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Introduction: The secure operation of electric power transmission lines is

essential for the economy and society. However, external factors such as plastic

film and kites can cause damage to the lines, potentially leading to power

outages. Traditional detection methods are ine�cient, and the accuracy of

automated systems is limited in complex background environments.

Methods: This paper introduces a Weighted Spatial Attention (WSA) network

model to address the low accuracy in identifying extraneous materials within

electrical transmission infrastructure due to background texture occlusion.

Initially, in the model preprocessing stage, color space conversion, image

enhancement, and improved Large Selective Kernel Network (LSKNet)

technology are utilized to enhance the model’s proficiency in detecting

foreign objects in intricate surroundings. Subsequently, in the feature extraction

stage, the model adopts the dynamic sparse BiLevel Spatial Attention Module

(BSAM) structure proposed in this paper to accurately capture and identify

the characteristic information of foreign objects in power lines. In the feature

pyramid stage, by replacing the feature pyramid network structure and allocating

reasonable weights to the Bidirectional Feature Pyramid Network (BiFPN), the

feature fusion results are optimized, ensuring that the semantic information of

foreign objects in the power line output by the network is e�ectively identified

and processed.

Results: The experimental outcomes reveal that the test recognition accuracy of

the proposed WSA model on the PL (power line) dataset has improved by three

percentage points compared to that of the YOLOv8 model, reaching 97.6%. This

enhancement demonstrates the WSA model’s superior capability in detecting

foreign objects on power lines, even in complex environmental backgrounds.

Discussion: The integration of advanced image preprocessing techniques,

the dynamic sparse BSAM structure, and the BiFPN has proven e�ective in

improving detection accuracy and has the potential to transform the approach

to monitoring and maintaining power transmission infrastructure.

KEYWORDS

transmission lines, WSA, LSKNet, BiFPN, BSAM

1 Introduction

The integrity and reliability of power transmission systems are paramount for

maintaining a stable electricity supply, which is fundamental to modern society and

economic activities. Foreign objects on transmission lines, such as tree branches, plastic

bags, or other debris, pose a significant threat to this integrity. These objects can cause short
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circuits, power outages, and even catastrophic failures leading

to substantial economic losses and potential safety hazards. The

presence of foreign objects can also lead to line tripping, which

disrupts the power supply and affects the quality of electricity

delivery to consumers. Presently, manual inspection is the main

method of inspection for most transmission lines (Koh, 2023; Luo

et al., 2023). However, transmission lines often exist in complex

natural environments and harsh weather conditions, such as

mountains, forests, and deserts. Harsh environments and weather

conditions cause manual inspection problems, which lead to false

alarms, missed reports and low detection rates. These constraints

hinder the prompt detection of foreign objects on power lines,

challenging the timely identification and resolution of potential

safety risks. Technological limitations, environmental factors, and

the need for improved data processing and response systems are key

areas that require attention to enhance real-time monitoring and

safety on power lines. In addition, manual inspections are costly,

and it is difficult to cover all transmission lines. These problems

have led to new requirements for ensuring the operation and the

upkeep of high-voltage electrical networks, making it difficult for

conventional manual monitoring techniques to meet actual needs

in complex environments and real-time monitoring of foreign

objects on numerous transmission lines.

In this context, improving the efficiency and accuracy of

transmission line inspections has become an urgent problem.Many

researchers are committed to developing intelligent inspection

systems for power line monitoring utilizing deep learning to ensure

effective and precise assessments.

Wang et al. (2022) proposed a fusion detection model based on

multiscale appearance and relationship features. In comparison to

the initial YOLOv5, the suggested model demonstrated enhanced

precision. However, this model’s performance is still limited

when dealing with images that have highly similar background

textures, possibly due to a lack of in-depth understanding of

local and global contexts. Wang et al. (2023a) proposed a fusion

detection model based on the improved YOLOv8m. In a foreign

transmission line object detection model, the model’s architecture

was optimized by substituting the original SPPF component with an

advanced SPPCSPC component, thereby bolstering its capacity for

extracting multi-scale features. Additionally, the implementation

of the Focal-EIoU loss function addressed the issue of sample

quality imbalance, ensuring a more equitable focus on both

high-quality and low-quality samples during training. However,

this method may over-rely on the re-weighting of samples and

does not fully consider the dynamism of feature extraction.

Liang et al. (2020) investigated a deep neural network approach

for assessing and pinpointing flaws in power line inspections,

employing learned transfer and parameter optimization techniques

to build the Fast R-CNN detection model. Nevertheless, the

model’s performance may decline when dealing with small or

partially occluded targets, indicating the need for more refined

feature extraction and target localization mechanisms. Wang et al.

(2017) proposed a YOLOv5 transmission line inspection image

detection model implementing the K-means clustering technique

to refine the dimensions of the anchor boxes, this method

enhances the model’s capability to accurately align with salient

object characteristics. The generalizability of this method may be

limited under different environmental conditions, especially in

complex and variable outdoor settings. Liang et al. (2023) proposed

optimizing the YOLOv5s model to solve the problems of low

accuracy and poor timeliness of deep learning network models in

processing background texture occlusion images. The threshold

function is used to denoise the image, and the original loss function

GIOU_Loss is optimized into the CIOU_Loss function, which is

subsequently fine-tuned.While these improvements have increased

the model’s robustness to some extent, adaptability to dynamic

environmental changes remains a challenge.

