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Robot control in complex and unpredictable scenarios presents challenges such

as adaptability, robustness, and human-robot interaction. These scenarios often

require robots to perform tasks that involve unknown objects in unstructured

environments with high levels of uncertainty. Traditional control methods, such

as automatic control, may not be suitable due to their limited adaptability and

reliance on prior knowledge. Human-in-the-loop method faces issues such as

insu�cient feedback, increased failure rates due to noise and delays, and lack of

operator immersion, preventing the achievement of human-level performance.

This study proposed a shared control framework to achieve a trade-o� between

e�ciency and adaptability by combing the advantages of both teleoperation and

automatic control method. The proposed approach combines the advantages

of both human and automatic control methods to achieve a balance between

performance and adaptability. We developed a linear model to compare three

control methods and analyzed the impact of position noise and communication

delays on performance. The real-world implementation of the shared control

system demonstrates its e�ectiveness in object grasping and manipulation

tasks. The results suggest that shared control can significantly improve grasping

e�ciency while maintaining adaptability in task execution for practical robotics

applications.
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1 Introduction

Research on robot control has been an active area of investigation for several decades,

with applications in a wide range of fields including hazardous environments (Tsitsimpelis

et al., 2019), disaster relief (Norton et al., 2017), deep space exploration (Diftler et al.,

2012), and deep sea exploration (Khatib et al., 2016). With the advent of deep learning

techniques, automatic control methods have undergone significant advancements in recent

years. These methods often excel in controlling efficiency for a single purpose and within

a specific scenario, achieving high efficiency of manipulation. However, they lack task

adaptability, particularly when it comes to achieving specific grasps for the same object

based on different usage intentions (Brahmbhatt et al., 2019). The integration of human

intelligence enables robots to increase the variety of objects used and effectively deal

with unpredictable problems in unstructured environments (Hokayem and Spong, 2006).
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Therefore, the use of human intelligence in teleoperation methods

has also received extensive research attention (Moniruzzaman et al.,

2022). Both of these methods have their respective advantages in

terms of task efficiency and adaptability.

In Figure 1, we investigated the efficiency and adaptability

of different control methods and compared them with human

performance, all depicted on logarithmic scales. Reasonably,

direct human hand grasping demonstrates the highest efficiency

and adaptability. Despite modern automatic control algorithms

achieving planning times under 1 second (Morrison et al., 2018),

their overall work efficiency remains an order of magnitude lower

than human operation, particularly noticeable with objects under 8

cm in size, limited by clamp size. Teleoperation can adapt to object

sizes similarly to human, with peak efficiency occurring around

medium-sized objects, approximately 4.5 cm in size. As objects

deviate from this range in either direction, teleoperation efficiency

declines, as indicated by the green bold curve.

Data-driven grasp synthesis are widely used in robotic grasping

and manipulation (Mahler et al., 2017, 2019; Morrison et al.,

2018). Grasping strategies using parallel clamps and suction cup

grippers have been widely used. This approach often utilizes

supervised learning to sample and rank candidate grasps. The

synergy of precise object positioning through automatic control

and the low-dimensional end effector enables rapid grasping.

Nonetheless, as shown in Figure 1, this approach is limited by

the size of end effector and cannot accommodate objects of all

sizes. In recent years, there has been a widespread adoption of

model-based approaches (Nagabandi et al., 2019) and model-

free reinforcement learning techniques (Chen et al., 2021). These

methods leverage deep learning techniques to facilitate the learning

of dexterity in multi-fingered hands to enhance the adaptability of

this method. However, these methods are known to face challenges

due to the high dimensional search space, resulting in low success

rates and robot hand configurations that do not emulate natural

human movements. As an alternative, learning with demonstration

(Rajeswaran et al., 2018) has shown promise as a method to reduce

search space and increase the success rate. However, the quality

of the demonstration data is often a bottleneck in this approach.

Although current state-of-the-art automatic control algorithms

have demonstrated success in solving specific tasks and adaptability

to objects of various sizes, they still face challenges when it comes

to handling unpredictable scenarios. Even with recent advances in

deep learning, the challenge of achieving human-like dexterity and

adaptability in robotic control remains an open research question,

requiring further investigation.

