load forecasting of distributed PV
system based on FDD + LSTM

In the context of distributed photovoltaic systems, load

forecasting necessitates a multifaceted analytical approach. Key

is the scrutiny of historical data to discern patterns and trends.

Employing statistical methods, such as time series analysis,

facilitates the understanding of complex data interrelations.

Moreover, the application of machine learning algorithms,

including neural networks, is essential for improving prediction

accuracy given the nonlinear nature of load data. Selecting

pertinent features, particularly those influenced by weather and

temporal factors, is critical. Additionally, integrating renewable

energy sources, notably solar power, introduces unpredictability,

demanding innovative, adaptable forecasting techniques to ensure

consistent power distribution.

FDD refers to taking the Fourier transform (FT) of the

signal to analyze it. FT is a mathematical equation that relates a

signal sampled in space or time to the same signal sampled at

frequency (Polo et al., 2023). In signal processing, FT can reveal

a signal’s vital characteristics (i.e., its frequency component). For

a vector x containing n uniform sampling points, FT is defined as
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FIGURE 5

Correlation between high frequency and low-frequency

components and PV power.

TABLE 1 Predicted results of low-frequency and high frequency

components at di�erent frequencies.

Com-
ponent

R

366 732 1,098 1,463 1,830 2,196

Low-

frequency

0.985 0.986 0.987 0.988 0.989 0.990

High

frequency

0.960 0.678 0.351 0.101 −2.175 −3.550

Equation (15):

yk+1 =

n−1
∑

j=0

ωjkxj+1 (15)

ω is one of the n complex roots of unity; For x and y, indexes j

and k range from 0 to n− 1.

The Fourier analysis method is extended to aperiodic signals,

and FT is introduced. When the period of a periodic signal

increases infinitely, the frequency spectrum tends to become

infinitely small and cannot be represented by the Fourier series.

But from a physical point of view, the spectrum is still there. FT

spectrum analysis divides PV power into load forecasting and high

frequency components (Liu et al., 2020; Zang et al., 2020; Rai et al.,

2021). The low-frequency component represents the conventional

part of PV performance, which can be accurately predicted and

indicates the trend characteristics. The high-frequency component

exhibits the randomness of PV power and the fluctuation

characteristics affected by weather and other factors, which is

relatively difficult to predict. Figure 5 presents the correlation

between low-frequency and high frequency components and PV

power. When FDD is performed on PV power data, the more

frequency is selected, the weaker the correlation between high

frequency component and PV power is. However, the correlation

between low-frequency component and photovoltaic power is

stronger. Table 1 compares the predicted results of the two

frequency components at different frequencies. The selection of

frequency boundary points is based on frequency nodes with

larger amplitude in the amplitude spectrum. It can be found that

the core of frequency demarcation point selection is that the

frequency selected by the low-frequency component should be as

high as possible. Thereby, the low-frequency component accounts

for more, and it is necessary to ensure that the frequency of the

high frequency component is not too high, thus avoiding excessive

difficulty in prediction.

Convolutional networks can process images of different lengths

and widths, and Recurrent Neural networks (RNN) have a

recurrent function that can process data of different lengths and

sequence types. However, due to the small range that RNN can

utilize, it cannot handle the long sequence data well. The output

that leads directly to a long sequence forgets the input that is farther

away. LSTM is a special kind of RNN, a modified version of RNN,

whose structure is plotted in Figure 6. The activation function is

the sigmoid; tanh is the hyperbolic tangent function;
⊕

and
⊗

represent the addition and multiplication operations of vectors.

The first layer of LSTM comprises a single-loop structure, which

is determined by the dimensions and number of input data and

loops, rather than the connection ofmultiple single-loop structures.

LSTM cells contain input, forget, output and unit states (Akram

et al., 2020; Zhang et al., 2020; Ahmad et al., 2022). The input gate

determines how much network input data requires to be saved to

the unit state at the current moment. The forget gate decides how

many unit states need to be transferred from the last to the present

moment. The output gate controls how much of the current unit

state demands to be output to the present output value.

In the discussed PV-PDN voltage prediction model based

on “FDD+LSTM”, to better extract data characteristics, a fully

connected layer, namely Dense layer, is placed behind the LSTM

layer. The specific voltage prediction process is as follows.