Although many scholars have achieved excellent results within

the context of foreign object detection on power lines, the

accuracy of current technology is still insufficient for increasingly

complex transmission line networks. For example, in complex

environments, due to background occlusion and light, foreign

objects in power transmission lines cannot be completely identified

in the picture, causing foreign objects to be occasionally missed.

In response to the limitations of existing models, the WSA

model proposed in this paper introduces a weighted spatial

attention mechanism to enhance the capture of local features and

the understanding of global contexts. By dynamically adjusting

attention weights, the WSA model can more effectively handle

background texture occlusion and improve the detection accuracy

of small and occluded targets. This approach will provide a more

effective means for the management and upkeep of the power

system, improve work efficiency, reduce costs, and effectively avoid

circuit hazards caused by foreign objects in transmission lines.

The primary contributions of this scholarly work are delineated

as follows, taking into account various perspectives:

1. This paper proposes an innovative WSA network that addresses

the difficult problems in foreign object detection on power

lines and combines the specific advantages of BSAM, improved

LSKNet, and bifpn technologies to achieve more efficient

transmission line safety detection.

2. The large convolutional structure of LSKNet is introduced, and

the improved large convolutional structure of LSKNet exhibits

a more extensive input coverage and stronger feature extraction

capability that can effectively capture the contextual information

and fine-grained features of the target.

3. The BiFPN structure is used to improve the traditional PAN–

FPN structure and optimize the weight distribution of the fusion

results. By reasonably adjusting the weight distribution of the

fusion results, the efficacy and resilience of the network for

object identification assignments are additionally enhanced.

2 YOLOv8 algorithm

The YOLOv8 detection algorithm is a lightweight anchor-free

model that directly predicts the center of extraneous materials

within power conduits instead of the offset of the known anchor

frame (Talaat and ZainEldin, 2023; Pan et al., 2024). The algorithm

can quickly locate the foreign objects in transmission lines to

be detected during detection. Anchorless detection reduces the

number of box predictions, accelerates non-maximum suppression

and replaces C3, the main building block in the network, with C2f,
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in which all the outputs of the bottlenecks are concatenated. In C3,

only the output of the last bottleneck is utilized, and the kernel size

of the first convolution is changed from 1 × 1 to 3 × 3, which

makes extracting foreign body features of power transmission lines

initially more efficient. More information about the characteristics

of extraneous materials within power conduits can be obtained.

In the neck part, the features are directly connected without

forcing the use of the same channel size, which reduces the number

of parameters and the overall size of the tensor so that the volume

of the final power line foreign object detection model is also

reduced accordingly.

Since YOLOv8 uses a large grid to segment the image, there

may be errors in the precise location of foreign objects in power

lines, and it may not be suitable for precise positioning application

scenarios. Second, YOLOv8 uses a constant scale during training,

and the scale of the detection target may change due to factors

such as distance and viewing angle. Therefore, in the application

scenario, the YOLOv8 network is improved and a multiscale

process is used to generate new feature maps to improve the

accuracy and reliability of target recognition (Liu et al., 2024;

Vahdani and Tian, 2024).

3 WSA

To enhance the precision and efficiency of foreign object

detection on power transmission lines, this study employs the

rapid and accurate YOLOv8 algorithm as a foundation. The

YOLOv8 algorithm is renowned for its exceptional speed and

detection accuracy; however, it encounters difficulties in identifying

targets obscured by background elements. In order to overcome

this limitation, a new network structure named Weighted Spatial

Attention network (WSA) is proposed based on YOLOv8. The

WSA network combines a spatial attention mechanism with a

weighted feature pyramid network, creating a complementary

effect that significantly improves the detection performance of

obscured targets. Additionally, to address the issue of partially

occluded targets, this study utilizes data augmentation methods,

including random occlusion techniques, to enhance the model’s

flexibility and robustness in handling partially obscured targets.

By integrating the LSKNet large convolutional framework

into the BSAM foundation, the WSA network enhances its

capabilities by broadening the receptive field and capturing fine-

grained feature details. Furthermore, we have strengthened the

traditional PAN-FPN architecture through the implementation

of the BiFPN structure and an improved weight allocation

method, thereby enhancing the integration of multi-scale features.

With the integration of a weighted scheme, the network

utilizes information from different feature layers more effectively,

enhancing its focusing and discriminative abilities for transmission

line detection. TheWSA network retains the advantages of existing

structures while enhancing the framework’s effectiveness and

robustness, demonstrating promising applicability and prospects

for widespread adoption. The detailed structure of the WSA

network architecture is depicted in Figure 1, clearly illustrating

how the network achieves efficient identification of foreign objects

on power transmission lines through the collaborative work of its

various components.

3.1 LSKNet

LSKNet is a lightweight network proposed by Li that can

dynamically adjust the spatial receptive field (Li F. et al., 2023;

Li Y. et al., 2023). Most of the images in the transmission line

foreign object dataset are obtained by drone aerial photography.

The objects in many pictures are small and not easily recognized

by the model. The model must rely on their background and

surrounding environment to identify these objects. Addressing

the issue concerning image detection in intricate surroundings,

LSKNet has emerged. Using the rotation-sensitive convolution

operation of LSKNet, it can effectively capture the rotation

information of extraneous matter on power lines and improve

the accuracy of the target detection (Guo et al., 2021; Chen

et al., 2023; Hanzl et al., 2023; Ju and Wang, 2023; Kou

et al., 2023; Zhang T. et al., 2023). This paper introduces

a dynamic receptive field adjustment method based on large

kernel selection sub-blocks and adds a deep convolution to the

basic LKS election aiming to diminish the parameter count

while concurrently enhancing the capacity for characteristic

portrayal. In addition, feed-forward network sub-blocks are

applied to channel blending and feature expression refinement,

additionally, the model’s precision in capturing relevant details

is significantly improved. By dividing the image into multiple

grids and performing feature extraction on each grid and

by integrating these features, we empower the system to

concentrate its attention more acutely on the area of interest.

