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A reward shaping deep deterministic policy gradient (RS-DDPG) and simultaneous 
localization and mapping (SLAM) path tracking algorithm is proposed to address 
the issues of low accuracy and poor robustness of target path tracking for robotic 
control during maneuver. RS-DDPG algorithm is based on deep reinforcement 
learning (DRL) and designs a reward function to optimize the parameters of DDPG 
to achieve the required tracking accuracy and stability. A visual SLAM algorithm 
based on semantic segmentation and geometric information is proposed to address 
the issues of poor robustness and susceptibility to interference from dynamic 
objects in dynamic scenes for SLAM based on visual sensors. Using the Apollo 
autonomous driving simulation platform, simulation experiments were conducted 
on the actual DDPG algorithm and the improved RS-DDPG path-tracking control 
algorithm. The research results indicate that the proposed RS-DDPG algorithm 
outperforms the DDPG algorithm in terms of path tracking accuracy and robustness. 
The results showed that it effectively improved the performance of visual SLAM 
systems in dynamic scenarios.
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1 Introduction

At present, self-driving technology is one of the research hotspots in the field of artificial 
intelligence, and reinforcement learning (RL) has drawn significant attention in recent years. 
In self-driving systems, the most fundamental challenge is the control of path tracking (Yuan 
et  al., 2021). The goal of path tracking control is to enabling vehicles to travel along a 
predetermined path and approach the fixed trajectory as closely as possible. SLAM is one of the 
rapidly developing robot perception technologies in recent years, which has been applied in 
fields such as autonomous navigation (Zheng et al., 2023), augmented reality (Shoukat M. U. et 
al., 2023), and medical equipment (Shoukat K. et al., 2023). Path tracking control methods are 
mainly divided into two categories: model based and non-model based. Among them, model-
based path tracking control methods mainly rely on the kinematic and dynamic models of the 
robot, and control the robot’s motion by outputting control signals from the controller. 
Common model-based control methods include proportional integral differential (PID) control 
(Arrieta et  al., 2023; Gopi Krishna Rao et  al., 2014; Huba et  al., 2023), fuzzy control 
(Benbouhenni et al., 2023; Zhang et al., 2023), model predictive control (MPC; Fiedler et al., 
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2023; Wei and Calautit, 2023; Bayat and Allison, 2023), etc. Non-model 
based path tracking control methods do not require an accurate robot 
model, but control is achieved through perception and decision-
making modules. Common non-model based control methods include 
neural network control methods (Legaard et al., 2023; Sun et al., 2023).

In the past, researchers have sought solutions from model-based 
algorithms to address issues such as low tracking accuracy and poor 
robustness of AVs towards target paths during operation. Mendoza and 
Yu (2023) proposed a fuzzy adaptive PID control method based on 
vehicle kinematics and dynamics is used to plan the next driving path 
based on preview theory. They first used the position relationship 
between the vehicle center of mass and the desired path preview point to 
calculate the lateral deviation and heading deviation, and then used the 
fuzzy adaptive PID controller to adjust the front wheel angle by adjusting 
the error. Although this method is simple and feasible, its adaptability and 
control accuracy are limited in high demand control situations. Chen 
et al. (2023) proposed a horizontal and vertical fuzzy control method 
based on dynamic dual point preview strategy, which dynamically 
controls the dual point preview distance through fuzzy control, thereby 
controlling the vehicle to track the corresponding trajectory. However, 
the effectiveness of fuzzy control is greatly affected by changes in the 
preview distance. Wu et al. (2023) proposes a composite fuzzy control 
method based on lateral error and heading error. This method adjusts the 
output of two fuzzy controllers by specifying corresponding weight 
variables, and uses integral compensation to solve the problem of low 
steady-state accuracy in traditional fuzzy control. However, this method 
has poor path tracking accuracy in complex roads.

