AUTHOR=Zhu Yunfeng , Yao Shuchun , Sun Xun TITLE=Multi-granularity contrastive learning model for next POI recommendation JOURNAL=Frontiers in Neurorobotics VOLUME=18 YEAR=2024 URL=https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2024.1428785 DOI=10.3389/fnbot.2024.1428785 ISSN=1662-5218 ABSTRACT=

Next Point-of-Interest (POI) recommendation aims to predict the next POI for users from their historical activities. Existing methods typically rely on location-level POI check-in trajectories to explore user sequential transition patterns, which suffer from the severe check-in data sparsity issue. However, taking into account region-level and category-level POI sequences can help address this issue. Moreover, collaborative information between different granularities of POI sequences is not well utilized, which can facilitate mutual enhancement and benefit to augment user preference learning. To address these challenges, we propose multi-granularity contrastive learning (MGCL) for next POI recommendation, which utilizes multi-granularity representation and contrastive learning to improve the next POI recommendation performance. Specifically, location-level POI graph, category-level, and region-level sequences are first constructed. Then, we use graph convolutional networks on POI graph to extract cross-user sequential transition patterns. Furthermore, self-attention networks are used to learn individual user sequential transition patterns for each granularity level. To capture the collaborative signals between multi-granularity, we apply the contrastive learning approach. Finally, we jointly train the recommendation and contrastive learning tasks. Extensive experiments demonstrate that MGCL is more effective than state-of-the-art methods.