This approach improves the robustness and generalizability of

the model. As shown in Figure 2, red DW-Conv is the added

depth convolution.

LSKNet plays a key feature extraction role in foreign object

detection on transmission lines. First, LSKNet can dynamically

adjust the feeling field of the network, through its core module,

the LSK module. The network can adaptively select different

sized convolution kernels according to the content of the input

image and thus can capture features at different scales. This

capability is particularly important for the precise identification

of minor objects within satellite imagery, as small targets may

require finer features to distinguish. Second, LSKNet uses a

spatial selection mechanism to weight the processed feature maps

of the convolution kernel at different scales. This mechanism

allows the network to spatially incorporate these feature maps,

thereby enhancing the contextual understanding of the target

surroundings while maintaining computational efficiency. Last,

the inclusion of LSKNet was driven by its ability to dynamically

adjust the spatial receptive field, which is crucial for identifying

small and distant objects common in transmission line imagery.

The large convolutional structure of LSKNet provides extensive

input coverage and robust feature extraction, enabling the

model to effectively capture contextual and fine-grained features

of targets.

In practical applications, LSKNet can overcome the effects

of light changes, shadows, occlusions, and other factors on the

detection results and can accurately identify different types of

foreign objects, such as bird nests and kites. This function

not only reduces the risk of missed detections and false

detections but also improves the reliability of transmission

line monitoring.
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FIGURE 1

WSA network architecture diagram (in the neck network diagram, the network enclosed by the red dashed lines represents the addition made in this

paper, where the LSK block is a modified version of the original module).

3.2 BSAM attention

The BSAM is designed to integrate the dual advantages of the

CBAM and BiFormer to bolsters the model’s capacity to discern

targets and pay attention to local details. The CBAM weights the

depth and spatial aspects of the feature map through channel and

spatial attention mechanisms, respectively, to extract useful feature

information. BiFormer uses the internal attention mechanism of

the transformer to dynamically learn the long-range dependencies

between feature image pixels. By combining these two attention

mechanisms, the BSAM can more effectively seize the contextual

cues and intricate characteristics of the target (Guo et al., 2023;

Zheng et al., 2023; Zhu et al., 2023; Hu et al., 2024a,b). The CBAM

consists of two parts: channel attention and spatial attention.

The BSAM also inherits this feature. The channel attention

mechanism enters the input image feature map into a depth-

separable convolution to reduce the amount of calculation and

then normalizes it. The layer enters the dual-layer routing attention

mechanism, pruning and filtering the feature information, only

focusing on the routing area with the most feature information,

filtering other areas, and then passing the multilayer perceptron

to obtain the deep feature map (Cheng et al., 2023). These feature
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FIGURE 2

LSK model diagram (in the diagram, the components highlighted in red denote the added depth convolutional blocks, while “Avg Max Pool” refers to

the sequential application of average and maximum pooling operations).

maps are average pooled and max pooled in units of channels,

and then the results are connected, converted to dot products

through convolution, and applied to the feature maps according to

the spatial attention channel weights. The architecture diagram is

shown in Figure 3.

Compared with existing attention mechanisms, the BSAM

has more advantages when processing small target images.

By integrating a fusion of an introspective focus system with

convolution operation, the BSAM can efficiently extract feature

information and adapt to different processing methods in different

scenarios. The BSAM enhances the model’s understanding of

the image context by integrating multilevel feature information,

which is crucial for the accurate identification and positioning of

foreign bodies in complex backgrounds, especially in scenarios

such as transmission lines, where foreign bodies may be similar

to the background texture or appear at different angles and under

different light conditions.

Compared with the addition of CBAM or BiFormer, the

number of parameters in the BSAM has not significantly increased,

but it can accurately capture the key information in the input data

and filter out redundant and noisy features. This ability greatly

improves the robustness of the model, allowing it to better adapt

to target detection tasks under background texture occlusion and

lighting conditions. Similar to the CBAM, the BSAM has the

ability to adaptively weight features of different scales, thereby

retaining richer semantic information and further improving the

generalization ability of the model (Hanning et al., 2023; Li F. et al.,

2023; Li K. et al., 2023; Liu L. et al., 2023; Liu X. et al., 2023).

First, the input image features enter a 3 × 3 depth separable

convolution, and then the results enter the normalization layer

and dual-layer routing attentionmechanismmodule, which divides

the feature map X ∈ RH×W×C into NxN non-repeating regions. X

represents the feature map of the input; H, W and C represent the

height, width and number of channels, respectively; each region

includes H × W × N2 a feature vector, which can be converted

to Equation (1); and the query, key, and value tensors Q, K, and

V are derived ∈ R
N2×HW

N2 ×C
, which have linear projections such

as Equation (2). Only the top-k connections in each region are

retained to prune the association graph Ir = topkIndex (Ar), where

Ar is the adjacency matrix of the interregion affinity map, and

tensors of keys and values for query tokens in each region are

collected. O is the tensor of the output, Attention (⊙) is an attention

operation, and LCE (⊙) is a depth convolution parameterization,

as shown in Equations (3, 4), where Kg ,Vg is the tensor of the

aggregation key and value.