Human-in-the-loop can adapt to complex scenarios with the

help of cameras, monitors, motion capture system, etc. It has

been shown to be a promising method for achieving high-level

control of robots, particularly in tasks that require human-like

dexterity and adaptability. As illustrated in Figure 2, due to the

highly anthropomorphic structure of the end effector, which

resembles the human hand, this approach achieves versatility in

grasping objects of all sizes, making it a widely adopted method

in robot grasping and manipulation. In addition, research has

shown that contact location is largely dependent on post-action

with objects (Brahmbhatt et al., 2019). However, teleoperation

has certain limitations that need to be addressed. One of the

principal hurdles stems from the inescapable sensor noise and

communication channel delays (Farajiparvar et al., 2020), which

may precipitate a surge in failure rates. Another concern pertains to

the dearth of substantial feedback, potentially resulting in reduced

operator immersion and an upsurge in time and labor requirements

throughout the operation (Moniruzzaman et al., 2022). These

limitations have caused teleoperation to operate significantly below

human-level efficiency. Fishel et al. (2020) found the performance

of the world’s most advanced human operator piloting the telerobot

to be anywhere from 4 to 12 times slower than that same operator

with their bare hands. As such, the shared control method (Kim

et al., 2006) has been proposed as a means of combining the

advantages of both methods to achieve “fast and accurate” grasping

and tool use.

For human, individuals do not possess exact knowledge of the

object’s position, but instead receive information about the relative

position of the human hand and the object, and subsequently send

high-frequency velocity commands to the hand to complete the

task (Jeka et al., 2004). However, when the end effector changes

from a human hand to an anthropomorphic hand, the change

in mechanism and the increase in delay and noise make control

challenging. This can lead to a prolonged operation time and a

decreased success rate. In this study, we proposed a shared control

framework for robotic grasping tasks. The proposed approach

combines the advantages of both human and automatic control

methods and aims to achieve a balance between performance

and adaptability. This study proposes integrating a camera into

the teleoperation system to infer the position and size of the

object, thereby enabling automatic control to initialize the grasping

position. The human operator then takes over control for the

adaptability as the human control.

To demonstrate the effectiveness of this proposed approach,

a model was constructed to compare the performance metrics

of shared control, human control, and automatic control

in the presence of noise. It is assumed that the velocity

during the operation follows a linear relationship (Jerbi et al.,

2007), where the speed of the motion is proportional to

the distance from the target position. The modeling results

indicate that the shared control method exhibits similar trajectory

smoothness and speed as the automatic control method and

similar grasping accuracy as the human control method, thus

achieving a balance between performance and adaptability.

Furthermore, the impact of delay and error on the system

was analyzed. The results indicate that only large delays

have a significant impact on the system due to human

involvement.

This work presents a shared control framework that combines

human intelligence and automatic control to improve the

performance of robotic grasping tasks in unpredictable

environments, as shown in Figure 2. Our main contributions

include:

1) This work proposes a human-robot shared control method

by integrating human control with autonomous control.

The simulation and practical deployment of this method

demonstrates that it effectively resolves the conflict between

efficiency and adaptability.
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FIGURE 1

Task e�ciency-Object size relationship between direct human control, auto control and teleoperation in logarithmic scales. Detailed data are in the

Supplementary material.

FIGURE 2

Shared control systems can accomplish di�erent kinds of tasks, e.g., interacting with the cup for di�erent functional intent: use (A) and hando� (B);

holding the clamp (C); extrusion nozzle of windex bottle (D).

2) A linear dynamic model was established to

quantitatively analyze the performance of the three

control strategies.

3) The proposed quantitative analysis method has been further

extended to analyze the impact of delays and position

estimation errors on human-in-loop systems.
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2 Related work

Research in the field of shared control and teleoperation with

assistance aims to enable robots to help operators complete desired

tasks more efficiently. In teleoperation with assistance, the system

primarily helps to simplify and facilitate the user’s manual input,

ensuring the user retains direct control over the device. In contrast,

shared control systems aim to understand and predict the user’s

intent, allowing the system to autonomously perform some tasks

and reduce the cognitive load on the user.

Recent advancements in machine learning techniques have led

to the development of methods such as glove-based (Wang and

Popović, 2009) and vision-based (Handa et al., 2020) tracking to

achieve accurate joint position tracking. The structural differences

between human and robot hands have led to the proposal of

techniques such as kinematic remapping (Handa et al., 2020) and

retargeting (Rakita, 2017), which simplify the manipulation task

and allow the execution of complex manipulation tasks beyond

simple pick-and-place operations.

To provide operators with sufficient feedback to understand

the situation and provide a suitable control interface for efficient

and robust task execution, haptic feedback and model prediction

(Lenz and Behnke, 2021) have been incorporated into the systems,

significantly increasing work efficiency. Despite this, operators may

still experience prolonged task completion times when working in

close proximity to the environment, and may encounter difficulties

when working remotely due to increased latency and an incomplete

visual field. To address this, researchers have proposed methods for

robots to complete tasks autonomously.

Techniques such as those proposed in Zhuang et al. (2019),

which aid in object grasping by maximizing the contact area

between the hand and the object after collision, and in Rakita et al.

