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Redundant manipulators are universally employed to save manpower and

improve work e�ciency in numerous areas. Nevertheless, the redundancy

makes the inverse kinematics of manipulators hard to address, thus increasing

the di�culty in instructing manipulators to perform a given task. To deal

with this problem, an online learning fuzzy echo state network (OLFESN) is

proposed in the first place, which is based upon an online learning echo

state network and the Takagi–Sugeno–Kang fuzzy inference system (FIS).

Then, an OLFESN-based control scheme is devised to implement the e�cient

control of redundant manipulators. Furthermore, simulations and experiments

on redundantmanipulators, covering UR5 and Franka Emika Pandamanipulators,

are carried out to verify the e�ectiveness of the proposed control scheme.

KEYWORDS

echo state network (ESN), fuzzy inference system (FIS), online learning, redundant

manipulators, optimization

1 Introduction

To improve production efficiency and set themselves free from manpower, robots

have come into being and undergone expeditious and substantial progress, with plentiful

and triumphant applications in numerous areas (Sun et al., 2023b; Liu et al., 2024).

Therefore, redundant manipulators that possess more degrees of freedom (DOFs) than

non-redundant ones to fulfill a specific task stand out and have been subject to in-depth

and comprehensive investigations (Liao et al., 2016; Liu et al., 2023). More precisely, by

virtue of the additional DOFs, they are capable of executing some secondary tasks while

performing the primary task, such as obstacle avoidance, optimizing joint torques, and

enhancing operability (Jin et al., 2017a; Sun et al., 2022a). For that reason, research on

the mechanisms and applications of redundant manipulators is in full swing. However,

it is worth mentioning that the additional DOFs result in troubles and challenges for

controlling manipulators efficiently and precisely (Zhang et al., 2019; Zhao et al., 2020).

Therefore, it imports the demand to devise and construct a potent control scheme of

redundant manipulators (Jin et al., 2017b; Liao et al., 2022).

With a sophisticated and ingenious nervous system, humans are capable of performing

a variety of complicated and intractable missions by learning from recent experiences,

which is the most prominent difference and superiority compared with other creatures

(Wang et al., 2016; Liao et al., 2024b). Therefore, this has opened up a new avenue for the

control of manipulators. That is, manipulators can accomplish the assigned task with high

efficiency by simulating the learning ability of humans. Taking the neural network (NN)

(Su et al., 2023a; Wei and Jin, 2024) and fuzzy inference system (FIS) (Vargas et al., 2024)

into account, both of them attempt to simulate the thinking and decision-making processes

of humans in a certain way. Therefore, they have garnered the attention of researchers,
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and a lot of effort has been put into integrating them with

manipulator control systems to improve the completion of the task

and meet the requirements of different scenarios. For instance,

Yoo and Ham (2000) present adaptive control schemes for

manipulators, in which the parameter uncertainty is handled via the

FIS. Afterward, aiming at the tracking control of the end-effector

for manipulators, an FIS-based controller is designed by Yilmaz

et al. (2022), in which the centers and widths of the membership

functions are adjusted adaptively, thus promoting the learning

power of the controller. Recently, Yilmaz et al. (2023) devised an

FIS-based output-feedback controller for the joint space tracking

of manipulators, in which the demands for joint velocity and

knowledge of manipulators are eliminated.

In recent times, a surge of research has come into view in the

realm of the echo state network (ESN), a sort of recurrent neural

network (RNN), which overcomes certain problems hindering the

investigations and applications of RNNs, such as gradient vanishing

and gradient exploding (Rodan and Tino, 2011; Chen et al., 2023).

The core of ESN lies in the reservoir, which is a large, sparse

network in charge of capturing the dynamic behavior of input

information. Particularly in the ESN, both input and reservoir

weights are generated at random, and one needs to put effort

into obtaining the output weights by figuring out the weighted

sum of outputs (Lukoševičius, 2012). Considering another network,

the extreme learning machine (ELM) (Huang et al., 2006) is a

feedforward network with a hidden layer. Weights and biases for

the hidden layer are appointed randomly, while the training of the

network focuses on determining output weights through the least

squares method. Therefore, from the perspective of this point, the

ELM, ESN, and FIS share a certain similarity, and thus, a great deal

of work has been carried out that builds and verifies the bridges

between them (Sun et al., 2007; Ribeiro et al., 2020). By integrating

these networks and taking advantage of their strengths, some

extraordinary work is presented and utilized in various domains to

address different issues. Concentrating on function approximation

and classification problems, a fuzzy ELM with the capacity for

online learning was devised by Rong et al. (2009). Compared with

other existing mechanisms it presents remarkable superiority with

decent accuracy and reduced training time. Motivated by this,

aiming at efficient control of redundant manipulators, this study

proposes an online learning fuzzy ESN (OLFESN). To be more

specific, the proposed OLFESN is designed, based on an online

learning strategy for ESN, to erect an efficient control scheme

for redundant manipulators, while the FIS is also incorporated

to improve the accuracy and efficiency of the proposed network.

