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Aiming at the problem that the existing methods are insufficient in dealing 
with the background noise anti-interference of underwater fish images, a 
contrastive learning method of ignoring background called CLIB for underwater 
fish image classification is proposed to improve the accuracy and robustness 
of underwater fish image classification. First, CLIB effectively separates the 
subject from the background in the image through the extraction module and 
applies it to contrastive learning by composing three complementary views with 
the original image. To further improve the adaptive ability of CLIB in complex 
underwater images, we propose a multi-view-based contrastive loss function, 
whose core idea is to enhance the similarity between the original image and the 
subject and maximize the difference between the subject and the background, 
making CLIB focus more on learning the core features of the subject during the 
training process, and effectively ignoring the interference of background noise. 
Experiments on the Fish4Knowledge, Fish-gres, WildFish-30, and QUTFish-89 
public datasets show that our method performs well, with improvements of 
1.43–6.75%, 8.16–8.95%, 13.1–14.82%, and 3.92–6.19%, respectively, compared 
with the baseline model, further validating the effectiveness of CLIB.

KEYWORDS

underwater fish image classification, contrastive learning, deep learning, self-
supervised visual representation learning, background noise

1 Introduction

The ocean is one of the most important ecosystems on Earth and is an essential field for 
human survival and development. However, in recent years, the marine ecosystem has been 
continuously damaged (Georgian et al., 2022; Jiao et al., 2023). To protect the oceans, we need 
to understand the health of the oceans, and information such as the distribution of different 
species of fish and the number of fish in a particular watershed can well reflect the health of 
the ecological environment in that watershed (Trindade-Santos et al., 2022; Xuan et al., 2022; 
Yu et al., 2022). Therefore, the study of the species and number of fish through the collected 
images of underwater fishes is of great significance for further understanding the health of the 
oceans and protecting endangered species (Ovalle et al., 2022; Zhang D. et al., 2022).

However, underwater optical images are significantly different from land optical images. 
The lights with different wavelengths have different propagation characteristics in water, 
resulting in the collected underwater images being characterized by color distortion, visual 
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blurring, and low contrast (Chen et al., 2022; Wang et al., 2022; Lu 
et al., 2023), which is shown in Figure 1. Figure 1A shows the fish 
images taken in the terrestrial environment, and it can be seen that the 
texture of the images is clear and visible, Figure 1B shows the fish 
images taken in water environment, which are characterized by color 
distortion, visual blurring, etc. In addition, due to the high mobility of 
fish, the same species of fish may appear in different backgrounds 
while different species of fish may appear in the same background, 
which leads to the background not only having no positive effect but 
also interfering with the training of the model. The background noise 
brings about great challenges to the recognition of underwater 
fish images.

Traditional machine learning methods (Larsen et al., 2009) for 
underwater fish image classification usually use manually designed 
features to extract features, and it could be  more scalable and 
generalizable in the face of large-scale datasets. The later emergence 
of supervised visual representation learning (Li et al., 2021) solved the 
drawbacks of manually designed features in traditional machine 
learning methods and attracted much response. However, supervised 
visual representation learning relies on manually labelled labels when 
training the model. When facing large-scale underwater fish image 
datasets, the labelling work on the labels consumes a lot of time and 
energy for oceanography experts. The emergence of self-supervised 
visual representation learning (Ericsson et al., 2022) in recent years 
has improved this problem by requiring only a small number of labels 
to fine-tune the model to achieve impressive results, significantly 
reducing the tediousness of labelling data. However, the current self-
supervised visual representation learning methods are primarily 
designed for general-purpose models, which could not work well 
when facing underwater images of noisy noise. To address the 
aforementioned issues, this paper proposes contrastive learning of 
ignoring background for underwater fish image classification called 
CLIB, which is proposed to reduce the negative impact of background 
noise. The main contributions of this paper are as follows:

 1. This paper reconstructs the view of contrastive learning based 
on the characteristics of underwater fish images. The subject 
and background of the image are extracted through an 

extraction module, and the original image, extracted subject, 
and background constitute three views for contrastive learning.

 2. This paper proposes a multi-view-based contrastive loss 
function and defines a sample in the subject view as a positive 
sample of the corresponding image in the original view, while 
all other samples in the three views are negative samples of the 
original image.

 3. This paper conducts a large number of comparative 
experiments from three perspectives: different resolutions, 
complex backgrounds, and few-sample to verify the superiority 
of the proposed CLIB method in underwater fish 
image classification.

The rest of the paper is organized as follows. Section 2 reviews 
existing recognition methods of underwater fish and visual 
representation methods of self-supervising. Section 3 describes our 
proposed CLIB method. Section 4 presents the experimental results 
by comparing the CLIB with the mainstream methods. Section 5 
concludes the paper.