(2019), which construct action vocabularies to predict intent based

on user actions, limited by the quantity and quality of the action

vocabulary, have been proposed. Furthermore, methods such as

those outlined in Rakita (2017), which relax the constraint of

direct mapping between hand position and orientation and end

effector configuration to smooth out the motion trajectory, have

also been proposed. However, there remains a dearth of research on

techniques that automatically adjust trajectories to reduce energy

expenditure by operators and improve the efficiency of robot

systems.

3 Methodology

The output of the robot performing the grasping task includes

the wrist’s pose (P,8) and hand’s joint angle θ . Current control

methods are categorized into automatic control, teleoperation, and

shared control. Shared control is a method that combines the

advantages of both automatic control and teleoperation, which

synergizes human intelligence with automation to optimize task

performance and efficiency. As depicted in Figure 3, the system

consists of two distinctive modes: Human-Operator Control Mode

and Automatic Control Mode. In Human-Operator Control Mode,

the target pose of the robot wrist is (P
target
H ,8

target
H ) and the

hand’s joint angle is θ
target
H , which are controlled by the operator’s

wrist pose (PH ,8H) and hand angle θH . This comprehensive

system harnesses the operator’s cognitive capabilities to adeptly

select objects and the appropriate manipulationmethods, especially

within complex environments. In Automatic Control Mode, the

target pose of the robot wrist is (P
target
A ,8

target
A ), where the thumb of

the robot hand aligns with the edge of the object. The position and

size of the object is estimated through the changes in the robot wrist

pose (PR,8R) and image y. Thus, the shared control combines the

two methods to achieve control of the robot (P
target
S ,8

target
S , θ

target
S ).

The entire shared control process is shown in Figures 3A–C.

Firstly, as shown in Figure 3A, there are three objects on the table

from the YCB database: a power drill, a cup, and a hammer. The

operator uses the image feedback from the global camera to select

the object to be grasped and the direction of the object to be

grasped, as shown by the different trajectories in the figure.The

operator’s finger and external joint instructions are seamlessly

transmitted to the robot via a data glove and a motion capture

device. Suppose that we have chosen to grasp the hammer from

the top down, then as shown in Figure 3B, the automatic control

mode takes over the program seamlessly. Initially, the manipulator

is moved to align the object within the field of view through

visual positioning, followed by a downward movement to compare

pre and post movement image changes, enabling accurate depth

information retrieval. This valuable data guides the manipulator to

an optimized initial position for grasping. Finally, as illustrated in

Figure 3C, the operator strategically considers the purpose of use

and hand off, adeptly adjusting the grasping position to successfully

complete the manipulation task.

3.1 Human-operator control mode

In this mode, the operator leverages their cognitive abilities

and physical movements to guide the robot’s actions. The system

implemented in this study incorporates a human-operator control

mode, which facilitates selection of the target object and the

manipulation method. As it is challenging to parse control signals

directly from the human brain, a motion capture device was

designed to interpret brain signals and transmit commands to the

robot. This device includes data gloves for recording the position

of finger joint and IMU for recording the position of arm joint, as

the operation-site depicted in Figure 4. The data gloves use serial

communication, and the IMU uses Bluetooth communication.

video is available in the Supplementary material.

The shared control hardware platform comprises of an

operation-site and a remote-site with a delay of approximately

30 ms. The remote site comprises a robot arm and a custom

robot hand (bin Jin et al., 2022), which is optimized to replicate

the natural movement of the human hand, and is equipped with

6 active and 15 passive degrees of freedom. The custom hand

is designed to adapt to the shape of objects and has a loading

capacity of 5 kg. Furthermore, it passed 30 out of 33 grasp tests on

everyday objects according to the taxonomy of Feix et al. (2016),

demonstrating its suitability for manipulation and using objects in

daily life. The remote-site also includes a local camera Realsense

D435 for estimating the position and size of objects, and a global

camera logitech carl zeiss tessar hd 1080p for providing feedback to

the operator.
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FIGURE 3

Overview of the shared control architecture for object grasping. (A) The operator uses the inertial measurement unit (IMU) to obtain the pose of the

wrist (PH,8H) and the data gloves to obtain the position of the hand joints θH to select the target object. (B) is the Automatic Control Mode, which

estimates the position and size of the object through the changes in the robot wrist pose (PR,8R) and image y, and then gives the robot wrist

command (P
target

A ,8
target

A ), where the thumb of the robot hand aligns with the edge of the object. (C) The human operator resumes control to choose

the robot wrist pose (P
target

H ,8
target

H ) based on the specific purpose of use, such as picking up or handing o� the object.