In order to ensure the stability and overall performance of the 
control-loop system, Roman et  al. (2024) suggested a data-driven 
approach that combines an algorithm with continuous-time active 
disturbance rejection control. Nguyen et al. (2023) proposed a control 
algorithm for vehicle trajectory tracking using linear time-varying 
MPC. Compared to nonlinear control, this method has a global optimal 
solution and smaller computational complexity. Nevertheless, this 
method requires high modeling requirements for vehicles, linear 
approximation for nonlinear systems, and the construction of a 
quadratic cost function. At the same time, this method requires high 
hardware storage space and computing power, and needs to consider the 
limitations of computing resources appropriately. Xue et  al. (2024) 
suggested a novel control technique, which utilizes a neural network 
(NN) and policy iteration (PI) algorithm to achieve H∞ control in a 
nonlinear system. Jing (2024) introduced a NN modelling method that 
utilizes evolutionary computation (EC). The method includes 
techniques such as NN model compression, distributed NN model, and 
knowledge distillation. Although the control algorithm can stably track 
the path, but the system is too complex and has poor stability 
performance. Chi et al. (2022) presented a method for improving the 
P-type controller using set point learning called indirect adaptive 
iterative learning control to improve both linear and nonlinear systems. 
Zhou et al. (2023) adopts a combination of neural network and fuzzy 
control method to control the driving direction of the vehicle by 
controlling the steering wheel angle. The control effect of this method is 
relatively stable, but there are problems such as untimely steering control 
and large tracking errors. Model based control algorithms in path 
tracking rely on robot models, and robot modeling is a complex process 
that not only needs to consider the influence of various factors such as 
mechanical structure, dynamic characteristics, control strategies, etc., 
but also needs to consider the influence of various uncertain factors, 

making modeling difficult. There are primarily three problems in raising 
and ensuring the proper functioning of the intelligent vehicular path 
optimization system.

 • Model based control algorithms have a high degree of 
dependence on the model in the path tracking process, but robot 
modeling is difficult, which can lead to poor tracking accuracy.

 • Non model based control algorithms require a large amount of 
robot and environmental data for neural network learning, and 
the completeness of environmental data collection is difficult to 
meet, which leads to poor tracking performance.

 • Current technical conditions are difficult to ensure the integrity 
of environmental data collection. Lack of complete environmental 
data can lead to inaccurate information learned by neural 
networks, resulting in poor tracking performance.

An integrated method combining DRL’s adaptability for learning 
optimal pathways and SLAM’s robustness for reliable localization and 
mapping is necessary to address these problems. To fill in data gaps, 
the suggested system fuses inputs from several sensors (e.g., LiDAR, 
radar, and cameras) and using SLAM to produce a continuous, real-
time environment map. Table 1 shows the advantages, disadvantages, 
and main application scenarios of several common visual sensors.

From Table 1, it can be seen that the visual SLAM using cameras 
as sensors has gradually become one of the main research directions 
in the field of SLAM. Yuan et al. (2023) calculated the transformation 
matrix between two frames based on the results of feature point 
matching and then used this matrix to extract line features and 
evaluate their static weights. Finally, the remaining static features were 
used for camera pose estimation to complete the tracking task. 
Montemerlo and Thrun (2003) proposed FastSLAM by combining 
EKF and RBPF algorithms. This algorithm estimates the robot pose 
using the RBPF algorithm and then updates the map using EKF, 
achieving accurate localization of the robot in unknown environments. 
Shoukat et al. (2024) introduced a graph SLAM system that utilized 
YOLOv5 and Wi-Fi fingerprint sequence matching. This algorithm 
aims to improve the accuracy and resilience of closed-loop detection 
for robot navigation. Zhang et al. (2018) improved the traditional 
SLAM system and proposed a dynamic object detection algorithm 
based on geometric constraints. Dai et al. (2020) used the Delaunay 
triangulation method to establish a structure similar to the graph for 
map points, in order to determine their adjacency relationship.

This balanced strategy improves tracking precision, data integrity, 
and system resilience under real-world uncertainty. This system could 
improve self-driving technology by improving navigation accuracy, 
reliability, and adaptability in changing surroundings. The algorithms 
for RL include SARSA (state action reward state action; Naderi et al., 
2023), Q-learning (Puente-Castro et  al., 2024), DQN (deep 
Q-network; Yang and Han, 2023), DDPG (Na et al., 2023), etc. SARSA 
first creates a Q table and updates its status through interaction with 
the environment, then takes actions based on the values in the Q table. 
However, SARSA can only target some simple games. Q-learning is 
similar to SARSA. The difference in Q-learning is that different 
strategies are chosen when updating the Q-table, but it is essentially 
in the form of a table. Q-learning selects the optimal strategy through 
the Q-table. Moreover, Tampuu et al. (2017), utilizes DQN to train 
individual agents in a two-player Pong game. However, considering 
other agents as part of the environment causes instability because 
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agents may adjust their strategies independently. DQN is based on 
Q-learning and introduces neural networks instead of Q-tables to save 
software space, but it is not suitable for continuous spaces.