2 Related work

2.1 Traditional machine learning methods

Scholars’ research on fish image classification can be traced back 
to 1990 (Xu et al., 2020), and most of the early research combined 
traditional machine learning models with image processing 
techniques, which mainly focused on the design of feature extraction 
and improving the accuracy of classification by extracting more 
favorable information such as shape and texture. For example, 
Spampinato et al. achieved fish image classification by combining 
texture features and shape features (Spampinato et al., 2010). Texture 
features were extracted according to the statistical moments of the 
grayscale histogram, spatial Gabor filtering, and the properties of 
the co-occurrence matrix. Shape features were extracted by using 
curvature scale-spatial transformation and the histogram of 
boundary Fourier descriptors. Huang et  al. achieved fish image 
classification by extracting 66 features from different parts of a fish 
composed of color, shape, and texture and reduced the feature 
dimensions by a forward sequential feature selection procedure 
(Huang et  al., 2012). Fouad et  al. described the local features 
extracted from a set of fish images to differentiate fish species 
through the algorithm supporting vector machine combined with 
an accelerated robust feature algorithm based on scale-invariant 
feature transformation (Fouad et al., 2013). Hu et al. extracted six 
sets of feature vectors, including the color features of the image, the 
color features of texture sub-images, the features of statistical 
texture, and the features of texture based on wavelets, and the feature 
vectors were fed into the supporting Vector Machine for 
classification (Hu et  al., 2012). Khotimah et  al. extracted eight 
texture and shape features from fish images using image processing 
methods and then used these features to create a classification model 
using a decision tree (Khotimah et al., 2015). Most early research on 
the classification of underwater fish image was based on traditional 
machine-learning models and image-processing techniques (Zhang 
et  al., 2021; Zhang Z. et  al., 2022). The main steps include (1) 
denoising and enhancing the underwater fish images using image 

FIGURE 1

Images taken on land vs. images taken underwater. (A) Images taken 
on land. (B) Images taken underwater.
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processing techniques, (2) extracting the pre-designed features 
artificially from the underwater fish images, and (3) training the 
traditional machine learning models based on the extracted features 
to classify the fish.

However, the classification effectiveness of traditional machine 
learning models is closely related to feature extraction methods 
designed manually, and most researchers rely on experience to design 
the features, which has the disadvantage of a certain degree of 
subjectivity and blindness. Although these methods achieve some 
classification results, most of the features designed by the researchers 
are designed for only a specific dataset. When faced with a new dataset 
or applied in practice, the classification results of the model usually 
have significant errors compared to the reality.

2.2 Supervised visual representation 
learning

With the development of deep learning, deep learning-based 
methods have achieved good results in various fields in recent years. 
Different from traditional machine learning methods that rely on 
hand-designed feature extraction, deep learning methods are capable 
of automatic feature learning, which dramatically reduces the 
tediousness of design while improving performance. For example, Sun 
et al. solved the problem of limited discriminative information in 
low-resolution images by using deep learning and super-resolution 
methods to explicitly learn discriminative features in relatively 
low-resolution images (Sun et al., 2016). Deep et al. used convolutional 
neural networks to extract features and then used support vector 
machines and K-Nearest Neighbor to classify images (Deep and Dash, 
2019). Based on the idea of contrastive learning, Zhang et  al. 
encouraged the model to learn more discriminative features for 
different categories of images and similar features for images of the 
same category (Zhang et  al., 2021). In addition, a regularization 
technique known as attentional suppression was used to prevent the 
model from paying much attention to the background. To reduce the 
effect of extreme noise in underwater images, Zhang et al. trained the 
model using adversarial perturbation images with the perturbation 
method, which helps to train a better recognition model from images 
containing extreme noise (Zhang D. et  al., 2022). Li et  al. used a 
method of multi-color space coding to fully integrate the feature 
advantages of different color spaces and then obtained the global and 
local deep features of the images in multiple dimensions through the 
multi-channel attention path aggregation strategy, and finally form a 
multi-channel attention network architecture through the embedding 
and stacking of multi-channel attention modules, which strengthens 
the perception of image features (Li et al., 2023).

Although supervised visual representation learning can extract 
data features, labels pre-labeled manually are still required in feature 
learning. Labeling data requires a lot of effort and time from the 
experts, and there may be some labeling errors, which can bring about 
great misleading in subsequent model learning. Self-supervised visual 
representation learning (Chen et al., 2020; Sang et al., 2022) solves this 
problem. With self-supervised representation learning, it is possible 
to learn the model without knowing the label information of the 
image. When ported to the downstream task, only a small amount of 
label information is needed to fine-tune the model to approximate or 
even exceed the effect of supervised learning.