In the operation site, a full-degree-of-freedom data glove is

employed to record 20 finger joints with high precision (< 1

accuracy). The pip joint, which offers the largest workspace,

controls the bending of the fingers. Moreover, the ab/ad joint

directly corresponds to the respective human hand joints. To

mitigate the jitter effect during handmovement, a low-pass filtering

method is applied for a smooth and stable hand motion.

The robot hand’s palm pose is entirely governed by the human

hand’s wrist. The control signal is derived from the wrist’s pose

relative to the shoulder, inferred from the angles of the arm joints

recorded by three inertial sensors secured to the arm. Specifically,

three IMU sensors are attached to the upper arm, forearm, and

wrist to measure the angle information of the shoulder joint, elbow

joint, and wrist joint. With the shoulder joint as the reference point

and considering the arm’s length information, the position and

posture of the wrist joint relative to the shoulder are calculated for

system control.

In a two-dimensional visual field teleoperation system,

inefficiency can significantly arise from the operator’s inadequate

ability to perceive depth. Figure 5, depicts the depth estimation test

of the operator. Figure 5A is a test scenario in MuJoCo, where

the red ball represents the actual position of the wrist, with a

diameter of 1.6 cm; the green square is the target position of the

wrist, with a side length of 2 cm, and each test varies randomly

within the range x, y, z ∈ [–5 cm, 5 cm]. The operator estimates

the depth by comparing the size of the objects in the field of view.

The camera’s field of view direction is vertically downward along

the z-axis, and the initial distance from the target position is 50

cm. Two groups of experiments were conducted with different

operators, each experiment being conducted 20 times, resulting in

the outcome shown in Figure 5B. The average error was 2.4 cm, and

the fluctuation range was large. Among them, 30% of the results

exceeded a range error of 5 cm, which would significantly reduce

the success rate of the task.

3.2 Automatic control mode

The Automatic Control Mode employs the camera to verify the

spatial position of the target object for grasping and subsequently

initializes the position of the robot hand. Once the target object

is detected within the local camera’s field of view, the Automatic

Control Mode is activated. The robot hand is then moved to align

Frontiers inNeurorobotics 05 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1429952
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Cheng et al. 10.3389/fnbot.2024.1429952

FIGURE 4

The hardware platform for shared control. The Remote-site and the operator-site are separated by a black ba	e.The left half is remote-site and the

right half is operator-site. The remote site consists of an UR5e robot arm and a custom robot hand to interact with the environment, a local camera

to estimate the position and size of objects, and a global camera to provide feedback. The operator-site consists of three IMUs for obtaining the arm

joint position and gloves for obtaining finger joint position.

FIGURE 5

(A) Teleoperation of a two-dimensional visual field depth estimation scenario, with the goal of aligning the center of the red ball with the center of

the green square; (B) Statistical results of the position error in depth direction.

the camera’s center with the object’s center, while keeping their

relative posture unchanged.

The cornerstone of this feedback control system lies in the

precise measurement of the object’s size and spatial measurement

relative to the hand. To achieve this, a monocular vision method

is employed in conjunction with the high-precision position

measurement of the robot arm. This combination ensures accurate

and reliable detection of the target object’s location and size,

enabling the system to execute manipulation tasks with efficiency

and precision.

In Figure 6A, the high-precision position measurement of the

robot arm is used to record position differences before and after

movement, along with changes in the object’s image size, facilitating

the inference of the object’s information. Derived from the pinhole

imaging principle, we can obtain the following two algebraic

relationships:

h1 =
f

d1
×H (1)

h2 =
f

d1 + d2
× H (2)

In the above two formulas, the pixel length h1, h2 of object is known

using the minimum area rectangle; The focal length of the camera f

and the distance d2 moved by the robot arm. So we can get the real

geometry length H of the object:

H =
h1h2d2

f (h1 − h2)
(3)

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1429952
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Cheng et al. 10.3389/fnbot.2024.1429952

FIGURE 6

(A) Infer the position and size of the object based on the camera imaging principle. H represents the actual length of the object. h1 and h2 represent

the pixel length of the object. f represents the focal length of the camera. d1 represents the distance of the object from the camera and d2 represents

the distance moved. (B) Estimation of distance d1 between the size of the object and the camera. (C) Estimation of size of the object H.

d1 =
h2d2

h1 − h2
(4)

As illustrated in Figures 6B, C, this method can accurately estimate

the size of the object H and the distance d1 between the object

and the camera, reducing both depth distance estimation and

object size estimation to less than 1 cm. Based on these two

pieces of information, the automatic control method can achieve

autonomous positioning of the robot wrist location, reducing the

wrist position error in the depth direction from 2.4 cm to less than

1 cm, thus enhancing the efficiency and success rate of the task.