Xr ∈ R
N2×HW

N2 ×C
(1)

Q = XrWq,K = XrWk,V = XrWv (2)

Kg = gather (K, Ir) , Vg = gather (V , Ir) (3)

O = Attention (Q,Kg ,Vg) + LCE (V) (4)

Second, the module dedicated to spatial focus is activated,

following which average and maximum pooling steps are applied,

the feature maps generated by them are spliced, and the

convolution operation is applied to the spliced feature maps

to generate the final feature map. The whole process in

Equation (5) is expressed as follows: f 7 × 7 represents a 7 × 7

convolution operation,MaxPool, AvgPool represents themaximum

pooling with the mean pooling, and Ms represents the spatial

attention module.

Ms (O)= σ (f 7×7([AvgPool (F) ;MaxPool(F)]) (5)

The BSAM attention mechanism shows significant advantages

and effects for identifying unauthorized items within the

framework of power conduits. This combined attentionmechanism

fully utilizes the characteristics of the channel attention and spatial

attention of the CBAM and weighted double-layer path attention

mechanism of BiFormer. This approach elevates the model’s skill in

handling capture image features and focus attention.

First, by focusing on key areas in the image through ensemble

channel attention and spatial attention mechanisms, important

spatial locations in the image can be identified, and more

attention forces can be assigned to these areas to highlight the

target object in a complex background. This approach improves

the detection accuracy of the model under background texture

Frontiers inNeurorobotics 05 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1424158
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wang et al. 10.3389/fnbot.2024.1424158

FIGURE 3

Diagram of the BSAM architecture.

occlusion and reduces false detections and missed detections.

Second, the weighted dual-layer path attention mechanism of

BiFormer allows the model to focus on different parts of the image

at different levels and integrate multilevel feature information. This

mechanism enhances the model’s understanding of the contextual

information and spatial layout of the image, more accurately

identifying and locating foreign objects. By integrating channel

attention and spatial attention with a weighted dual-layer path

attention mechanism, this mechanism can more comprehensively

focus on all aspects of the image, including channel dimensions,

spatial dimensions, and different levels of feature information.

3.3 BiFPN

Another innovative point of this article is to introduce a

weighted feature pyramid structure called BiFPN to solve the

problem of low detection accuracy caused by light intensity.

The BiFPN structure is able to grasp the significance of various

input characteristics, the process involves iteratively conducting

a hierarchical integration of coarse-to-fine and fine-to-coarse

multi-tier feature merging, thereby seamlessly blending features

across disparate scales (Liu L. et al., 2023). In traditional feature

pyramid networks, feature fusion is usually accomplished by simple

summation or averaging operations, which may lead to the loss of

information. BiFPN controls the fusion of features at different levels

through learnable weights, thus achieving lossless fusion of features

while retaining more useful information, enhancing the model’s

perception capabilities and accuracy.

In the YOLOv8 model, the PANet pyramid structure is used

to enhance the receptive field of the network. Compared with

the original FPN pyramid, PANet has more bottom-up path

aggregation but only one input, and there is no feature fusion.

Therefore, in the BiFPN module, we remove PANet but still retain

its output and realize the transfer of information by connecting

the previous node to the next node. In addition, BiFPN also adds

skip connections based on PANet to fuse the previous features. As

shown in Figure 4, each circular block is image feature information

extracted by convolution. Multiple BiFPN modules are applied to

the entire YOLOv8 structure to fully integrate features and better

utilize different levels of semantic information (Wang et al., 2019;

Chen et al., 2021; Islam et al., 2023; Wu et al., 2023).

When performing feature fusion, different feature inputs have

different resolutions and different output contributions to the

feature network, so the network needs to learn the weights.

However, general weighted fusion is not restricted, and wi makes

the training process difficult to stabilize. It is not easy to converge,

so BiFPN uses a fast normalized feature fusion operation, as shown

in Equation (6):

O =6i
wi

ε+6
wj

j

Ii (6)

First, the activation function wi ≥ 0 ReLU is used to ensure

that it is not <0. Second, a fixed value for ε, generally 0.0001, is

used to ensure stable training. This approach avoids the Softmax

operation and is faster than using Softmax in training. There is a

significant improvement, and the final feature fusion network will

also be input from bottom to top, thus constructing a weighted,

two-way feature pyramid network.

Within the YOLOv8 framework, the integration of BiFPN

enhances the capability of inter-scale feature interaction, which

is particularly beneficial for bolstering detection capabilities in

complex environments, such as power transmission lines. By

establishing lateral connections that allow for direct fusion

of features across various layers, BiFPN ensures a rich and

detailed representation capturing both macro and micro aspects

of the scene. This is crucial for the identification of foreign

objects that may appear in various sizes and shapes against

diverse backgrounds.

Furthermore, BiFPN’s architecture is designed to iteratively

refine these feature representations, enabling the model to

progressively improve its understanding of the spatial hierarchy

within the imagery. This refinement process is essential for the

accurate localization and classification of foreign objects, especially

when they are obscured or camouflaged by the natural setting of the

power lines. Essentially, BiFPN contributes to the YOLOv8 model

in two significant ways: it enriches the feature hierarchy through

its bidirectional fusion process and enhances the model’s ability

to discern and locate foreign objects with high fidelity. This dual

enhancement translates to a marked improvement in the detection
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FIGURE 4

Comparison of BiFPN (left) with the PANet (right) network (the green arrows represent upsampling, the blue arrows represent downsampling, and

the red arrows represent skip connections).

accuracy of foreign objects on power transmission lines, thereby

strengthening the model’s applicability in real-world scenarios.