2.3 Self-supervised visual representation 
learning

Self-supervised visual representation learning can provide 
powerful deep feature learning without the need for large amounts of 
labeled data and alleviate the annotation bottleneck to some extent 
(Ericsson et  al., 2022). The most classical self-supervised visual 
representation learning is contrastive learning, which learns data 
representation by maximizing the similarity between positively 
correlated samples and minimizing the similarity between uncorrelated 
samples. With contrastive learning, a label is first derived from the 
unlabeled data by a pre-defined strategy, and then the model is trained 
using this label and the data. The key in contrastive learning is how to 
design the strategy for deriving a label, which is called a pretext task by 
scholars. The effectiveness of the pretext task determines the 
effectiveness of the model for downstream tasks. Consequently, the 
choice of the pretext task is vital for self-supervised visual representation 
learning. For example, He et al. thought that increasing the number of 
negative samples can increase the difficulty of comparison learning and 
enable the model to learn more detailed feature information (He et al., 
2020). Therefore, they proposed the Momentum Contrast (MoCo) 
learning method, which achieved good results by adding a MEMORY 
BANK and updating the encoder parameters using momentum. Chen 
et al. explored the optimal combined method of data augmentation by 
eliminating memory banks and encouraging larger Batch sizes and 
longer training times (Chen et al., 2020). Chen et al. presented a self-
supervised learning method without negative samples as well as 
without increasing the batch size (Chen and He, 2021). In the self-
supervised learning method, the feature vectors obtained from one of 
the two-branch networks after passing through the encoder and the 
feature vectors from another one of the two-branch networks passing 
through the encoder and the multilayer perceptron are mutual positive 
samples. The network is trained by maximizing the similarity of the 
positive sample pairs, which achieved good results.

In addition to the above papers, some excellent methods of self-
supervised visual representation learning are available. However, due 
to the particular characteristics of underwater images, applying general 
methods to underwater fish image classification does not achieve ideal 
results. In this paper, from the idea of focusing on the subject and 
ignoring the background, we innovatively design a contrastive learning 
of ignoring the background for underwater fish image classification, 
which is more suitable for underwater fish image classification.

3 The CLIB method

The training overview diagram of CLIB is shown in Figure 2. The 
subjects and backgrounds of the input images are first extracted by the 
extraction module. Then, the original images and the extracted 
subjects and backgrounds constitute three views, respectively, which 
are fed into the respective encoders after random data augmentation 
and then fed into the feature space through the projection head to 
compute the multi-view-based contrastive loss.

3.1 Symbol definition

This paper defines the main symbols as shown in Table 1.
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3.2 Subject and background extraction 
module

Before the original image is input into the model, the image is 
processed to the specified size, and then the subject and background 
of the image are extracted according to the extraction rules.

The rule for extracting the subject is extracting the central region 
with the area size of the subject image is shown in,

 S Area H Wsubject = ( ) = ∗( ) ∗ ∗( )α β α β,

where ( ),Area    denotes the solution function to the area, and α  
and β  are the hyperparameter ratios of length and width, respectively, 
set α=β .

The rule for extracting the background is extracting the four 
corners of the image. Afterwards, the four corners are pieced together 
to form a background image. The area size of the background image 
is shown in,

 S Area H Wbackground = ( ) = ∗( ) ∗ ∗( )γ δ γ δ,

where γ  and δ  are the hyperparameter ratios of length and width, 
respectively, set γ =δ .

After the sample xi is input into the extraction module E, two 
samples are obtained at the output end (the subject sample and the 
background sample of the original image), which is given by,

 Sub x f x Si crop i subject( ) = ( ),

FIGURE 2

Overview of CLIB training. The upper half of the figure shows the self-supervised training of the backbone network with the CLIB method, and the 
lower half of the figure shows the classifier training in fine-tuning stage in which the parameters of the trained backbone network are freezed and a 
classifier is added for supervised training the whole network with a small amount of data.

TABLE 1 Main symbols.

Symbol Meaning

x X R W H C∈ ∈ ∗ ∗( ) Underwater fish image

W H, Width and height of image

t T∈ Data augmentation

( )f 
Backbone

( )g 

Projection network

E Subject and background extraction module
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 Bac x f x Si crop i background( ) = ( ),

 x x Sub x Bac xi subject i background i i( ) ( ) = ( ) ( ), ,

where fcrop  is a crop function. Sub xi( )  and Bac xi( ) are the 
functions to exract the subject and background, respectively.