DDPG is a strategy that facilitates depth function approximation, 
which can be applied in high-dimensional and continuous spaces, 
while the first three algorithms are only applicable to low dimensional 
and discrete behavioral spaces. However, in high-dimensional, 
continuous action autonomous driving, the reward and penalty 
mechanism of DDPG cannot be well set. Based on the above analysis, 
it can be concluded that both models based and non-model based 
path tracking control algorithms have some shortcomings in the path 
tracking process. Within this particular context, the primary 
contributions of this paper can be summarized as follows:

 • In response to the drawbacks of the above path tracking control 
algorithms, we developed a reward-shaping deep deterministic 
policy gradient (RS-DDPG) algorithm for path tracking control 
maneuvers. This algorithm does not rely on precise data models 
of the system or requires a large amount of environmental data.

 • This article proposed a visual SLAM method for dynamic scenes 
by combining semantic segmentation networks and multi view 
geometry methods.

 • RS-DDPG for continuous-action tasks in DRL framework to 
address optimization and robustness concerns. This approach 
promotes agent collaboration.

 • In the proposed algorithm, the robot’s path tracking control is 
achieved by designing reward functions and adaptive weight 
coefficients based on factors such as the yaw deviation between 
the robot and its expected trajectory, the lateral angular velocity 
of the robot, and other relevant parameters.

2 Preliminary

2.1 Markov decision process

The essence of DRL is the interaction process between intelligent 
agents and the environment, which can be  regarded as a Markov 

decision process (MDP). MDP is a time-dependent sequential 
decision-making process, where the state at the next moment depends 
only on the current state and action. MDP defines a five tuple 
( ), , , ,S A R P γ , where, { }1 2 3, , ,s s s s= …  represents the state of the robot; 

{ }1 2 3, , ,A a a a= …  signifies the actions output by the intelligent agent 
in the current state; { }1 2 3, , ,R r r r= …  denotes the reward for the output 
action in the current state, with lag effect; 1, ,t t t tP p s r s a+ =    
represents the probability function of ts  output action at ta  transferring 
to the next state 1ts +  and receiving reward tr  in the current state; and 
γ  is the discount factor, and [ ]0,1γ ∈ .

This study specifies the state-action rate role for any policy π  in a 
very large state-action space. Because getting an exact estimate of 

( ),Q s aπ  is not practicable, function approximations such linear 
functions and neural networks are used (Yang et al., 2022; Yang et al., 
2022). Neural networks’ strong function approximation abilities have 
led to their extensive practical application across many domains.

2.2 Reinforcement learning process

In the process of RL, the agent gives action A based on the current 
state parameter S at each time point, and then enters the next 
environmental state, providing feedback reward R (schematic diagram 
of RL process is shown in Figure  1). Then a series of data 
( 1 1 1 2 2 2, , , . , , , , ,t t ts a r s a r s a r… ) will be recorded in the memory pool, and 
the cumulative return tG  will be calculated using the following formula:

 
1 2 1

0

k
t t t t k

k
G R R Rγ γ

+∞

+ + + +
=

= + +…= ∑
 

(1)

Use π to represent the policy of the intelligent agent 
( ) ( ), t ta s p A a S sπ = = = , and select the probability of outputting 

action a  based on the current state s. Use the value function Q to 
represent the value of action a  taken by s in the current state as 
( ) ( ), ,t t tQ s a E G A a S sπ= = = . Where, ( )E x  is the expected 

function. The value function obtained by recursion using the Bellman 
equation is as in Equation 2:

 ( ) ( )( )1 1 1, , ,t t t t tQ s a E R Q S A A a S sπ γ+ + += + = =  (2)

TABLE 1 Sensor performance.

Sensor type Advantages Disadvantages Application scenarios

LiDAR (Li et al., 2024)

Good robustness and high stability; Low 

computational complexity and lower CPU 

requirements than camera sensors

Unable to obtain semantic information; Not suitable for 

harsh environments, such as rainy and foggy weather; 

Unable to obtain depth information of the perspective body

Indoor low-speed small-scale 

scenes

Monocular camera (Yu 

et al., 2023)

Simple structure; Low cost; The calibration and 

identification process are easy

Unable to determine the depth information of individual 

images and the true size of objects
Indoor and outdoor scenes

Binocular camera 

(Zhang et al., 2024)
Can determine the true scale of an object

Large computational load; The calibration process is 

complex; GPU or FPGA acceleration is required, which 

consumes a huge amount of computing power

Indoor and outdoor small-scale 

scenes

RGB-D camera (Song 

et al., 2023)

Strong dynamism and low computational 

complexity

Narrow field of view, small measurable range, easily 

affected by light, unable to recognize transmissive objects
Indoor small-scale scenes

Event camera 

(Messikommer et al., 

2022)

Low latency; Low computational power 

consumption and low computational power 

requirements; High dynamic range

Strong data sparsity; More redundant information, less 

effective information

High speed and high dynamic 

scenes
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The core task of RL is to continuously adjust strategies to 
maximize the value of the reward function. In the process of 
reinforcement learning, the agent updates the strategy by maximizing 
the value of the reward function. The strategy then gives the next 
action and receives the reward, which loops through to ultimately 
achieve the system control goal.