After successfully aligning the camera with the target object,

following the aforementioned pinhole imaging principle, the robot

proceeds to approach the object. Throughout this phase, the system

continuously calculates the size and centroid position of the object.

The robot diligently continues this approach until the distance

between the hand and the object reaches a predefined threshold. At

this point, the robot transitions to the target position, as illustrated

in Figure 3B, where the thumb of the robot hand aligns perfectly

with the edge of the object. This precise alignment facilitates

subsequent operational tasks, such as grasping, manipulating, or

interacting with the object effectively and accurately. Automatic

control provides an effective initialization of the robot’s position,

thereby improving overall task performance by minimizing errors

and increasing the success rate of subsequent actions.

3.3 Shared control framework

The shared control framework adjusts the proportional

coefficient α of the above two control methods to manage the robot

wrist pose (P
target
S ,8

target
S ).

(P
target
S ,8

target
S ) = α(P

target
A ,8

target
A )+ (1− α)(P

target
H ,8

target
H )

α =















1, target object is detected and |P
target
A −

P
target

h
| < 0.3m

0, otherwise

(5)

As shown in Equation 5, the proportional coefficient α is a

binary variable. When the target object is within the local camera’s

field of view and the position commands of both control methods

are within 30 cm of each other, the proportional coefficient is

set to 1, utilizing the Automatic Control Mode. If a discrepancy

occurs, the operator can send a position command opposite to the

automatic control to increase the distance beyond 30 cm, causing

the program to revert to Human-Operator Control Mode for object

reselection. Additionally, when the target object is not detected or

after the Automatic Control Mode has completed, the proportional

coefficient α is set to 0, switching to the Human-Operator Control

Mode.

As illustrated in Figure 7, the process of grasping an object

using shared control alternates between the two control modes.

Figures 7A, E, F all utilize the Human-Operator Mode. Specifically,

Figure 7A represents the search for the target object, while

Figures 7E, F indicate the adjustment of the wrist’s pose during

grasping. Figures 7B–D shows the process of the robot wrist

approaching the object in the Automatic Control Mode. In the local

image, object segmentation and detection are carried out using

OpenCV algorithms. The process begins with Gaussian blur to
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FIGURE 7

Implementation of the shared control framework in physical systems. (A, E, F) Are Human-Operator Mode, (B–D) are Automatic Control Mode.

reduce image noise, followed by conversion to grayscale. Otsu’s

thresholding method (Otsu, 1979) is then applied to segment the

target object from the background. Rectangular contour detection

is used to identify the object’s outer contour, as indicated by the

red rectangle in the figure. This allows for the calculation of the

object’s position on the plane to align the object’s center with the

camera. Finally, based on the pinhole imaging principle, two images

are obtained by moving the robotic arm to a fixed position, and

the estimate of object’s position and size information is derived, as

shown in Figures 7C, D.

Using this shared control method for object grasping

significantly improves the process’s efficiency. While maintaining

task adaptability, the task completion time is reduced to

approximately 10 seconds.

4 System analyze

In order to evaluate the performance of the three control

methods, namely automatic, teleoperation, and shared control, a

system identification method was employed to model the operation

process to get quantitative metrics. Furthermore, the impact of

errors and noise on the system was also analyzed. The system

identification method is a widely used technique in control systems

that can be used to identify the dynamic characteristics of the

system by analyzing the input-output data of the system.

The results of the modeling indicate that the shared control

method combines the advantages of the other two approaches

and compensates for their respective limitations. Specifically, it

not only exhibits fast grasping speed and smooth trajectories,

similar to automatic control, but also maintains high grasping

accuracy through the incorporation of human intelligence. This

highlights the potential of the shared control method in improving

the performance and efficiency of robot systems in real-world

scenarios.

FIGURE 8

The modeling of robot system. The red ball represents current

position of the robot x(t). The blue ball represents observation target

position y(t). The green ball represents actual target position xref (t).

The goal of the system is to move the red ball to the green ball.

Black lines, yellow lines and orange lines represent automatic

control, shared control and human control respectively. The

distance δ between the final position of the system and the target

represents the grasping inaccuracy.

4.1 Modeling

Inspired by Jeka et al. (2004), velocity information is more

accurate than position and acceleration. Therefore we assume that

this system is a linear system and the velocity is proportional to the

distance from the target position. The mathematical model of the

system can be represented by the following equation:

x(t + 1T) = x(t)+ (xref (t)− x(t))v1T + e(t) (6)
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FIGURE 9

System identification for robot system. The data comes from Human Operation Mode. (A) Position in x direction. (B) Position in y direction. The black

line represents the target position, the red line represents the current position of the robot and the blue line represents the position model predicted

which almost coincides.