(1) The prediction methodology employs XGBoost for feature

subset selection, focusing on crucial elements like voltage, power

characteristics and temporal variables. This step is pivotal in

distilling the most relevant features from a vast dataset, thereby

improving model efficiency and focus. The resulting feature vector

x = [V , P,T] is a comprehensive aggregation of these elements,

forming the LSTM input alongside the target training variable yi.

(2) The backpropagation algorithm is utilized for model training,

optimizing the network to reduce prediction errors and heighten

voltage forecasting accuracy. This phase ensures in-depth learning

from historical data, a critical aspect of the model’s predictive

capability. (3) Finally, the trained LSTM model, equipped with

learned patterns, processes the input dataset for voltage prediction.

The inclusion of the dense layer at this point is significant.

It acts as a refinement stage, aligning LSTM outputs with

expected voltage levels and synthesizing complex relationships.

This addition enhances the model’s accuracy and robustness in

diverse operational scenarios within PV-PDNs.

Detailed procedure for load forecasting of distributed PV

system based on FDD+LSTM:

(1) Data selection and preprocessing: historical operation data

is carefully selected and subjected to data mining and

preprocessing techniques. This includes handling outliers,
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FIGURE 6

Basic structural unit of LSTM.

TABLE 2 Specific parameters of LSTM prediction model.

Model Layer Hyper-parameter Output tensor
dimension

Input layer – (None, input)

LSTM layer Neurons in memory cells: 64 (None, 64)

Dense layer Neurons: 128

Activation function: tanh

(None, 128)

Dropout layer Drop rate: 0.05 (None, 128)

Output layer Neurons: 1

Activation function: sigmoid

(None, 1)

addressing missing values and normalizing the data to ensure

its suitability for analysis.

(2) Feature selection: to identify the most influential variables

contributing to the prediction task, we employ the XGBoost

algorithm for feature selection. This approach enables us

to pinpoint key predictive factors such as voltage, power

characteristics and time variables that significantly impact the

target variable.

(3) Model training: to achieve accurate and reliable voltage

predictions, we employ the proposed “FDD+LSTM”

neural network architecture and train it using the

backpropagation algorithm.

(4) Load prediction: to harness the predictive ability of the trained

proposed “FDD+LSTM” model, we utilize it to process the

input dataset for accurate voltage forecasting. To further

enhance the model’s ability to extract meaningful features from

the data and improve prediction accuracy, we incorporate a

dense layer into the network architecture.

4 Results and discussion

4.1 Data selection and example analysis

This study selects the historical operation data of a low-

voltage distributed PV-PDN in Guangdong Province as

FIGURE 7

Voltage prediction results with a time scale of 1 h.

the research object. The time range is operation data from

March 2020 to March 2022. The data sampling interval of

the meter under test is 1 h, and rolling prediction is adopted.

The constructed input feature vectors xi are: the vectors of

voltage, power and time characteristics are 12, 12 and 35

dimensions, respectively, and a total of 16,275 data samples

are constructed with xi and label yi. An example analysis

of the load forecasting model uses TensorFlow 14.0. The

dropout layer is incorporated to prevent overfitting, followed by

the connection to the output layer. The specific parameters

of the “FDD+LSTM” prediction model are outlined in

Table 2. The selected comparison algorithms are RNN, SVM,

and LSTM to verify the validity of the prediction method

proposed here.
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FIGURE 8

Voltage prediction outcomes with a time scale of 2 h.

FIGURE 9

Voltage prediction results with a time scale of 4 h.