4 Research methodology and
experimental evaluation

4.1 Dataset construction

To address the scarcity of large-scale public datasets in the

field of foreign object detection on power transmission lines, this

study employed a dataset synthesized from aerial imagery captured

by inspection drones and images collected from the internet,

enhanced through various data augmentation techniques. Initially,

web crawling technology was utilized to search for and download

images related to foreign objects on power transmission lines from

search engines such as Baidu and Google. Subsequently, a portion

of the images was obtained through drone photography. However,

due to environmental constraints, the number of images captured

in this manner was limited.

To overcome this limitation and to create a more complex

and diverse dataset, several data augmentation strategies were

implemented. Standard enhancement methods, such as image

flipping and rotation, were applied. In addition, a random

occlusion technique was employed, where parts of the images

were masked with black to simulate complex environmental

backgrounds. Building on this, image synthesis techniques were

used to place foreign objects onto power lines as a special form of

dataset expansion.

The resulting dataset, comprising 2,300 images, is named the

PL dataset in this paper. It mainly includes four distinct categories:

bird nests, kites, balloons, and debris attached to transmission

lines. Labeling was facilitated by the use of the third-party library

Labeling and semi-automated annotation from Make Sense, which

aids in the accurate localization and identification of foreign objects

in the images.

Furthermore, the dataset was meticulously divided into

training, validation, and testing sets in a ratio of 8:1:1, respectively.

The training set, consisting of 1,840 images, provides a substantial

amount of data for model learning. The validation and testing sets,

each containing 230 images, are used to assess model performance

and generalization capabilities. This partitioning strategy ensures a

robust evaluation of the model’s effectiveness in detecting foreign

objects on power transmission lines.

4.2 Training configuration

The corresponding parameters of the model are shown in

Table 1. The test hardware platform environment is Python3.8

and CUDA11.3, the GPU graphics card is an NVIDIA RTX3090,

and the memory is 43 GB. The label smoothing value is set to

0.005. The learning rate was obtained using the cosine annealing

algorithm. The maximum learning rate is set to 0.01, and the

minimum learning rate is set to 0. The model gradually reduces

the learning rate in the form of a cosine function according to

the number of iterations during the training process. The training

process is divided into multiple cycles. In each cycle, the learning

rate starts from the initial value. As the number of iterations

increases, it gradually decreases to a smaller value according to

the curve of the cosine function and then starts again in the next

cycle. This adjustment method not only ensures that the model can

quickly converge in the early stages of training but also maintains

a small learning rate in the later stages of training to prevent

the model from oscillating near the optimal solution. The cosine

annealing formula is shown in Equation (7), where lr represents

the current learning rate, lr− max represents themaximum learning

rate, e−total represents the total number of training rounds, and
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TABLE 1 Model parameter setting.

Parameter name Parameter value

Imgsz 640∗640

Epoch 300

Batch size 32

Lr_max 0.01

Optimizer Adam

e_now represents the current training round.

lr =
1

2
lr−max×

(

1+ cos

(

e_now× π

e−total

))

(7)

4.3 Analysis of model performance
indicators

This paper uses the average precision mean, precision rate,

recall rate, FPS and parameter quantity indicators to test the model

performance (Du et al., 2023; Li F. et al., 2023; Vidit et al., 2023;

Wang et al., 2023a,b; Lin et al., 2024). The mAP is the average

accuracy of each category of detection results. AP refers to the area

of the curve surrounded by the horizontal axis and vertical axis

of the precision rate and recall rate, respectively. The calculation

formulas for precision and recall are shown in Equations (8,

9), respectively.

Recall =
TP

TP + FN
(8)

Precision =
TP

TP + FP
(9)

In the formula, TP is the number of correctly identified targets.

Generally, when the IoU threshold is ≥0.5, it is considered to be a

correctly identified target. FP is the number of incorrectly identified

targets; FN is the number of missed targets; Precision is the number

of targets in the model, the proportion of correct targets among the

detected targets; and Recall is the proportion of targets correctly

identified by the model among the total number of all real targets

(Sun et al., 2024). The number of detected categories in this article

is 4; the mAP is shown in Equation (10).

mAP =
1

4

4
∑

i=0

APi (10)

4.4 Comparison experiment

This paper introduces the incorporation of depthwise

convolution into the existing LSKNet network, with the improved

results presented in Table 2. For ease of reference, Table 2 only

displays the comparison with LSKNet-D, which is still referred to

as the LSKNet network.

The data in Table 2 indicate that the Botnet model exhibits

the highest precision, reaching 92.7%, but it also has the largest

number of parameters, suggesting a more complex model. On the

other hand, the AFPN model performs poorly in recall, with only

83.8%, yet it has the highest frames per second (FPS), reaching

262.54 FPS, indicating an advantage in speed. The C2f_repghost

model has a slightly lower precision but the second-largest number

of parameters, whereas the LSKNet-D model achieves the highest

mean Average Precision (mAP) among all models, with 92.6%,

while maintaining a relatively high FPS. The addition of depthwise

convolutional layers resulted in a 0.8% decrease in mAP for the

LSKNet model, which may indicate that the inclusion of depthwise

convolutional layers could make it more challenging for the model

to fully learn effective feature representations during training.

However, with a 1.2% reduction in the number of parameters,

the increase in FPS by 10.1% suggests that LSKNet can achieve

rapid object detection at a lower computational cost, suitable for

devices with limited resources. For instance, operating on drones

significantly expands the application scope of LSKNet in the field

of foreign object detection on power transmission lines.