This equation can be transformed into the following form:

x(t + 1T) = (1− v1T)x(t)+ v1Txref (t)+ e(t) (7)

In Equation 7, the target position xref (t) is represented by the

input variable u(t) and can be considered as an input quantity of

the linear stochastic dynamical system. The variable x(t) represents

the current position, 1T represents the time step, the scale

factor v represents the proportionality constant between speed

and distance, and e(t) represents the noise present throughout the

process, which can affect the smoothness of the trajectory.

As illustrated in Figure 8, there are red, green, and blue balls

in the image. The goal is to move the red ball to the position of

the green ball. The red ball represents the current position x(t) of

the robot hand, the green one represents the actual target position

xref (t), and the blue one represents the observation target position

y(t) due to the presence of noise in the environment. The variable

δ represents the grasping inaccuracy, which is the distance between

the final position and the target position.

4.2 System identification

After establishing the hypothetical model presented earlier,

the method of system identification was utilized to fit the model.

Figure 9 illustrates that the black line represents the target position,

the red line represents the position of the robot hand, and the blue

line represents the data predicted by the model. As shown in lower

right corner of figure, the predicted position of the model is in close

agreement with the actual position, indicating that it is reasonable

to describe the whole system with a linear model.

[

x(t + 1T)

y(t + 1T)

]

=

[

1− kdx /

/ 1− kdy

] [

x(t)

y(t)

]

+

[

kdx /

/ kdy

][

ux(t)

uy(t)

]

+

[

ex(t) /

/ ey(t)

] (8)

TABLE 1 The parameter list of the control method.

Autonomous Shared Human

kdx 0.40 0.37 0.07

kdy 0.40 0.38 0.06

ex(t) N (−0.47, 19.1) N (0.51, 18.3) N (−2.47, 223)

ey(t) N (−0.04, 9.5) N (0.35, 23.9) N (−4.78, 297)

δ N (8.8, 41.7) N (0.96, 0.1) N (1.09, 0.09)

The method of system identification was used to separately

identify the system for the three control methods. The general

system model is represented by Equation 8. In order to

quantitatively compare the three methods, the motion trajectories

and target positions under the three control methods were recorded

in the scene shown in Figure 8. Three groups of experiments were

conducted for each control method, and each group of experiments

was repeated 20 times. The identified system parameters of the

system under three control methods are presented in Table 1. The

kd representing speed shows that shared control is comparable

to automatic control in terms of speed, and is much faster than

human control. The variance of noise shows that the trajectory

of shared control and automatic control is smoother than that

of human control. The grasping inaccuracy δ shows that shared

control and human control have higher grasping accuracy.

In summary, the method of system identification was utilized

to quantitatively analyze the speed, accuracy, and trajectory

smoothness of the system under different control methods. The

results indicate that Shared Control is the best control method at

this stage, as it combines the advantages of the other two methods

to achieve fast and accurate grasping. Additionally, as previously

discussed, shared control can also increase the robustness of the

system, as the human operator can provide additional sensing and

perception capabilities, and can intervene in case of unexpected

situations.
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TABLE 2 Control parameters under noise and delay.

50 ms
delay

100 ms
delay

2 cm
error

5 cm
error

kdx 0.06 0.03 0.07 0.06

kdy 0.06 0.03 0.07 0.07

ex(t) N (−3.1, 141) N (−2.9, 96) N (−2.5, 170) N (−0.3, 679)

ey(t) N (−3.5, 91) N (−2.7, 51) N (−4.6, 101) N (−0.3, 575)

δ N (1.7, 1.1) N (3.0, 3.5) N (1.8, 0.76) N (1.6, 0.6)

4.3 Analysis of the influence of latency and
noise

In the practical implementation of robot systems, noise, and

latency are inevitable factors that can affect system performance.

These factors can include delays caused by communications

and human reaction times, as well as noise caused by sensors

and the environment. Both latency and noise can degrade

system performance and reduce the experience of human-robot

interaction. In addition, it has been shown that increasing latency

reduce accuracy and efficiency. Similarly, noise can cause errors

in the measurement of the robot’s position and can lead to

inaccuracies in the control system. Worse yet, noise can cause the

system to become unstable, making it difficult to control the robot.

To evaluate the impact of these factors on the system quantitatively,

simulations were conducted by incorporating various levels of delay

and noise into the ideal system. The results of this analysis were

then utilized to inform the design of the robot system.

Table 2 presents the parameters of the system equation under

different operation conditions. Similar to Table 1, the results in

Table 2 were derived from Equation 8. The data were collected

from the human mode in the scenario depicted in Figure 8

by introducing different magnitudes of sensing position errors

and delays. The data were obtained from three independent

experimental groups, each consisting of 20 trials. The results

indicate that, while small errors have minimal effect on overall

system performance, large delays, greater than 100 ms, can

significantly decrease both speed and accuracy. This highlights the

importance of minimizing latency in the design of the robot system.