Then, a corresponding control scheme for redundant manipulators

is constructed. The rest of this study is organized as follows: Section

2 makes known some preliminary steps to lay the foundation for

this study. Then, the OLFESN is proposed, based on which the

control scheme for redundant manipulators is devised in Section

3. In Section 4, simulations and experiments are carried out to

investigate the feasibility and effectiveness of the proposed control

scheme. In the end, Section 5 concludes this study.

2 Preliminaries

In this section, the forward kinematics of redundant

manipulators, the Takagi–Sugeno–Kang (TSK) fuzzy system,

and ESN are briefly reviewed, which are the bases of the

proposed OLFESN.

2.1 Forward kinematics of redundant
manipulators

The forward kinematics equation that depicts the non-linear

transformation of redundant manipulators from the joint angle

q ∈Ra to the Cartesian position r ∈Rb with a > b can be

depicted as

ϒ(q) = r, (1)

where ϒ(•) signifies the non-linear mapping function, which

depends upon the structural properties of redundant manipulators

(Sun et al., 2022b; Zhang et al., 2022). Where after, evaluating the

derivative of Equation (1) in terms of time contributes to

J(q)q̇ = ṙ, (2)

in which J(q) = ∂ϒ(q)/∂q ∈ Rb×a denotes the Jacobian

matrix; q̇ denotes the angular velocity; ṙ denotes the velocity

of the end-effector (Yan et al., 2024). Heretofore, the non-linear

transformation (Equation 1) is converted to the affine system

(Equation 2) with the convenience of gaining the redundancy

solution of redundant manipulators (Sun et al., 2023a).

2.2 Takagi–Sugeno–Kang fuzzy system

In the TSK fuzzy system with given input

α= [α1;α2;· · ·;αm]∈R
m, the k-th rule can be depicted as

Kerk et al. (2021) and Zhang et al. (2023):

Rule k:IF α1is A1k, α2 is A2k,· · ·,αmis Amk,

THEN χk = β0k + β1kα1 + β2kα2 + · · · + βmkαm, (3)

where k = 1, 2, · · · , k̃ is the index of the fuzzy rule with k̃ being

the number of fuzzy rules; Amk denotes the fuzzy subset of them-th

element of input α in the k-th rule; χk signifies the output of the

k-th rule; βm̃k(m̃ = 0, 1, · · · ,m) is the consequent coefficient of the

k-th rule. Considering the m-th element of input in the k-th rule,

the degree to which it matches the fuzzy subset Amk is measured

by its membership function ζAmk
(αm), which can be any bounded

non-constant piecewise continuous function (Rezaee and Zarandi,

2010). Let
⊗

denote the fuzzy conjunction operation, and then the

firing strength (if part) of the k-th rule is defined as

Ok(α, pk)=ζA1k
(α1, p1,k)⊗ ζA2k

(α2, p2,k)⊗ · · · ⊗ ζAmk
(αm, pm,k),

(4)

where pk is the parameter of membership function ζ (•) in the k-th

rule. Normalizing (Equation 4), there is

9(α, pk) =
Ok(α, pk)

∑k̃
k=1 Ok(α, pk)

. (5)

Ultimately, for the input α, the output of the TSK fuzzy model

can be obtained as

ỹ =

∑k̃
k=1 θkOk(α, pk)

∑k̃
k=1 Ok(α, pk)

=

k̃
∑

k=1

θk9(α, pk), (6)
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with θk = (θk1, θk2, · · · , θkm).

2.3 Echo state network

The ESN is composed of an input layer, a reservoir, and an

output layer, which enjoy l, r, and o neurons, respectively (Calandra

et al., 2021). For a complete network, the input layer, reservoir, and

output layer re connected by input weightsWin ∈ Rr×l and output

weights Wout ∈ Ro×r , respectively, while the internal neurons of

the reservoir are connected to each other by dint of Wres ∈ Rr×r

(Chen et al., 2024a). In particular, the spectral radius ofWres needs

to be <1 to capture the echo state property. At the time of step

i, designate input and reservoir states as xi = [x1; x2; · · · ; xl] ∈

Rl and ιi = [ι1; ι2; · · · ; ιr] ∈ Rr , respectively. The reservoir is

updated through

ιi = f
(

Winxi +Wresι(i−1)