4.2 Analysis of load forecasting results in
distributed PV-PDN

To intuitively reflect the accuracy of voltage prediction results,

this study draws corresponding voltage prediction curves with 1, 2

and 4-h as time scales, and compares them with other prediction

models. The voltage data of 100-time points is selected as a display

in the test set, and the voltage prediction results at different time

scales are demonstrated in Figures 7–9. It can be found that the

FDD-enhanced LSTM model consistently aligns more closely with

actual voltage values than SVM (Kabilan et al., 2021), RNN (Shivam

et al., 2021) and LSTM (Feng et al., 2020) models, especially as the

prediction time scale increases. Quantitatively, the LSTM model’s

MAE is significantly lower, at 0.4554 for a 1-h scale, compared

to 0.535 and 1.012 for RNN and SVM, respectively. Even at a

4-h scale, the LSTM’s MAE remains the lowest at 1.085. The

superior forecasting precision of the optimized LSTM model can

be attributed to its ability to effectively capture and learn from the

temporal dependencies inherent in voltage data over time. Unlike

SVM and RNN models, LSTM’s architecture allows it to remember

information for longer periods, making it particularly adept at

handling the sequence prediction problems characteristic of voltage

forecasting in distributed PV-PDNs. This is crucial for accurately

predicting voltage fluctuations over different time scales, as it can

account for both short-term and long-term patterns in the data.

Additionally, the integration of FDD likely enhances the model’s

capability to deal with the non-linear and complex nature of the

voltage signals, further improving prediction accuracy.

4.3 Performance evaluation of load
forecasting model under di�erent seasons

Taking the time scale of 1-h and 4-h as the basis, this study

further verifies the voltage prediction of different PDN’s load

forecasting models in the four seasons, and the comparison results

are portrayed in Figures 10, 11. It can be concluded that the

prediction results of the improved LSTM model based on FDD

are optimal in all seasons, especially as the prediction time scale

increases. Taking summer with a time scale of 1 h as an example,

the prediction MAE of the improved LSTM model is only 0.24,

which reduces the prediction error of this model by about 35%.

Even at a 4-h scale, the LSTM’s MAE remains the lowest at 1.064 in

summer. Therefore, the capability of the model in load forecasting

of PV-PDN is further verified.

The proposed algorithm demonstrates significant practical

value and effectiveness in the PV-PDN scenario. It can accurately

predict voltage variations under different environmental

conditions, and its prediction accuracy surpasses that of other

models, especially as the prediction time scale increases. This

capability provides strong support for the safe, reliable and efficient

operation of PV power stations, helping maintenance personnel to

promptly identify and resolve potential issues, thereby improving

the operational efficiency and long-term stability of the PV

power stations.

5 Conclusion

Driven by the rapid development of new power systems, the

proportion of new energy is continuously increasing, and the scale

of application and access rate of distributed PV in the low-voltage

PDN are also steadily rising. The integration of distributed PV

power generation, nonetheless, often exerts a substantial impact

on the voltage distribution within PDN, giving rise to issues

such as low voltage and voltage fluctuations. These issues severely

impact the quality of daily life and production for users, further

augmenting the uncertainty in grid operation and hindering the

development of the social economy. Consequently, enhancing the

state awareness capability of PDN is of paramount importance.

Effective voltage prediction can provide data support for the safe
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FIGURE 10

Comparison of load forecasting models for PDN in di�erent seasons with a time scale of 1 h.

FIGURE 11

Comparison of load forecasting models for PDN in di�erent seasons with a time scale of 4 h.

and stable operation of PDN, thereby facilitating the resolution

of voltage issues arising from the integration of distributed PV

systems. In recent years, LSTM networks have demonstrated

remarkable application potential in the realm of power load

forecasting, and it offer a novel solution for PDN voltage prediction.

Thus, a LSTM is extensively used in power load forecasting model

of actual PDN based on DL and FDD is proposed in this study.

By fast Fourier decomposition of the original quantity, the phase
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and amplitude of each frequency sine wave are acquired. Then

LSTM is used to predict the low-frequency and high frequency

components, respectively. The effectiveness of the proposed FDD-

based LSTM model is verified by testing the historical operating

data of PV-PDN. With the increase of the prediction time scale

of the improved model, the error of the predicted results does

not increase significantly. At a 1-h time scale, the MAE of the

improved LSTM model is only 0.4554, much lower than that

of other models. However, the proposed model requires a large

amount of data for training and cannot be directly deployed on

edge clients with limited computational resources for prediction.

In the future, with the continuous development of edge computing

and deep learning technologies, optimizing model computation

efficiency to accommodate hardware constraints of edge devices

and developing lightweight deep learning algorithms to reduce

resource consumption, deploying prediction models at the edge

side will become more feasible.
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