The three samples are further subjected to data augmentation, 
feature extraction, and projection mapping, and finally, three sets of 
feature vectors are acquired, which is given by,

 
z z z g f t x x xi i subject i background i i subject i backgrou, ,( ) ( ) ( )= , , nnd( )( )( )( )

3.3 Build multi-views

The view of SimCLR (Chen et al., 2020) is constructed as follows. 
Firstly, randomly sample N  sample images. After two random data 
augmentations, we obtain 2N  expanded samples and two views. The 
two expanded samples originating from the same image are defined 
as mutual positive samples, and the remaining 2 1N −( ) samples are 
defined as the negative samples of the two positive samples.

The views of CLIB are constructed as follows. Firstly, randomly 
select N  sample images (N  original images) and input the selected N  
original images into the extraction module to obtain 2N  samples, i.e., 
N  subject samples and N  background samples. After randomly 
augmenting the 3N  samples, we obtain 3N  expanded samples. The 
expanded sample of an original image and the expanded sample of the 
subject sample extracted from the original image are mutual positive 
samples, and the rest of the 3 2N −  expanded samples are defined as 
negative samples of the expanded sample of the original image or the 
subject sample. The acquired positive and negative samples are shown 
in Figure 3.

3.3.1 Multi-view-based contrastive loss function
SimCLR (Chen et al., 2020) follows the idea of contrastive learning. 

After constructing two views, each sample in the two views corresponds 
to one similar sample (positive sample) and 2 1N −( )  dissimilar 
samples (negative samples). 2N  feature vectors are obtained after 2N  
samples are encoded through an encoder and projected through a 
projection network, and the similarity between two feature vectors is 
calculated according to the cosine similarity formula, which is given by,

 
( ),

T
i j

i j
i j

z z
sim z z

z z
=

where zi denotes the feature vector of sample i, z j  denotes the 
feature vector of sample j , T  represents the transpose of the vector, 
and iz  indicates the length of the vector zi. For the positive samples 
pair i j,( ), the definition of the loss function for SimCLR (Chen et al., 
2020) is given by,

 

l
sim z z

sim z z
i j SimCLR

i j

k
N

k i i k
, log

exp /

exp
( )

= ≠[ ]
= −

( )( )
(∑

,

,

τ

1

2
1 ))( )/τ

where 1 01k i≠[ ] ∈{ },  is an indicator function with value “1” when 
k i↑  and value “0” when k i= , τ  is a temperature parameter, and 

( )exp   is the exponential function. The total loss is given by,

 
L

N
l lSimCLR

k

N

k k k k= +





=
−( ) −( )∑1

2
1

2 1 2 2 2 1, ,

where 2 1 2k k−( ),  and 2 2 1k k, −( ) represent the pairs of 
positive samples.

CLIB also follows the idea of contrastive learning, but unlike 
SimCLR (Chen et al., 2020), the number of negative samples in CLIB 

FIGURE 3

The diagram of positive and negative samples of CLIB. The first row of images are the original views, the second row of images are their respective 
subject views, and the third row of images are their respective background views. The upper left original image is regarded as an anchor, its subject 
view (the below image in blue line) is regarded as the positive sample of the anchor, and all other images are regarded as negative samples of the 
anchor (all images in red line).
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increases significantly. This is because, besides the 2 1N −( ) negative 
samples in both the original image view and the subject view, the N  
samples in the background view are also defined as negative samples. 
After the three views are constructed, each sample in either the subject 
or the original image view has one similar sample (positive sample) 
and 3 2N −  dissimilar samples (negative samples). In CLIB, 3N feature 
vectors are obtained after 3N samples are encoded through an encoder 
and projected through a projection network. For the positive sample 
pair i j,( ) and all the corresponding negative samples, the loss function 
of CLIB is given by,

 
( )

( )( )
[ ] ( )( )

, 3
2 , :1; 2 :11

exp , /
log

1 exp , /

i j
i j CLIB N

i kk N k i k Nk

sim z z
l

sim z z

τ

τ≤ ≠ >=

= −
∑

where [ ] { }2 , :1; 2 :11 0,1k N k i k N≤ ≠ > ∈  is the indicator function with 
value “1” when k N″ 2  and k i↑  or k N> 2 , in all other cases, the 
value of the function is 0. k N″ 2  means that k  belongs to the original 
images view or the subject view. If k N> 2 , the value of the indicator 
function is “1.” τ  is the temperature parameter, and ( )exp   is the 
exponential function. The total loss is given by,

 
L

N
l lCLIB

k

N

k k k k= +





=
− −( ) − −( )∑1

2
1

3 1 3 2 3 2 3 1, ,

where 3 13 2k k− −( ),  and 3 2 3 1k k− −( ),  represent the pairs of 
positive samples. It should be noted that the positive samples only 
appear in either the original view or the subject view, and all the 
samples in the background view are negative samples.