5 Results

5.1 System simulation

The robot system was simulated using the MuJoCo physics

engine (Todorov et al., 2012). The local camera located in the palm

of the robot was used to infer the position and size information of

the object, providing information for the Automatic Control mode.

A simple cuboid object was chosen as the test object to compare the

performance of the three control methods. The statistical results of

the simulations are presented in Figure 10.

In Figure 10A, the blue line representing the shared control

trajectory in the z direction can be divided into three sections,

(I) and (III) represent the manual control mode, with the target

selection and gripper position adjustment implemented by the

operator’s instructions, (II) represents the automatic control mode

implementing autonomous positioning of the wrist position.

Thanks to the implementation of the automatic control mode, the

shared control mode can generate smoother operation trajectories

compared to the remote operation mode. Figure 10B is the

trajectory on the y axis under three control methods, the gripper

position under the automatic control mode is often constrained

by the pre-set algorithm-optimized position, usually favoring the

red section in the center region of the object, as shown by the

red line in the plot. The remote operation mode and shared

control mode, on the other hand, exhibit flexibility in the selection

of positions, adjusting the grip point according to specific task

requirements and real-time environmental changes. For instance,

the red area on the right side of the object can be chosen under

the remote control approach, while the left side of the object

can be chosen for grasping using the shared control method.

This flexibility in position selection gives the shared control mode

greater adaptability when dealing with complex scenarios.

The task completion time under three control modes is as

shown in Figure 10C, with the results being statistically represented

using a box-plot. The plot mainly contains six data nodes, which

from large to small represent the upper edge of the data, the upper

quartile Q3, the median, the lower quartile Q1, the lower edge

of the data, and the outliers represented by circles. Outliers are

usually defined as values less than the first quartile (QL) minus 1.5

times the interquartile range (IQR) or more than the third quartile

(QU) plus 1.5 times the IQR. The results show that the average

task completion time for remote operation is approximately 2.7s,

for automatic control is 0.5s, and for shared control is 0.625s. The

completion time for the human operation mode is significantly

higher than the automatic control mode and shared control mode,

almost 5 times the time required for these two modes.

In order to further evaluate the robustness of the proposed

shared control method, simulations were conducted on irregularly

shaped objects and tasks that require high precision. The objects

used in the simulation were obtained from the YCB database

(Calli et al., 2017). The simulation results, as shown in Figure 11,

demonstrate that the shared control method is able to accomplish

these tasks with ease, while traditional human-controlled methods

are time-consuming and labor-intensive, and have a very low

success rate. The tests encompassed acquiring object size data from

both vertical and horizontal perspectives, involving precision and

power grasping techniques. These results provide further evidence

for the efficacy of the proposed shared control method in handling

complex and challenging grasping tasks.

5.2 Real environment

The YCB objects were successfully grasped and used in both

simulation and real-world scenarios. The results of the experiments

were consistent with the conclusions drawn from the theoretical

model, demonstrating the effectiveness of the shared control

method. Furthermore, the performance of shared control was

compared with other two. The shared control was found to be the

most efficient and accurate method among the three methods.
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FIGURE 10

Statistics of simulation results. The figure (A, B) show the motion trajectories of three di�erent control methods. (A, B) Shows the motion track in the

z and y direction respectively. (C) is a box diagram of the completion time of the three control methods.

FIGURE 11

Timing diagram of shared control. (A–E) represents the process of grasping The upper part of the figure is grasping mustard bottle from YCB dataset

from the horizontal direction. The bottom half of the figure is the cup insertion from the vertical direction.

In this study, we also evaluated the performance of a

shared control framework in a simulated cup insertion task.

The algorithm was successfully transferred from simulation to

a real-world environment. Given the limitations of automatic

control methods in adapting to various tasks, we conducted a

comparison between the shared controlmethod and human control

method.

The initial phase of the experiment involved completing tool-

based tasks based on human visual perception. The results of the

cup insertion task are presented in Figure 12, based on a total of 10
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FIGURE 12

The actual experimental results of the robot stacking cups, which are part of the YCB objects. (A–C) Indicates the spatial position of the robot hand.

I, II and III respectively represent the human mode, automatic mode and human mode in the shared control. Automatic mode will go through the two

stages of first aligning the object with the camera, and then grasping the center-aligned object. Therefore, there will be two stages of moving away

first and then approaching. (D, E) shows that shared control has faster speed and smoother trajectory than human control. The data is derived from

the average results of 10 experiments.

experiments. The Figures 12A, C depict the motion trajectories of

the two methods in one experiment. Notably, the trajectory of the

shared control method is smoother as evidenced by the quantitative

measure of trajectory smoothness, as represented by Equation 9.