)

, (7)

and the output of the network is

yi = g(Woutιi), (8)

with yi =
[

y1; y2; · · · ; yo
]

∈ Ro. Furthermore, for working out

the output weights, keep track of reservoir state and outputs in

matrices 3 =
[

ι1, ι2, · · · , ιĩ
]

∈ Rr×ĩ and Y =
[

y1, y2, · · · , yĩ
]

∈

Ro×ĩ, respectively, during training, where ĩ denotes the number of

training samples. Where after, by solving

min
Wout

: ‖Y −Wout3‖22, (9)

the output weights are obtained

Wout = Y3T(33T)
−1

(10)

where the superscripts T and −1 represent transpose and inversion

operations of a matrix, respectively (Su et al., 2023b; Liao et al.,

2024a).

3 Online learning fuzzy echo state
network

Stimulated by the commonalities between ESN and FIS,

OLFESN is proposed in this section. Then, an OLFESN-based

control scheme for redundant manipulators is devised.

3.1 OLFESN

Considering (Equation 4), the firing strength (if any) in the

TSK fuzzy system involves multiple fuzzy conjunction operations,

providing sufficient computing power for thoroughly exploring and

utilizing input information. Furthermore, each rule is normalized

to ensure that different rules have a comparable contribution

to the system. Similarly, in the ESN, it is the reservoir that is

responsible for implementing the above function, by which the low-

dimensional input is mapped to a high-dimensional dynamic space.

In addition, the outputs of different reservoirs are adjusted to the

same extent with the aid of the activation function f (•), which plays

the same role as Equation (5). Therefore, the reservoir is adopted

to reveal the firing strength normalized in the proposed OLESN.

Specifically, the OLESN with k̃ reservoirs is established as follows:

Given training samples i =
{(

xi, yi
)}ĩ

i=1
, the state of the k-th

reservoir is updated via

ιki = fk(Winxi +Wresιk(i−1)), i = 1, 2, · · · , ĩ, (11)

where fk(•) denotes the activation function of the k-th reservoir,

and ĩ is the number of training samples. Collect all states of the

k-th reservoir in 4k = [ιk1, ιk2, · · · , ιkĩ, and then integrate all k̃

reservoirs elicited

3 = 4142 · · ·4k̃
. (12)

Thus, the output of the fuzzy ESN (FESN) can be formulated as

Y = Wout3, (13)

with Y = [y1, y2, · · · , yĩ]. Similarly to Equation (10), output

weights are obtained via

Wout = Y3T(33T)
−1

. (14)

At this point, the derivation of FESN is complete. Therewith, taking

into account the need for online learning, the OLFESN is proposed,

which incorporates the FESN and the online learning strategy for

ESN. To be more specific, when data shows up constantly, the

OLFESN is summarized as follows:

3.2 Initialization phase

a. Given the initial training samples i0 =
{(

xi, yi
)}ĩ0

i=1
, update

and transcribe the state of all k̃ reservoirs using Equation 11.

b. Taking advantage of Equation 12, figure out the initial state

matrix 30 for FESN.

c. Compute the initial output weights W0
out = T03

T
0 Y0 with

T0 = (3T
0 30)

−1
and Y0 = [y1, y2, · · · , yĩ0 ].

d. Let p = 0.

3.3 Sequential learning phase

a. With the new sample set

ip+1 =
{(

xi, yi
)}

∑p+1
j=0 ĩj

i=(
∑p

j=0 ĩj)+1
,

solve problem

∥

∥

∥
W

p+1
out [3p, 3p+1 ]− [Yp, Yp+1 ]

∥

∥

∥

2

2
, (15)

where ĩp+1 signifies the count of samples in the (p + 1)-

th set; 3p+1 is the corresponding reservoir state, obtained by

Equations 11, 12; Yp+1 = [y(
∑p

j=0 ĩj)+1, · · · , y(
∑p+1

j=0 ĩj)+ 1
].
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b. Let 9p = H−1
p with HP = [3p, 3p+1 ][3p, 3p+1]

T .

c. Update output weights

9p+1 = 9p − 9p3p+1 (I + 3T
p+19p3p+1 )

−1
3T

p+ 19p,

W
p+1
out = W

p
out + (Yp+1 −W

p
out3p+1 ) 3T

p+19p+1. (16)

d. Let p = p+ 1. (Back to step 2).