4 Experiments

In this section, the performance of CLIB is evaluated and 
compared with the benchmark model (SimCLR) as well as nine 
mainstream self-supervised visual representation learning methods 
through experiments in which the encoder is ResNet50 (He 
et al., 2016).

4.1 Datasets and experimental set-up

4.1.1 Datasets
The experiments are performed on four datasets. The types and 

quantities of the four datasets are shown in Table 2. The fish images in 
Fish4Knowledge (Boom B. et  al., 2012; Boom B. J. et  al., 2012), 
WildFish-30, and QUTFish-89 datasets are taken in water, while the 
fish images in the Fish-gres dataset (Prasetyo et al., 2020) are taken on 
land. The WildFish-30 (Zhuang et al., 2018) dataset is composed of 
the images in the 30 categories with the highest number of images. The 
QUTFish-89 dataset is composed of the images in the 89 few-sample 
categories from the QUTFish dataset (Anantharajah et al., 2014).

4.1.2 Experimental set-up
The experiments in this paper are conducted under the same 

hardware and software environment. Specifically, the CPU used is 

Intel(R) Xeon(R) Platinum 8358P, while the GPU used is A40 (48GB). 
The size of the memory is 80GB. The Python version is 3.8, while the 
Pytorch version is 2.0. When training in the backbone network, all 
samples are put into the network for training, and the model with the 
lowest loss value is preserved. When training in the classifier, the 
dataset is divided into three subsets with a ratio of 1:1:8. One subset 
with 10% samples is used as the training set, another subset with 10% 
samples is used as the validation set, and the remaining subset with 
80% samples is used as the test set. The model with the highest 
accuracy in the classifier training process on the validation set is 
reserved, and the final accuracy is obtained by testing the test set with 
the reserved model. The rest of the experimental setup is shown in 
Table 3.

4.2 Results of comparative experiments

To verify the effectiveness and superiority of the CLIB method, 
nine popular self-supervised methods of visual representation 
learning are selected for comparison, including SimCLR (a simple 
framework for contrastive learning of visual representations; Chen 
et al., 2020), MOCO (momentum contrast for unsupervised visual 
representation learning; He et  al., 2020), SimSiam (exploring 
simple siamese representation learning; Chen and He, 2021), 
BYOL (bootstrap your own latent; Grill et  al., 2020), TiCo 
(transformation invariance and covariance contrast for self-
supervised visual representation learning; Zhu et  al., 2022), 
NNCLR (nearest-neighbor contrastive learning of visual 
representations; Dwibedi et al., 2021), Dcl (decoupled contrastive 
learning; Yeh et al., 2022), Matrix-SSL (Matrix Information Theory 
for Self-Supervised Learning; Zhang et  al., 2023), and Mixed 
Barlow Twins (Guarding Barlow Twins Against Overfitting with 
Mixed Samples; Bandara et al., 2023). To test the proposed CLIB 
method more objectively, to define four metrics, Accuracy, 
Precision, Recall, and F1 value, as the metrics to evaluate the 
classification performance of the methods.

TABLE 2 Type information of four datasets.

Dataset Number of 
species

Number of 
images

Resized 
resolution

Fish4Knowledge 23 27,370 64 × 64

Fish-gres 8 3,248 224 × 224

WildFish-30 30 3,688 224 × 224

QUTFish-89 89 823 224 × 224

TABLE 3 Experimental set-up.

Environment and parameters Set-up

Optimizer SGD

Initial learning rate 0.01

Final learning rate 0.0001

Temperature 0.07

Training epochs of the backbone network 500

Training epochs of the classifier 100
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4.2.1 Comparative experiments on underwater 
images with different resolutions

To further explore the actual effect of CLIB, we  conduct 
experiments on Fish4Knowledge and WildFish-30 datasets with very 
different resolutions, and the results are shown in Table 4. Meanwhile, 
the validation accuracy is shown in Figures 4, 5.

The experimental results show that the CLIB method performs 
excellently on the lower-resolution Fish4Knowledge dataset and the 
higher-resolution WildFish-30 dataset. It is worth noting that the 
effect of CLIB on the higher-resolution WildFish-30 dataset is more 
prominent. This is because the original image resolution is high, CLIB 
extracts more pixel points of the subject and background image parts, 
which provides the model with richer information about the negative 

samples compared to other methods and makes the model pay 
attention to the subject part of the image and ignore the background 
part. In conclusion, experimental results and analysis on the 
Fish4Knowledge and WildFish-30 datasets show that CLIB performs 
excellently in underwater fish image classification of different 
resolutions with background noise.