In the camera mode of SLAM, combined with semantic 
segmentation, a semantic segmentation module and a thread for 
constructing a semantic octree map are added on top of the original 
front-end odometry, local mapping, and loop detection threads. The 
overall framework is shown in Figure 2. Firstly, the RGB image obtained 
by the RGB-D camera is fed into the tracking thread. In the tracking 
thread, the GCNv2 network is used to extract the key points and 
descriptors of the current frame. Afterwards, pixel level semantic 
segmentation is performed on the RGB image through a semantic 
segmentation network to segment specific objects, including dynamic 
and static target objects, and preliminary removal of dynamic feature 
points, such as walking people, is performed. And combined with multi 
view geometric methods for detection (Cui and Ma, 2019), further 
removing dynamic objects, and using the remaining static features for 
pose estimation. Finally, in the semantic map construction thread, the 
semantic information extracted through semantic segmentation is used 
to generate a point cloud map and convert it into an octree map.

2.3 Feature extraction

The GCNV2 is a network trained for 3D projection geometry that 
can be used to extract feature points and descriptors. In contrast to the 
conventional approach of training with a single image, GCNv2 trains 
on the TUM and SUN-3D datasets using image pairs. In order to 
obtain feature points and their corresponding descriptors that are 
uniformly distributed, GCNv2 takes the input single-channel image 
and scales it to 320 × 240. The network then takes this adjusted image, 
extracts its features, and processes them using homogenization and 
non-maximum suppression. The GCNv2 method’s feature extraction 
procedure is shown in Figure 3 (Shao et al., 2022). It can clearly see 
from the graph that the extracted features are evenly distributed 
throughout the entire image.

2.4 Semantic segmentation network

This paper uses the segmentation network DeepLabv3+ (Hu et al., 
2022) to complete the semantic segmentation task of image frames. In 
recent years, many scholars have continuously proposed new semantic 
segmentation networks, such as PSPNet with a pixel accuracy of 
0.9293 and BiSeNet with a pixel accuracy of 0.9337. DeepLabv3+ adds 
a decoder module to the framework of DeepLabv3, and integrates 
multi-scale information in the atrous spatial pyramid pooling layer 
(ASPP) module based on dilated convolution. In the decoder 
architecture, more accurate object boundaries are obtained through 
spatial information recovery, optimizing segmentation results, and 
achieving a pixel accuracy of 0.9431, so, this article chooses 
DeepLabv3+. Figure 4 shows the process of semantic segmentation 
algorithm, where pixels represent people and blue pixels represent 
display screens. After inputting the image into the network, two 
output values are obtained through DCNN feature extraction: feature 
map 1 containing high-level semantic information and feature map 2 
containing low-level features. Map1 first passes through the ASPP 
module, and then utilizes 1 × 1 to adjusting the number of channels 
for convolution yields map1’. Map2 utilizes 1 × 1 to adjust the number 
of channels for convolution to obtain map2’. Perform 4 up-sampling 
operations on map1’ and concatenate it with map2’. Finally, use 3 × 3 
for channel adjustment with 3 convolutions, the final segmentation 
result is obtained through quadruple up-sampling.

2.5 Semantic map construction

In the semantic map construction thread, PCL library is used to 
generate point clouds by combining keyframes and depth maps. Then, 
the pose of the current frame and its point cloud are used for point 
cloud stitching and filtering processing to generate a point cloud map, 
and semantic information is annotated in the point cloud map. 
However, although point cloud maps give people a very intuitive 
feeling, they have disadvantages such as occupying a large amount of 
storage space, redundant location information, and cannot be directly 
used for navigation. Compared to this, octree maps (Ju et al., 2020) 
also have the intuitiveness of point cloud maps, but their storage space 
is much smaller, making them suitable for various navigation purposes. 
Therefore, this article further processes point cloud maps by converting 
them into octree maps and constructing semantic octree maps based 
on semantic information. However, during the mapping process, due 
to camera noise and errors caused by dynamic objects, the same node 
may have different states at different time points. So, we use probability 
to explain whether a node is occupied or not. However, this method 
may result in a probability greater than 1, which can interfere with data 
processing. Therefore, the probability logarithm is used to describe 
whether a node is occupied. Let y R∈  (real number set) represent the 
probability logarithm, and the range of occupied probability p is [0,1]. 