Figure 5 shows the detection results for foreign objects such

as bird nests and kites parked or attached to transmission lines.

In Figure 5B, YOLOv8 recognized the spacer as a bird’s nest,

and the garbage recognition accuracy was only 27%. However, in

Figure 5A, the WSA achieved a garbage recognition accuracy of

56%, and there were no false detections. Compared with YOLOv8,

the WSA model has improved image detection accuracy and can

reduce the occurrence of false detections. Thus, the WSA has

higher reliability and accuracy in practical applications, which is

beneficial for resource-constrained environments. Deployment and

application in an environment can better meet the demand for a

balance between the target detection effect and computing resource

consumption.

However, the WSA model may also misdetect foreign objects

in transmission lines during detection. First, the WSA model

may not have sufficient recognition capabilities for certain types

of targets, which may be attributable to the number of targets

of that type in the training data caused by a low or uneven

distribution. In addition, the target detection algorithm may have

certain limitations on changes in the scale, posture, shape, etc.,

of the target, which may also cause some targets to fail to be

accurately detected. Second, the WSA model may not perform

well in difficult situations such as background texture occlusion,

low light conditions, or occlusion. Especially when there are many

distractors or when the target is highly similar to the background,

the algorithm may not be able to accurately locate and identify

targets. If the target is partially or completely occluded, the

algorithm may not be able to obtain enough information for

accurate detection. Moreover, the parameter settings and model

selection in the algorithm may also affect the results of target

detection. If some parameter settings are unreasonable or themodel

selection is not suitable for the current application scenario, target

detection may fail or be missed. Therefore, when using the WSA

model for target detection, it is necessary to carefully adjust the

parameters and select a suitable model to improve the performance

and robustness of the algorithm.

Figures 6, 7 represent the thermal maps of the improved

network (left) and original network (right), respectively. A heatmap

is a tool for visualizing the position and confidence of a target

object. By observing the thermal maps in Figures 6, 7, we can
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TABLE 2 Large kernel selection subblocks with added deep convolution contrast.

Model P/% R/% mAP/% Parameters FPS (f/s)

LSKNet 87.3 90.7 93.4 3349118 212.65

AFPN 89.5 83.8 89.9 2328193 262.54

BasicRFB 91.1 81.0 91.2 3446020 234.21

Botnet 92.7 85.9 92.0 5695276 212.15

C2f_repghost 87.1 83.4 90.2 4240460 204.47

C2f_scconv 86.8 85.4 90.8 2617900 233.45

LSKNet-D 86.6 91.2 92.6 3307469 234.29

The bolded values represent the experimental results of the research network presented in this article.

FIGURE 5

WSA and YOLOv8 algorithms for the identification results, (A) represents the detection e�ect of the WSA algorithm, (B) represents the detection

e�ect of the YOLOv8.

intuitively observe the difference between the improved algorithm

and the original algorithm in the target detection of layers 12 and

14 of the network. The heatmap shows that the improved network

has a slightly greater effect than the original network in the same

layer and more accurately identifies the target position.

The heatmap can only reflect the detection effect of the

algorithm in a certain layer but cannot fully reflect the performance

of the entire algorithm. Therefore, this article presents multilayer

comparisons and two-layer comparison heatmaps, but more

experiments and evaluations are still needed to verify the

superiority and feasibility of the improved algorithm. Such

multilayer comparison can more comprehensively demonstrate

the performance of the improved algorithm and provide a more

sufficient demonstration and experimental basis for this article (Li

F. et al., 2023; Li G. et al., 2023; Lue et al., 2023; Zhang T. et al., 2023;

Zhang X. P. et al., 2023).

The comparative experiments detailed in this article, as

depicted in Table 3, serve to underscore the performance metrics of

our proposed model alongside established benchmarks in the field

of object detection. Acknowledging the stochastic nature inherent

to deep learning experiments, we have taken a meticulous approach

to ensure the veracity and reliability of our results. To mitigate the

effects of variability, we conducted a series of three independent

experiments on the YOLOv8 model and other contemporary

models, calculating the average mAP @0.5 to provide a consistent

and dependable measure of performance.

In our quest to optimize the training process, we incorporated

the Sophia optimizer (Liu H. et al., 2023), a novel development

from Stanford University, into our experimental framework. The

Sophia optimizer demonstrated a compelling advantage in terms

of training speed, outpacing the Adam optimizer by nearly 1.3

times. This acceleration is attributed to Sophia’s refined adaptability
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FIGURE 6

Comparison of thermal maps in layer 12 of the network (on the left side are the outcomes of the WSA model, while the results of the YOLOv8 are

presented on the right side).

FIGURE 7

Comparison of thermal maps in layer 14 of the network (on the left side are the outcomes of the WSA model, while the results of the YOLOv8 are

presented on the right side).

to the non-uniformity of different parameter sizes, navigating the

curvature of the loss landscape more effectively and converging in

fewer iterations.

However, this expedited convergence came with a noted trade-

off in accuracy, with a discernible decrease of ∼3% points in

mAP. This reduction suggests that while Sophia is adept at rapid

convergence, it may not consistently reach the global optimum,

potentially overlooking solutions that could offer higher accuracy.

In light of these insights, we have retained the Adam optimizer

as our baseline model. Adam’s balanced approach, offering a

commendable blend of speed and accuracy, ensures that ourmodels

achieve convergence to solutions that are not only computationally

efficient but also align with the high standards of accuracy required

for practical applications.