4.2.2 Comparative experiments in complex 
backgrounds

To reflect the main idea that CLIB focuses more attention on the 
subject of the image and ignores the background, we  purposely 
conduct experiments on the dataset of Fish-gres, in which the fish 
images are taken from land, and the backgrounds of images of fishes 

TABLE 4 Experimental results on the Fish4Knowledge and WildFish-30 datasets.

Method Fish4Knowledge WildFish-30

Acc (%) Pre (%) Rec (%) F1 (%) Acc (%) Pre (%) Rec (%) F1 (%)

SimCLR (Chen et al., 2020) 94.58 86.83 69.19 74.10 46.56 49.88 46.17 46.82

Moco (He et al., 2020) 93.12 78.78 66.02 69.06 44.55 46.50 44.48 44.33

SimSiam (Chen and He, 2021) 88.28 41.32 34.57 35.33 21.99 24.35 21.94 21.10

BYOL (Grill et al., 2020) 91.01 60.97 46.82 48.54 39.55 41.65 39.32 39.52

TiCo (Zhu et al., 2022) 86.36 58.63 48.30 49.20 32.48 34.42 32.21 31.16

NNCLR (Dwibedi et al., 2021) 94.07 69.17 66.47 65.93 41.60 44.75 41.45 41.53

Dcl (Yeh et al., 2022) 94.83 85.43 71.19 74.60 45.02 46.43 44.78 44.60

Matrix-SSL (Zhang et al., 2023) 95.93 70.80 56.56 59.70 40.96 42.41 40.78 41.02

Mixed Barlow Twins (Bandara et al., 2023) 93.21 53.25 47.28 47.86 33.48 36.24 33.18 32.51

CLIB 96.01 91.48 75.94 80.16 60.94 62.98 60.99 61.44

FIGURE 4

Accuracy validation on the Fish4Knowledge dataset.

https://doi.org/10.3389/fnbot.2024.1423848
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Yan et al. 10.3389/fnbot.2024.1423848

Frontiers in Neurorobotics 08 frontiersin.org

TABLE 5 Experimental results on the Fish-gres dataset.

Method Fish-gres

Acc 
(%)

Pre 
(%)

Rec 
(%)

F1 
(%)

SimCLR (Chen et al., 2020) 78.87 80.22 77.45 78.22

Moco (He et al., 2020) 78.98 80.35 77.88 78.84

SimSiam (Chen and He, 2021) 66.65 66.61 64.73 65.38

BYOL (Grill et al., 2020) 68.03 70.14 64.65 65.98

TiCo (Zhu et al., 2022) 67.96 69.01 66.89 66.44

NNCLR (Dwibedi et al., 2021) 80.17 81.43 80.10 80.32

Dcl (Yeh et al., 2022) 77.75 80.82 76.28 77.96

Matrix-SSL (Zhang et al., 2023) 74.10 74.11 71.04 71.94

Mixed Barlow Twins (Bandara et al., 2023) 59.16 62.16 55.30 55.90

CLIB 87.59 88.38 86.35 87.17

belonging to the same species are different greatly. The experimental 
results on the Fish-gres datasets are shown in Table  5, and the 
validation accuracy is shown in Figure 6.

For datasets like Fish-gres with large background differences 
between similar classes, it should be more difficult for the ordinary 
contrastive learning methods to achieve feature learning by zooming 
in the feature mapping of positive sample pairs and zooming out the 
feature mapping of negative samples. In this paper, we propose the 
CLIB method. The main idea of CLIB is to pay more attention to the 
subject of the image and ignore the background of the image. 
Theoretically, CLIB should perform much better on the Fish-gres 
dataset. The experimental results show that CLIB achieves accuracy of 
87.59%, precision of 88.38%, recall of 86.35%, and F1 value of 87.17% 
on the dataset of Fish-gres, which outperforms SimCLR (8.72%), 
Moco (8.61%), SimSiam (20.94%), BYOL (19.56%), TiCo (19.63%), 
NNCLR (7.42%), Dcl (9.84%), Matrix-SSL (13.49%), and Mixed 
Barlow Twins (28.43%) in terms of accuracy. Furthermore, CLIB 
outperforms the nine methods in terms of precision, recall, and F1 
value, which verifies the validity of the CLIB’s idea of ignoring the 
background and focusing on the subject.