Remark 1: For the case that the new samples come out one by

one, with the aid of the Sherman-Morrison formula (Chen et al.,

2024b), Equation 16 is further simplified as

9p+1 = 9p −
9pιp+1ι

T
p+19p

1+ ιTp+ 19pιk1
,

W
p+1
out = W

p
out + (yp+1 −W

p
outιp+1 ) ιTp+19p+1. (17)

3.4 OLFESN-based control scheme

In this section, an OLFESN-based control scheme for

redundant manipulators is developed for performing the given

missions. At moment t, define θa (t) and 1θa (t) as the actual joint

angle and actual joint angle increment, respectively. Meanwhile,

the actual and desired positions of the end-effector are denoted by

ζa (t) and ζd (t), respectively. Correspondingly, at moment t + 1,

the desired position increment for the end-effector is expressed

as 1ζ (t + 1) = ζd (t) − ζa (t). Incorporate θa (t), 1θa (t), and

1ζ (t + 1), which is the input of the OLFESN and denoted by

x(t) for the convenience of subsequent expressions. Then, applying

Equations 11–13, we gain the joint angle increment 1θa (t + 1) for

the next moment, i.e., the output of OLFESN. Hence, the control

signal for the next moment is acquired, i.e., θa (t + 1) = θa (t) +

1θa (t + 1 ).

Note that, in the OLFESN, there is a premise that sample

(x(t), y(t)) is accessible all the time. However, for the proposed

scheme, the desired joint angle increment 1θd (t + 1), i.e., y(t),

is unrevealed in reality. In addition, taking into account output

weights Wout , it ought to be updated in real-time to generate the

control signal. An accepted wisdom is making use of the teaching

signal to update output weights Wout . More specifically, the error

ǫ (t + 1) between the desired joint angle increment1θd (t + 1) and

the actual one 1θa (t + 1) plays a part in the teaching signal in the

proposed scheme.

Informed by Equation (2), the transformation between joint

angle increment 1θ(t) and position increment 1ζ (t) of the end-

effector is devised as

J(t)1θ(t) = 1ζ (t). (18)

Then, we have

ζd (t + 1) − ζa (t + 1) = J (t + 1) (θd (t + 1) − θa (t + 1))

= J (t + 1) (θa (t) − 1θd (t + 1) − (θa (t) + 1θa (t + 1)))

= J (t + 1) (1θd (t + 1) − 1θa (t + 1)) . (19)

Solving Equation 19, the teaching signal is collected as

ǫ (t + 1) = J+(t + 1)(ζd (t + 1) − ζa (t + 1)). (20)

Until now, the proposed control scheme for redundant
manipulators based on the above-mentioned teaching signal
and OLFESN has been constructed as

9(t + 1) = 9(t)− 9(t)3(t + 1)(I + 3(t + 1)T9(t)3(t + 1))
−1

3(t + 1)T9(t), (21)

Wout(t + 1) = Wout(t)+ ǫ (t + 1)3(t + 1)T9(t + 1),

which is outlined and summarized in Algorithm 1.

1: Input: r: the number of neurons in the reservoir

2: k̃: the number of reservoir

3: θa(0): the initial joint angle

4: ζ a(0): the initial position of

end-effector

5: ζ d: the desired trajectory of the

end-effector

6: Output: θa(t + 1): the control signal

7: Initialize: ιk(0) = 0; 1θa(0) = 0; Wout(0) = 0;

8: for t = 0 :T do

9: 1ζ (t + 1) = ζ d(t + 1)− ζ a(t);

10: x(t + 1) = [θ a(t);1ζ (t + 1);1θa(t)];

11: ιk(t + 1) = f (Winx(t + 1)+Wresιk(t)), k = 1, 2, . . . , k̃;

12: λ(t + 1) = ι1(t + 1)ι2(t + 1) · · · ι
k̃
(t + 1);

13: 1θa(t + 1) = Wout(t)λ(t + 1);

14: θa(t + 1) = θa(t)+ 1θa(t + 1);

15: Control the manipulator using θa(t + 1);

16: Obtain the actual position of end-effector

ζ a(t + 1);

17: Compute Jacobian matrix J(t + 1);

18: ǫ(t + 1) = J†(t + 1)(ζ d(t + 1)− ζ a(t + 1));

19:
9(t + 1) = 9(t)− 9(t)3(t + 1)(I + 3(t + 1)T9(t)3(t + 1))

−1

3(t + 1)T9(t);

20: Wout(t + 1) = Wout(t)+ ǫ(t + 1)3(t + 1)T9(t + 1).

21: end for

Algorithm 1. Proposed Control Scheme

4 Illustrative examples

In this section, simulations on redundant manipulators are

devised and executed, covering a 6-DOF manipulator and a 7-

DOF one, to verify the effectiveness and feasibility of the proposed

scheme (Equation 21).