The inclusion of the WSA model in our comparative analysis

reveals its exceptional performance, with the highest precision,

recall, and mAP among all evaluated models. This outcome

highlights the efficacy of the WSAmodel in achieving a remarkable

balance between speed and accuracy, evidenced by its high

FPS and reduced parameter count. The WSA model’s enhanced

performance is particularly noteworthy for its applicability in

scenarios with limited computational resources, such as real-time

object detection on drones patrolling power transmission lines.

4.5 Ablation experiment

Table 4 presents a detailed account of the ablation study

results for the key components of our model, which are crucial

for assessing the contribution of each module to the overall

performance. Conducted with the YOLOv8 network as the baseline

model, the ablation study involved enabling or disabling the

LSKNet, BSAM, and BiFPN modules individually, providing an

in-depth understanding of the role and impact of each module.

From the table, it is evident that when all modules are

inactive (LSKNet, BSAM, and BiFPN are all marked with “×”),

Frontiers inNeurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1424158
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wang et al. 10.3389/fnbot.2024.1424158

TABLE 3 Model contrast experiment.

Model P/% R/% mAP/% Parameters FPS (f/s)

YOLOv5-n 91.2 84.4 92.2 2806221 254.42

YOLOv5-s 87.4 87.9 92.7 9123740 243.51

YOLOv5-m 91.2 85.2 92.4 25067452 221.54

YOLOv7-n 85.7 86.2 90.9 3152426 249.00

YOLOv6-n 90.4 88.9 91.3 4500080 253.41

YOLOv6-s 87.9 85.4 93.7 16306620 246.15

YOLOv6-m 89.5 86.5 93.1 51998380 254.29

SSD 86.4 89.6 89.5 10014672 201.96

YOLOv9-C 89.8 90.7 89.6 60804152 266.20

Gold-YOLO 91.5 90.7 93.6 6015903 262.54

YOLOX 85.2 93.2 91.1 2617900 249.36

YOLOv8 (Sophia) 87.1 84.7 91.2 3001853 212.86

YOLOv8n (Adam) 92.3 86.4 94.3 3011628 255.75

YOLOv8s (Adam) 91.2 95.6 95.6 11137148 276.43

YOLOv8m (Adam) 89.9 94.2 94.4 25858636 271.22

WSA 97.8 92.5 97.6 3249024 269.41

The bolded values represent the experimental results of the research network presented in this article.

TABLE 4 Model ablation experiment.

Cos_lr LSKNet BSAM BiFPN P/% R/% mAP/% Parameters FPS(f/s)

√

× × × 92.3 86.4 94.3 3011628 255.75

√ √
× × 86.6 91.2 92.6 3307469 234.29

√

×
√

× 93.7 92.8 95.5 2681304 298.21

√

× ×
√

90.7 89.6 94.8 3012524 279.89

√ √ √
× 93.6 91.5 94.9 3289752 266.32

√ √
×

√
97.5 93.7 97.4 2930462 259.97

√

×
√ √

93.1 96.7 97.4 2680408 274.36

× × × × 92.6 88.3 93.6 3011628 289.50

×
√

× × 84.9 89.5 90.5 3307469 256.19

× ×
√

× 91.8 93.4 96.1 2681304 287.34

× × ×
√

90.2 90.3 94.9 3012524 238.37

√ √ √ √

97.8 92.5 97.6 3249024 269.41

The bolded values represent the experimental results of the research network presented in this article.

the model’s precision (P/%), recall (R/%), and mean Average

Precision (mAP/%) are 92.3%, 86.4%, and 94.3%, respectively,

establishing a baseline for model performance. When the LSKNet

module is introduced alone, precision drops to 86.6%, suggesting

that LSKNet may be incompatible with certain characteristics

of YOLOv8 when used in isolation or may have limitations

on specific tasks. CosineAnnealingLR (Cos_lr) emonstrates a

positive impact on enhancing the precision and recall rates across

these models. By optimizing the learning rate schedule, it aids

models in converging more rapidly, thereby improving overall

model performance.

However, when the BSAM and BiFPN modules are applied

individually (third and fifth rows, respectively), an improvement

in accuracy is observed, indicating that these modules can

independently enhance the model’s feature extraction and

multi-scale+‘ feature integration capabilities. Notably, the BSAM

module, when used alone, significantly increases recall to 92.8%

and raises mAP to 95.5%.

Further, when these modules are combined, a significant

enhancement in performance is noted. For instance, when LSKNet

and BiFPN are used without BSAM (fourth row), mAP reaches

94.8%. When LSKNet is combined with BSAM (second and sixth
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rows), a balanced improvement in precision and recall is observed,

with mAP reaching 94.9%.

Most strikingly, when all three modules are fully integrated

(last row), the model achieves an outstanding mAP of 97.6%, a 3.3

percentage point improvement over the baseline model. This result

not only demonstrates the complementarity of themodules but also

the effectiveness of the integration strategy.

Although there is a 7.8% increase in the number of parameters,

this increase is justified considering the significant performance

improvement. Particularly in the task of foreign object detection

on power transmission lines, the model has shown strong

detection capabilities, achieving accurate and stable detection

results even under background texture occlusion and varying

lighting conditions.