4.2.3 Comparative experiments with few-sample 
datasets

When taking underwater fish images, it is often difficult to capture 
enough fish images due to the sparse number of fish in some species, 
resulting in some categories of the dataset presenting a low sample 
size. To better adapt to this situation, we further evaluate CLIB’s ability 
to learn with few samples and its generalization by constructing a 
few-sample dataset. Eighty-nine categories with few samples are 
extracted from the QUTFish dataset to form the QUTFish-89 dataset, 
most of which have less than 10 images in the category. Not only that, 

only 34 images were used to fine-tune the model for the classifier, and 
far fewer than the categorized categories 89. The experimental results 
on the QUTFish-89 dataset are shown in Table 6, and the validation 
accuracy is shown in Figure 7.

Under such demanding conditions, the CLIB method still obtains 
good results compared to the other nine methods, with significant 
advantages in all four metrics. This is because in the training phase of 
the backbone network, benefiting from the idea of focusing on the 
subject of the image and ignoring the background of the image, CLIB 
is less affected by the background in the process of learning, and the 
model can more accurately capture the differences between different 
categories of images and the sameness between the same categories. 

FIGURE 5

Accuracy validation on the WildFish-30 dataset.
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As a result, CLIB can also distinguish different categories of fish 
images well when faced with this sparse number of samples. At the 
same time, the other nine methods make it more difficult for the 
model to learn the homogeneity between the same categories when 
facing image data with sparse samples because of the scarcity of data 
in the same category. In addition, the backgrounds of fish images 
between different categories are highly similar, while fish images of the 
same category can have large differences, and the sparse data make it 
more difficult for these methods to learn the differences between 
images of different categories and the homogeneity between the 
same categories.

4.3 Results of ablation experiments

To further verify the superiority of CLIB, three groups of ablation 
experiments are designed:

4.3.1 Baseline
The experiments of the first group are conducted with the baseline 

model SimCLR, which consists of two views of the two original images 
derived from the same image with two different data enhancements.

4.3.2 CLIB-ablation
The experiments of the second group, the background view is 

added in the SimCLR model as expanded negative samples of two 
enhanced image views, and forms the third view.

4.3.3 CLIB
The experiments of the third group are conducted with the 

proposed CLIB method, with three views in total: original view, body 
view, and background view.

The results of the ablation experiments are shown in Tables 7, 8. 
The experiment results of the second group are either better or worse 
than those of the first group. This is because in the second set of 
methods, on the one hand, the mappings in the feature space between 
one of the enhanced original views and the background view is 
zoomed out in the process of training, which results in the model 
ignoring the background. On the other hand, the mappings in the 
feature space between one enhanced original image and another 
enhanced original image is zoomed in during the training process. 
However, due to the two images in the two original views being with 
background, the mapping between the two backgrounds in the two 

FIGURE 6

Accuracy validation on the Fish-gres dataset.

TABLE 6 Experimental results on the QUTFish-89 dataset.

Method QUTFish-89

Acc 
(%)

Pre 
(%)

Rec 
(%)

F1 
(%)

SimCLR (Chen et al., 2020) 10.71 6.98 9.16 6.39

Moco (He et al., 2020) 4.36 3.60 3.90 2.68

SimSiam (Chen and He, 2021) 5.29 4.21 4.62 3.33

BYOL (Grill et al., 2020) 6.87 4.79 5.74 4.04

TiCo (Zhu et al., 2022) 6.21 4.64 5.49 3.54

NNCLR (Dwibedi et al., 2021) 7.53 6.12 6.73 4.63

Dcl (Yeh et al., 2022) 8.99 5.94 7.88 5.22

Matrix-SSL (Zhang et al., 2023) 11.11 6.69 9.65 6.53

Mixed Barlow Twins (Bandara et al., 2023) 6.21 6.88 5.60 3.51

CLIB 16.13 13.17 13.89 10.31
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TABLE 7 Experimental results on Fish4Knowledge and Fish-gres datasets.

Method
Fish4Knowledge Fish-gres

Acc (%) Pre (%) Rec (%) F1 (%) Acc (%) Pre (%) Rec (%) F1 (%)

Baseline 94.58 86.83 69.19 74.10 78.87 80.22 77.45 78.22

CLIB-ablation 94.73 81.22 70.57 73.72 79.40 80.03 78.68 79.07

CLIB 96.01 91.48 75.94 80.16 87.59 88.38 86.35 87.17

TABLE 8 Experimental results on WildFish-30 and QUTFish-89 datasets.