The logit transformation formula is ( )log log
1

py p
p

 
= =  − 

. The 

reversible transformation for logit transformation is as in Equation 3:

 
( ) ( )

1 1log
1 exp

p it y
y

−  
= =   + −  

(3)

Observation

Perception

Reward

Decision

Action

Agent

Environment

FIGURE 1

Schematic diagram of reinforcement learning process.
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Assuming that the observation probability of a node n at time T  
is ( )tP n Z , where Z  represents the observation data. The probability 
of its occupation ( )1:TP n Z  is represented as in Equation 4:

 
( ) ( )

( )
( )

( )
( )
( )

1: 1
1:

1: 1

1 1
1

1
T T

T
T T

P n Z P n Z P n
P n Z

P nP n Z P n Z
−

−

 − −
= + − 

−    
(4)

where, ( )P n  represents the prior probability of node n  being 
occupied, and ( )1: 1TP n Z −  represents the estimated probability of 
node n from the beginning to the 1T −  moment. In this article, we set 
the prior probability ( )P n  to 0.5, and the above equation is 
transformed into a probability pair in the form of ( )1:TL n Z , which 

represents the logarithmic value of the probability of node n from the 
beginning to time T . Therefore, at time 1T + , it is as in Equation 5:

 ( ) ( ) ( )1: 1 1: 1T T TL n Z L n Z L n Z+ −= +  (5)

here, ( )1: 1TL n Z +  and ( )TL n Z  represent the logarithmic values of 
the probability of node n being occupied before and at time T . According 
to Equation 3, when a node is repeatedly observed and occupied, its 
probability logarithm increases, otherwise it decreases. Based on the 
obtained information, the occupancy probability of this node can 
be dynamically adjusted to continuously update the octree map.

This article treats a moving person as a dynamic object, and uses a 
KinectV2 camera mounted on a mobile robot to move uniformly in a 
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FIGURE 2

Overall framework of visual SLAM algorithm.

FIGURE 3

GCNv2 network structure.
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dynamic environment according to a previously designed rectangular 
path, perceive the surrounding environment, and collect information 
in the scene. Subsequently, using ROS tools, the obtained real scene 
data was split into frame images, and the TUM dataset was used as the 
standard to produce the obtained real scene data in the format of the 
TUM dataset. The algorithm proposed in this paper and the ORB - 
SLAM2 algorithm were tested to verify their effectiveness and 
feasibility. Figures 5A,B respectively represent the three-dimensional 
motion trajectories generated by our algorithm and ORB - SLAM2 
algorithm. From Figure 5, it can be clearly seen that due to the presence 
of moving objects in the experimental scene, the trajectories generated 
by ORB - SLAM2 algorithm show significant fluctuations compared to 
the actual motion trajectories. However, the trajectories generated by 
our algorithm are basically consistent with the actual motion 
trajectories, and the fluctuation amplitude is relatively small.

This study uses GCNv2 for feature extraction, compared with 
traditional SLAM system feature extraction methods, the extracted feature 
points are more evenly distributed. The semantic segmentation network 
DeepLabv3+ is used to assign semantic information to the image frames 
in the visual SLAM system, detect moving targets in the objects, and then 
combine geometric information to detect dynamic feature points.

3 Reward shaping DDPG algorithm

3.1 DDPG algorithm

Among the many actor-critic algorithms that use neural network 
approximations, DDPG is among the most well-known. DDPG is a 
model shaping algorithm based on deterministic policy gradients, 

which is based on the actor-critic framework and can be applied to 
continuous behavior spaces. The actor network denoted as ( )|s µµ θ , 

maps a state s to an action a using parameters µθ . The critic network 

( ),| ,| QQ s a θ , evaluating actions with a learning rate Qα  with 

parameters Qθ . Training parameters like the total number of episodes 
and steps per episode establish the overall training duration. The 
function of the actor network is to output action A based on the state 
S feedback from the environment; The function of the critic network 
is to output the Q value based on the state S feedback from the 
environment and the corresponding action A of the actor. The 
function of actor target network and critic target network is to 
improve the stability of the network. The network first fixes its own 
parameters for a period of time, and then updates its own parameters 
by copying the parameters of the actor network and the critic network, 
as shown in Figure 6.