Additionally, the completion time of the task was shorter for the

shared control method. It should be noted that the shared control

method exhibits a larger distance in both the x and y directions due

to the misalignment of the camera center with the grasping center

of the robot.

γ =

∫ T
0 |f (t)′′|2dt

T
(9)

As shown in Figure 12E, compared to human operation mode,

the shared control method reduced the task completion time from

20 seconds to 10 seconds, doubling the efficiency.

To further challenge the system, the difficulty of the task was

increased by using a blackboard to isolate the human operator from

the robot system. The operator was only able to rely on the global

camera with a fixed view to operate the robot system. As depicted

in Figure 13, the human control method failed to grasp the object

due to the insufficient visual field, resulting in a success rate of only

40%. In contrast, the shared control method successfully completed

the grasping task, demonstrating its effectiveness in overcoming the

limitations posed by the restricted visual field.

The results of this study suggest that the shared control

framework is an effective method for improving the performance of

robot tasks. The shared control method generates smoother motion

trajectories and shorter completion times compared to the human-

operator control mode. Additionally, the shared control method

was able to successfully complete the task even under challenging

conditions where only a fixed camera view was available.

6 Discussion

Shared control is a control paradigm in which a human

operator and an autonomous system collaborate to achieve a

common goal. It has been widely studied in the field of robotics and

human-robot interaction, and has been shown to be an effective

approach for various tasks, such as grasping, manipulation, and

navigation.

One of the key benefits of shared control is that it allows

the human operator to provide high-level guidance, while the

autonomous system handles low-level control. This can lead to

improved performance and increased efficiency, as the human

operator can focus on higher-level cognitive tasks, while the

autonomous system handles the more precise and repetitive tasks.

Additionally, shared control can also increase the robustness of the

system, as the human operator can provide additional sensing and

perception capabilities, and can intervene in case of unexpected

situations.

Shared control can be implemented in various ways, such

as force reflection, visual feedback, and haptic feedback. Force

reflection is a method in which the human operator and the

autonomous system share the control of the robot’s end effector,

and the robot’s motion is constrained by the human operator’s

motion. Visual feedback is a method in which the human operator

can see the robot’s motion and make adjustments as needed. Haptic
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FIGURE 13

Comparison chart of shared control and human control in the real environment. (A, C) Representing shared control can quickly complete the task of

grasping irregular objects and cup insertion. In contrast, (B, D) representing human control have a rather low success rate.

feedback is a method in which the human operator can feel the

robot’s motion, such as through a force-feedback device.

There are several challenges that need to be addressed when

implementing shared control. One of the main challenges is how

to design the interface between the human operator and the

autonomous system. The interface should be intuitive and easy to

use while also providing the necessary information for the human

operator to make informed decisions. Additionally, the interaction

should be seamless, withminimal delay andminimal effort required

on the part of the human operator. Another challenge is how

to handle uncertainty, such as unexpected situations or sensor

noise. The autonomous system should be able to cope with these

situations, while also providing the human operator with the

necessary information to intervene, if needed.

Shared control is a promising control paradigm for robotics

and human-robot interaction. It allows for improved performance

and increased efficiency, while also increasing the robustness of the

system. However, there are challenges that need to be addressed,

such as designing the interface between the human operator and the

autonomous system, and handling uncertainty. Further research

is needed to address these challenges and develop more advanced

shared control methods.

7 Conclusions

In this study, we conducted a comparison of shared control

and human control methods in a simulated cup insertion task.

By analyzing the errors and delays in the entire system and

modeling the control methods, we were able to build a shared

control robot system. We simplified the robot system into a linear

system, assuming that the speed of the motion is proportional

to the distance from the target position. This assumption was

supported by the data generated during the movement. The shared

control method combines the advantages of fast speed and smooth

trajectory in the automatic control process with the advantages of

human intelligence in adjusting the grasping position in the human

control process, resulting in fast and accurate grasping.

The shared control robot system was successfully implemented

in a physical environment, and was able to complete grasping
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and object manipulation tasks through image feedback. In the

future, potential areas for further research include the integration

of haptic feedback to enhance human presence and the use of goal

prediction to anticipate which object the human operator intends

to manipulate in a clustered environment.

Overall, the results of this study demonstrate the effectiveness

of the shared control framework in improving the performance

of robotic tasks. The shared control method exhibited smoother

motion trajectories and shorter completion times compared to the

human control method. Additionally, the shared control method

was able to successfully complete the task even under challenging

conditions where only a fixed camera view was available.
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