4.6 Result analysis

Figure 8 shows the experimental results, where the horizontal

axis represents the number of training rounds and the vertical axis

represents the accuracy of the mAP50. Figure 8 clearly shows that

during the training process, as the number of iterations gradually

increases, the performance of the WSA model gradually improves

and eventually reaches a stable state. In terms of accuracy, the

WSA model shows significant advantages, and its performance is

significantly better than that of the YOLOv8 model. Whether using

a short training step size or a long training step size, the WSA

model is able to maintain a relatively high accuracy level, showing

its strong stability and robustness. In contrast, the accuracy of

the YOLOv8 model appears to be more variable, and its overall

accuracy is lower than that of the WSA model. This advantage

mainly stems from the unique structural design of the WSAmodel.

Through a carefully designed network structure and algorithm

optimization, the WSA model can more effectively extract key

features and make more accurate predictions when processing

complex data.

Figure 9 presents the normalized confusion matrix from

our test on the PL dataset, offering insights into the model’s

performance across different categories. The matrix is structured

such that rows indicate the predicted categories, while columns

represent the actual categories. Each cell’s value within the matrix

corresponds to the proportion of predictions for that category.

Diagonal values signify correct predictions, whereas off-diagonal

values denote incorrect ones. Despite an overall accuracy of 97.6%,

we identified a specific shortfall in the detection of kites, with an

accuracy of only 86% and a notably high false negative rate.

Upon meticulous review, the primary cause of this issue was

attributed to the dataset’s sample distribution. The kite category

in the PL dataset is significantly underrepresented, hindering the

model’s ability to learn distinguishing features during training. This

underrepresentation leads to a model that is less sensitive to kite

characteristics, resulting in the observed misdetections.

To address this, we plan to incorporate cost-sensitive learning

techniques, which will prioritize underrepresented categories by

adjusting the model’s focus through weighted sampling. This

approach will encourage the model to pay more attention to

less frequent but critical classes, such as kites, during the

FIGURE 8

Accuracy change curve of the validation set.

learning process. Additionally, we will explore ensemble learning

methods that aggregate the predictions from multiple models.

This strategy can improve the final recognition accuracy by

leveraging the strengths of various models to compensate for

individual weaknesses. See also Figure 10, we provide a comparative

analysis of parameter count and dataset accuracy between the

WSA model and other state-of-the-art networks. It is evident that

the WSA model maintains a comparable number of parameters

while achieving a significant boost in accuracy. This observation

underscores the efficiency and effectiveness of ourmodel. TheWSA

model’s performance enhancement without a substantial increase

in parameters suggests an optimized balance between complexity

and accuracy, which is particularly advantageous for deployment

in resource-constrained environments.

5 Conclusions

This study presents an innovative WSA network model,

specifically designed to address the challenge of detecting foreign

objects on transmission lines within complex environmental

backgrounds. The WSA model integrates a novel weighting

mechanism that enables multilevel fusion of feature information

and acquisition of global context information, thereby enhancing

the detection accuracy in scenarios affected by background texture

occlusion and varying light conditions.

Our constructed image dataset, comprising common foreign

objects found on transmission lines, served as a robust foundation

for model training and validation. The empirical results

demonstrate a significant enhancement in the recall rate by

6.1% compared to the existing YOLOv8 algorithm, underscoring

the WSA network’s superior performance. Moreover, the network’s

strong hardware adaptability and compatibility suggest its potential

for deployment across diverse target detection tasks and datasets.
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FIGURE 9

Normalized WSA confusion matrix.

The ablation study conducted further substantiates the

contribution of the three core modules in bolstering the algorithm’s

performance. However, it is essential to recognize that while the

improved algorithm has achieved a 3% increase in accuracy for

detecting foreign objects in complex environments, there are areas

that require further refinement.

Firstly, the improved model’s accuracy, though enhanced,

may still be considered marginally insufficient for applications

demanding extremely high precision. This limitation could impact

the model’s applicability in high-stakes scenarios where minute

errors can lead to significant consequences.

Secondly, the expansion of the network structure, while

beneficial for performance, may introduce a performance

bottleneck when deployed on hardware with limited resources.

This trade-off between accuracy and computational efficiency is a

critical consideration for real-world deployment, particularly in

resource-constrained environments.

Lastly, the algorithm’s generalizability across different

types of foreign body targets may be limited. The WSA

network model has demonstrated significant advancements

in the detection of foreign objects on transmission lines,

offering improved accuracy and efficiency. However, the

practical application of this model in real-world scenarios

remains to be thoroughly validated. Future research should

prioritize the testing and adaptation of the model in actual

operational environments, accounting for variables such as

diverse weather conditions, which can significantly impact the

model’s performance.

While our current results are promising within laboratory

settings, we acknowledge the necessity to validate the model’s

performance under real-world conditions. The transition

from controlled environments to actual field applications is

fraught with challenges, including variability in environmental

conditions, hardware limitations, and the need for robust data

collection mechanisms.

At present, we face constraints in resources that limit our ability

to conduct extensive field tests. Despite these limitations, we are

committed to exploring avenues that will allow us to integrate the

WSA model into practical applications. Future work will involve

collaborations with industry partners to access real-world data and

facilitate on-site testing.

In conclusion, the WSA network model presents a substantial

step forward in the field of foreign object detection on transmission

lines. The model’s enhanced performance and potential for
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FIGURE 10

On mobile platforms, the dimensional precision trajectory of streamlined models, employed for comparative analysis with WSA and a spectrum of

cutting-edge object detection algorithms.

practical applicability are evident. However, there is a clear path

for future enhancements. By addressing the current limitations

and exploring new research directions, we are confident that

we can develop an even more accurate, efficient, and robust

detection system. This will not only be a valuable asset in

laboratory conditions but also a practical solution for real-world

applications.
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