On the basis of state observation, the actor network outputs 
corresponding decision behaviors and parameterizes these behaviors 
into an n-dimensional vector θ  with policy π  is 
( ) ( ), t ta s p A a S sπ θ = = = . The projected long-term return is 

estimated by a critic parameterized by ω in DDPG, while an actor 
parameterized by θ  generates a deterministic policy θπ .

The actor network is updated based on the policy gradient 
method, and the policy is improved through the policy gradient. The 
policy gradient ( )Jθ θ∇  expression is represented in Equation 6:

 
( ) ( ) ( ) ( )

1 2

T

n

J J J
Jθ

θ θ θ
θ

θ θ θ
∂ ∂ ∂ 

∇ = … ∂ ∂ ∂   
(6)
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FIGURE 4

DeepLabv3+ semantic segmentation.
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where, ( )J θπ  is the policy objective function. The policy gradient 
( )Jθ θ∇  expression for stochastic policies is 

( ) ( ) ( )( )log , ,J E s a Q s aπ
θ θ πθ θ θπ π∇ = ∇  

. ( )log ,s aθ θπ∇  is a 

fractional function, which can be expressed in Equation 7:

 ( ) ( )( ) ( )( )log , , / ,θ θ θ θ θπ π π∇ = ∇s a s a s a
 (7)

In deterministic strategy, ( )a sθµ= , the gradient of deterministic 
strategy is a special form of stochastic policy where the gradient 
variance approaching 0, and its gradient expression is as in Equation 8:

 ( ) ( ) ( )( )( , )J E s Q s a Sµ
θ θ µθ θ θ θµ µ µ∇ = ∇

 
(8)

In the learning process of intelligent robot trajectory tracking 
control, the input of the actor neural network is the observed 
environmental state variables, such as position, angle, speed, etc. Its 
output is decisions made based on strategies, such as steering wheel 
angle and throttle braking. At the same time, critic’s approach is 
based on the behavioral value function, where the input variables are 
state and behavior, and the output variables are return values. During 
the learning process, critic uses the estimated value function as the 
benchmark for updating the actor function, while evaluating the 
actor’s strategy. The advantage of the actor-critic method is that critic 
provides a more accurate evaluation through the value function, 
thereby improving the actor strategy and making it more optimized. 
In addition, the actor-critic method can not only use critic to update 
actor policies, but also update the value function of critic, which can 
better evaluate behavioral value.

In practice, the value function of critic is updated using the Bellman 
equation ( ) ( ) ( ) ( ) ( ), , , max , ,Q s a Q s a R s a Q s a Q s aα γ=′ +  + −   , 
where, α  is for learning rate and Q′ is a new value function. The actor 
network updates the parameter θ  using chain differentiation (Equation 9).

 
( ) ( ) ( )

1

1 ,
n

i i i i
i

J Q s a a s
nθ θθ π

=

 ∇ = ∇ ∇ ∑
 

(9)

The critical network updates the parameter ,w  by taking the mean 
square error (MSE) between the expected and actual values, i.e, as 
represented in Equation 10.

 
( ) ( ) ( )( )2

1

1 , , , ,
n

i i
t

J w Q s a w Q s a w
n =

′ ′ −′= ∑
 

(10)

here, ( ), ,Q s a w′ ′ ′  is the target value calculated by the critic 
target network.

3.2 Reward function design

The quality of the reward function is a key factor affecting the 
results of the model. Intelligent agents for a single task have clear 
reward goals, so it is necessary to maximize the reward value. 
However, in dealing with complex autonomous driving tasks, it is 
difficult to have a single clear reward objective. Therefore, this paper 
intends to design a reward function through a combination approach, 
known as:

1) Path tracking capability. The lateral distance between the robot’s 
center of mass position iy  and the expected trajectory jy  was designed 
to describe the tracking accuracy of the robot as in Equation 11:

 1 = ∆ = −y i jR y y
 (11)

The ratio of tracking accuracy error to allowable error is ∆1, and 
its mentioned in Equation 12.

 1 / 0.3∆ = ∆ y  (12)

2) Speed. ( )2 cosxR V θ= , where, ( )cosxV θ  is the speed of the 
vehicle along the expected path direction, and it is expected to 
complete the driving task quickly in limited time and safety.