Method
WildFish-30 QUTFish-89

Acc (%) Pre (%) Rec (%) F1 (%) Acc (%) Pre (%) Rec (%) F1 (%)

Baseline 46.56 49.88 46.17 46.82 10.71 6.98 9.16 6.39

CLIB-ablation 48.44 49.50 48.08 48.09 12.43 8.93 10.70 7.56

CLIB 60.94 62.98 60.99 61.44 16.13 13.17 13.89 10.31

original views is also zoomed in, which results in the model failing to 
ignore the background. Therefore, it can be concluded that simply 
adding background views to SimCLR to expand the negative samples 
does not improve the performance of the model.

The ablation experiments of the third group are conducted using 
the CLIB method proposed in this paper. Consequently, compared to 
the experiments in the first or second group, the performance of the 
CLIB method is significantly improved, which is verified by the 
experimental results in Tables 7, 8. This is because the CLIB method 
does not suffer from the contradiction in the second set of 
experiments. Thus, the ablation experiments verify the validity of the 
idea of the CLIB by focusing on the subject and ignoring 
the background.

4.4 Visualization

To visualize the idea of CLIB of focusing on the subject and 
ignoring the background, experiments on visualizing network 
attention using class activation maps (Grad-Cam; Selvaraju et  al., 
2017) are conducted. The results are shown in Figure 8. The redder the 
area, the more critical it is for decision or classification, and the 
SimCLR model is used as the baseline in the visualization experiment. 
Most general methods tend to regard the background in the image as 
part of the fish for classification. Figure 8 shows the subject area is 
concerned with both the benchmark model and CLIB. However, with 
the benchmark model, the recognition results are easily affected by 
backgrounds. For example, in the first row, although the benchmark 

FIGURE 7

Accuracy validation on the QUTFish-89 dataset.
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model focuses on the fish body of the image, it also focuses on the 
grass under the fish. In the second row, the subject of the image is 
similar to the background, which makes it challenging to locate the 
fish even with the human eye. Since the baseline model cannot 
accurately differentiate between the subject and the background, the 
baseline model incorrectly regards the grass that is highly similar to 
the fish as the subject of the image. However, this is not the case for 

CLIB. The CLIB model accurately draws the outline of the fish. 
Similarly, from the visualization results on the Fish-gres dataset in the 
seventh row, the baseline model focuses mainly on the wrist and 
ignores the fish in the hand, while CLIB can accurately focus on the 
fish in the image. In summary, the superiority of the CLIB is further 
verified by visualizing experiments on network attention using class 
activation graphs.

FIGURE 8

Network attention visualization. The redder the area, the more critical it is for decision or classification.
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FIGURE 9

Performance of CLIB under different ratios and temperatures. (A) Performance under different ratios. (B) Performance under different temperatures.

FIGURE 10

The value of loss function in backbone network training of CLIB under different temperatures and epochs.

4.5 Analysis of parameter sensitivity

In this subsection, the performance of CLIB under different 
settings of parameters is shown in Figure 9. It is worth stating that the 
experiments are conducted on the dataset of Fish4Knowledge with 
resnet50 as the backbone network, and experiments can be performed 
under the same settings of parameters on other datasets and backbone 
networks as well.

The first parameter is the ratio of α  to γ  of half of the side length of 
the background image to the side length of the original image in the 
extraction module. Figure 9 shows the performance of CLIB changes 
with the ratio, and the most effective ratio is 0.25. This is because when 
the ratio is 0.25, the size of the mosaic of backgrounds at the four corners 

of the original image is equal to that of the original image. Thus, more 
pixel points can be used in contrastive learning, and the result is better.

The second parameter is the temperature in contrastive learning, 
which is used to control the model’s ability to differentiate between 
positive and negative samples. The performance index values of CLIB 
in the training phase of the backbone network under different 
temperature parameters are shown in Figures 9, 10. It is seen that the 
higher the temperature parameter is, the weaker ability to differentiate 
the positive and negative samples of the model is, and the higher loss 
value in the training process of the model is. However, if the 
temperature is set very small, the model is difficult to converge or has 
poor generalization ability.The most effective temperature coefficient 
of CLIB is 0.07.
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5 Conclusion

In this paper, to solve the problem of background noise having a 
tremendous negative impact on underwater fish image classification, 
we propose the contrastive learning method of ignoring background 
for underwater fish image classification called CLIB. CLIB redefines 
views and loss function in contrastive learning based on the 
characteristics of underwater fish images. We  demonstrate the 
effectiveness of CLIB in underwater fish image classification, especially 
when facing different resolutions, complex backgrounds, and 
few-sample. When the subject is located in the center of the image, the 
proposed CLIB method achieves the best classification effect. 
However, if the fish is located in a corner of the image, the CLIB treats 
the fish as the background, and the classification effect is decreased, 
which is a problem we need to solve in our subsequent work.
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