4.1 UR5

A UR5 manipulator is employed with the aid of the proposed

scheme (Equation 21) in this simulation, which possesses 6 DOFs

and is explicitly revealed in Zheng et al. (2019) and Chico et al.

(2021). The task is to track a four-leaf clover path within 20 s,

where the initial angle state is θ(0) = [0; −π/2; 2π/3; 0; 0; 0]

rad. With regard to OLFESN, the input weights Win and internal

connection weights of reservoir Wres are randomly initialized to
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FIGURE 1

Simulative experiment results on the UR5 manipulator synthesized by the proposed scheme (Equation 21) for tracking a four-leaf clover path. (A)

Profiles of the tracking error. (B) Profiles of the joint angle. (C) The desired trajectory and the actual trajectory.

FIGURE 2

Simulative experiment results on the Frank Emika Panda manipulator synthesized by the proposed scheme (Equation 21) for tracking a tricuspid valve

trajectory. (A) Profiles of the tracking error. (B) Profiles of the joint angle. (C) The desired trajectory and the actual trajectory.

[−0.5, 0.5] by using MATLAB’s 2022 rand(•) function. In addition,

we bring in a total of three reservoirs, each with 500 neurons

and the hyperbolic tangent function (tanh(•)), while the spectral

radius is set to 0.8. Specifically, simulation results are exhibited

in Figure 1, where Figure 1A illustrates the position errors of

the end-effector during task execution. One can observe that the

manipulator, with the aid of the proposed scheme (Equation 21),

does the job with flying colors, and the position error of the end-

effector is of the order 10−4 m. Correspondingly, trails of joint

angles and task completion are shown in Figures 1B, C, respectively.

Note that, during the task, the joint angles of the manipulator

are evolving in a gentle manner, which is capable of reducing the

wear between mechanical components to a certain extent, thus

elongating the service life of the manipulator. In the end, Figure 1C

further indicates that the task of tracking the four-leaf clover

path is commendably accomplished by the manipulator, with the

actual trajectory synthesized by the proposed scheme (Equation 21)

excellently covering the desired one.

4.2 Franka Emika panda manipulator

In this part, the simulation of a Franka Emika Panda

manipulator is designed and carried out to further verify

the effectiveness and feasibility of the proposed scheme

(Equation 21). The Franka Emika Panda is a 7-DOF

manipulator with structural information covered by Shahid

et al. (2020) and Gaz et al. (2019), which is necessary to track

a tricuspid valve trajectory within 20 s. The initial angle state is

θ(0) = [0; −π/4; 0; −3π/4; 0;π/2; π/4] rad, while the other

parameters are in line with those in Section 4.1. Figure 2 reveals

simulation results, where position errors of the end-effector are

exhibited in Figure 2A. Viewing position errors, one can lightly

draw the conclusion that the Franka Emika Panda manipulator

controlled by the proposed scheme (Equation 21) finishes the

given task successfully, with the position error being of the

order 10−5 m. Then, pay attention to the variation of joint

angles and task completion, which are depicted in Figures 2B,
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FIGURE 3

Snapshots of the Franka Emika Panda manipulator simulated on the (V-REP) platform for tracking the tricuspid valve trajectory with the aid of the

proposed scheme (Equation 21).

C, respectively. All these results indicate the success of the task,

which further verifies the feasibility and effectiveness of the

proposed scheme (Equation 21) in the field of robot control.

Furthermore, the corresponding simulation experiments are

executed on the virtual robot experimentation platform (V-REP)

to vividly simulate task execution. Snapshots of the Franka

Emika Panda manipulator with the aid of the proposed scheme

(Equation 21) are displayed in Figure 3, from which we can

observe that the Franka Emika Panda manipulator safely and

efficiently performs the task of tracking the tricuspid valve

trajectory, thus further verifying the reliability of the above

simulation results and the practicability of the proposed scheme

(Equation 21).

5 Conclusion

Based on the online learning strategy for ESN and FIS, an

OLFESN has been proposed, in which the new data is allowed

to arrive one by one or in blocks. There are no additional

restrictions on the size of blocks, thus highly extending the

application scenarios of the proposed OLFESN. Subsequently,

to cope with the complicated control problem of redundant

manipulators, an OLFESN-based control scheme has been

constructed from a kinematics point of view. In the end,

simulations and experiments on the UR5 and Franka Emika

Panda manipulators have been carried out and confirmed

the effectiveness and feasibility of the proposed control

scheme (Equation 21). Incorporating joint constraints into

the proposed scheme (Equation 21) is a future research

direction, that is capable of improving the safety and efficiency of

task execution.
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