3) Robot stability. The stability of a robot is mainly reflected by 
its yaw rate and center of mass lateral deviation angle. The yaw rate is 

3 ω ω ω= ∆ = −p tR  and described as the difference between the 
actual yaw rate pω  and the expected yaw rate tω , where, 

( ) ( )desmim , sgnω ω ω= δt d  and dω  is the upper limit of lateral 
angular velocity. desω  is the yaw rate under steady-state steering, and 

des zssGωω δ= × . Here, zssGω  is known as steady-state gain of the yaw 
rate and δ  is the angle of the steering wheel.

FIGURE 5

Comparison of motion trajectories: (A) Algorithm (B) ORB-SLAM2 algorithm in this article.
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The ratio of lateral angular velocity error to expected angular 
velocity is 2 /ω ω∆ = ∆ t . Similarly, the center of mass deviation angle 
is described by the difference between the actual center of mass 
deviation angle pβ  and the expected center of mass deviation angle tβ  
as represented in Equations 13, 14.

 4 β β β= ∆ − −p tR
 (13)

 ( ) ( )desmin , sgnβ β β= δt d  (14)

where, dβ  is the upper limit of the lateral deviation angle of the 
center of mass. desβ  is the lateral deviation angle of the center of mass 
under steady-state turning, and des zssGββ δ= × . zssGβ  is the steady-
state gain of the center of mass sideslip angle.

The ratio of the deviation angle of the center of mass to the 
expected deviation angle of the center of mass is 3 /β β∆ = ∆ t .

4) Steering stability. The smoothness of steering represents the 
degree of steering wheel oscillation, and a coefficient of variation 5R  
is 5 /vR C σ θ= =  . Where, σ  is the standard deviation of the steering 
wheel angle and θ is the average value of the steering wheel angle. The 
aforementioned RS-DDPG approach involves a collective reward 
shaping that is distributed across all agents in collaborative 
circumstances. Nevertheless, this factor is frequently ignored in 
several real-world scenarios.

3.3 Adaptive weight design

The accuracy of path tracking and the stability performance of 
robots have a significant impact on the control of autonomous driving 
path tracking. When both cannot be met simultaneously, it is necessary 
to determine which indicator with a large gap should be dealt with first. 
This study designed adaptive weight coefficients. When the percentage 
of tracking accuracy error is greater than the percentage of stability 
error, the weight of the reward function for tracking accuracy will 
increase, and vice versa. The weight and stability weight coefficients for 
tracking accuracy are in Equations 15, 16

 
( )1 1 2 31 0.5 /∆ ∆ ∆ +∆= + +C e e e

 
(15)

 
( )2 3

1 2 32 0.5 /
∆ +∆ ∆ ∆ +∆= + +eC e e e

 
(16)

The tracking accuracy weight coefficient and stability weight 
coefficient satisfy 1 2 2C C= =  expressions. During the training 
process, AVs may encounter two situations: normal driving and 
exceeding the lane. The reward function for normal driving has been 
designed, and the situation of exceeding the lane is uniformly set to 0 
here. The expression for the reward function is represented in 
Equation 17:

 

( )2 1 1 2 3 4 5, Normal
0, Beyond the lane

R C R C R R R
R

 − − + −
= 
  

(17)

4 Simulation testing and analysis

In order to evaluate the advantages and disadvantages of the 
proposed autonomous driving robot control method in this study, a 
model will be  built on the Apollo simulation platform, and the 
trajectory tracking process of intelligent robots will be simulated and 
analyzed using proposed algorithm and actual DDPG algorithm. The 
RS-DDPG algorithm in this study is based on the actor-critic network 
structure, where the actor network is updated using the policy 
gradient method, and the policy is optimized in a better direction 
based on the policy gradient. The input of the actor network is 
observation (position, angle, speed, etc.), and the output is control 
signals, such as steering wheel angle and accelerator brake.

The critic network develops using the behavioral value function, 
which takes state and behavior as input factors and outputs return 
values as output variables. This network is utilized to assess the 
efficiency of different techniques. The paper’s RS-DDPG approach is 
more generalizable and robust than the traditional DDPG method 
since it uses a novel reward function. The evaluation methods of the 
DDPG algorithm and RS-DDPG algorithm are shown in Figure 7.
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Action SEnvironment

Draft data

Actor network

Actor optimizer Target policy 
network
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network
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Critic optimizer Target Q 
network

Online Q 
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FIGURE 6

DDPG algorithm with actor and critic networks.
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Figure 7A shows the actual evaluation algorithm. It is noticeable 
that the actual algorithm differentiates between evaluation 
techniques for intelligent robots that are based on accidents and 
non-accidents. However, the trained results failed to achieve the 
required accuracy standards for intelligent robots path tracking. 
Figure  7B shows the enhanced assessment achieved using a 
combined method in designing a reward function, resulting in a 
more logical assessment and better accuracy of the control effect 

after training. The heading angle deviation curve, yaw rate deviation 
curve, and center of mass lateral deviation curve of AVs before and 
after algorithm improvement are shown in Figures  8–10, 
respectively.

From Figures 8–10, it can be seen that the stability performance 
of AVs using RS-DDPG control algorithm during the experimental 
process is significantly higher than that of robots using DDPG 
algorithm, and the control process is more reasonable. This study 

(a) Deep deterministic policy gradient algorithm

Decision

No accident

Accident

Agent

Environment

Action

Penalty 

Reward

(b) Reward-shaping deep deterministic policy gradient algorithm

Decision

Reward 
function

Agent

Environment

Action

Reward / Penalty 

FIGURE 7

Evaluation methods of DDPG and RS-DDPG algorithms.
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FIGURE 8

Heading angle deviation curves of autonomous robots before and after algorithm improvement.
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not only confirms the efficacy of the algorithm strategy output, but 
also demonstrates the strong application of the improvement 
approach in the simulated environment. Figure  11 shows a 
comparison of lateral errors between AVs using RS-DDPG and 
DDPG algorithms.

As shown in Figure  11, the comparison of lateral errors 
between AVs using RS-DDPG and DDPG approaches can also 
be  seen intuitively that the RS-DDPG control algorithm has 
higher tracking accuracy performance than the DDPG algorithm, 
and the control process is more reasonable. Table 2 compares the 
results of different tracking control values using DDPG and 
RS-DDPG control algorithms. From the data in Table 2, it can 
be  concluded that the tracking control values of RS-DDPG 

algorithm are better than the corresponding values of 
DDPG algorithm.

5 Conclusion

This article takes intelligent robots as the research object and uses 
reinforcement learning based methods to study the optimal control 
problem of robots in tracking trajectories. A DRL based RS-DDPG 
and visual SLAM path tracking algorithms are proposed, aiming to 
optimize the tracking accuracy and operational stability of robots. 
Enhanced the robustness of the visual SLAM system in dynamic 
environments, and utilized semantic information to generate a static 
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FIGURE 9

Yaw rate deviation curve of autonomous robots before and after algorithm modification.
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FIGURE 10

Curve of center of mass lateral deviation angle of autonomous driving robots before and after algorithm enhancement.
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semantic octree map, saving a lot of storage space. At the same time, 
the generated map can be directly used for robot path planning. On 
the basis of DRL, these algorithm designs a reward function and 
adaptive weight coefficients for intelligent robots in trajectory 
tracking, thereby optimizing the parameters of RS-DDPG. The 
controller takes the current position, speed, tracking path 
information, and heading angle of the robot as inputs, and outputs 
the steering wheel angle and throttle brake. Intelligent robot 
trajectory tracking performance using the algorithm proposed in this 
paper and the actual DDPG algorithm was tested on a simulation 
platform. The simulation results prove that the RS-DDPG based RL 
method, proposed in this paper, has substantial enhancements in 
tracking accuracy and control effectiveness compared to the actual 
DDPG method. Furthermore, it guarantees the safety and stability of 
the robot’s driving process. To explore the problem of intelligent 
robot trajectory tracking further, the next research will continue to 
conduct trajectory planning, apply the following control strategies to 

the planned trajectory and conduct simulation verification of the 
trajectory tracking strategy. On this basis, the RS-DDPG algorithm 
can be  further improved to enhance its control accuracy and 
robustness. This study is of great significance for intelligent robots’ 
autonomous driving and intelligent transportation systems’ 
development. It is expected to provide effective technical support for 
achieving safe driving of robots and smooth traffic.
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Comparison of lateral errors of autonomous robots before and after 
algorithm improvement.

TABLE 2 Comparison of tracking control values before and after 
algorithm improvement.

Parameters Tracking control values for 
different algorithms

DDPG RS-DDPG

Maximum absolute value of lateral 

error (m)
0.52 0.07

Average absolute value of lateral 

error (m)
0.22 0.03

Maximum absolute value of angular 

deviation (°)
0.60 0.05

Average absolute value of angular 

deviation (°)
0.29 0.03

Maximum absolute value of angular 

velocity deviation (rad)
0.40 0.03

Average absolute deviation of 

angular velocity (rad)
0.22 0.01
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