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In the tobacco industry, impurity detection is an important prerequisite for

ensuring the quality of tobacco. However, in the actual production process, the

complex background environment and the variability of impurity shapes can

a�ect the accuracy of impurity detection by tobacco robots, which leads to

a decrease in product quality and an increase in health risks. To address this

problem, we propose a new online detection method of tobacco impurities for

tobacco robot. Firstly, a BCFormer attention mechanism module is designed to

e�ectively mitigate the interference of irrelevant information in the image and

improve the network’s ability to identify regions of interest. Secondly, a Dual

Feature Aggregation (DFA) module is designed and added to Neck to improve the

accuracy of tobacco impurities detection by augmenting the fused feature maps

with deep semantic and surface location data. Finally, to address the problem

that the traditional loss function cannot accurately reflect the distance between

two bounding boxes, this paper proposes an optimized loss function to more

accurately assess the quality of the bounding boxes. To evaluate the e�ectiveness

of the algorithm, this paper creates a dataset specifically designed to detect

tobacco impurities. Experimental results show that the algorithmperformswell in

identifying tobacco impurities. Our algorithm improved the mAP value by about

3.01% compared to the traditional YOLOX method. The real-time processing

e�ciency of the model is as high as 41 frames per second, which makes it ideal

for automated inspection of tobacco production lines and e�ectively solves the

problem of tobacco impurity detection.

KEYWORDS

tobacco industry, tobacco robot, real-time processing, automated inspection, tobacco

impurity detection

1 Introduction

Tobacco is a critical cash crop, and the quality of its products directly impacts

consumer health and satisfaction, as well as the tobacco industry’s development and

competitiveness. The presence of impurities such as metals, plastics, paper and plant

materials can seriously affect the quality and safety of tobacco products (Girma Regassa

and Chandravanshi, 2016). In this context, neural networks offer a promising solution for

the effective detection and removal of these impurities. Using deep learning and computer

vision techniques (Lu et al., 2022), tobacco robots can autonomously detect and classify

impurities, thereby improving the quality of tobacco products.
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At present, the common impurities detection methods used in

the tobacco production line are mainly manual visual detection and

mechanical sorting (Chao et al., 2020). Artificial visual detection

has the disadvantages of low efficiency, large error, high labor

intensity, etc., which is difficult to meet the requirements of high-

speed production lines. Mechanical sorting refers to the use of

mechanical devices for screening, blowing, adsorption and other

operations to separate the impurities from the tobacco. Although

this method can improve the detection speed, for the shape and

size of small impurities similar to tobacco, such as metal shavings,

plastic pieces, etc., it is difficult to effectively identify and remove,

and the instrument is expensive, which limits its promotion

and application.

FIGURE 1

Overall structure of the network.

FIGURE 2

Network structure of BCFormer.

In recent years, deep learning (Kumar et al., 2022; Lin

et al., 2022; Zhang et al., 2023; Han et al., 2024a,b; Lakatos

et al., 2024) and neural network techniques (Sun et al., 2023,

2024a,b) have flourished in the field of computer vision, and

object detection methods based on these techniques have

been widely used in industrial scenarios (Qi et al., 2020).

Compared to traditional computer vision methods deep

learning uses multiple layers of complex nonlinear mapping

(Nagamine et al., 2016), these methods can learn more complex

features and improve the accuracy and speed of detection.

Secondly, deep learning techniques are capable of end-to-end

learning (Coleman et al., 2017) and can automatically capture

valid features.
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FIGURE 3

Network structure of DFA module.

FIGURE 4

Illustration of GIoU loss formula.

The development of object detection techniques based on deep

learning is mainly divided into two types: two-stage detection

methods and single-stage detection methods. The two-stage

detection methods are R-CNN (Girshick et al., 2014), Fast R-CNN

(Girshick, 2015), Faster R-CNN (Ren et al., 2016), Cascade R-CNN

(Cai and Vasconcelos, 2018) and Mask R-CNN (He et al., 2017).

Based on Faster R-CNN, Ma et al. (2022) and others used the

K-means algorithm to generate clustering centers based on the

actual distribution characteristics of object sizes, and performed a

homogenization operation on the clustering centers to generate the

adaptive anchor box parameters, which improves the ability of the

regional suggestion network to search for multi-scale objects. Sha

et al. (2022) used a multi-level fusion structure to generate multi-

scale feature maps with precise position information and semantic

features, and then corrected the scale of candidate regions in RPN

to improve the detection accuracy of multi-scale aircraft objects in

remote sensing images. Xin et al. (2023) removed redundant deep

features to improve the network accuracy and reduce the number

of parameters by 38.4%. To reduce the background clutter, the

CBAM attention module (Woo et al., 2018) is introduced into the

backbone of the feature extraction network, which improves the

model’s detect ability.

For single-stage object detection, commonly used detection

algorithms are the SSD (Liu et al., 2016), RetinaNet (Lin

et al., 2017), YOLO series (Redmon et al., 2016), EfficientDet

(Tan et al., 2020), and CornerNet (Law and Deng, 2018).

Yin and Wang (2022), proposed Attention Feature Fusion SSD

(AFF). First, the shallow feature information is fused using the

Attention Feature Fusion module to reduce noise and improve

the correlation of distant pixels in the feature map. Second, a

focused classification loss function is used to solve the model

degradation problem caused by the imbalance of positive and

negative samples during the training process. Wenlong et al. (2024)

used Swin Transformer (Liu Z. et al., 2021) as the backbone

network to improve the feature extraction capability of the

network. The Adaptive Contextual Feature Extraction module is

proposed to adaptively adjust the sensory field using deformable

convolutions with different zero rates to extract contextual features

and improve the effect of multi-scale object detection. The

FreeAnchor module (Wang et al., 2022) is introduced to solve

the problem of dense small objects in images by designing an

optimized anchor frame matching strategy from the perspective

of large release estimation. Xiao-pei et al. (2023) introduced

the channel-global attention mechanism (Liu Y. et al., 2021) in

the backbone network to improve the feature extraction ability

for objects of different scales and suppress the interference

of redundant information. A dense upsampling convolution
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FIGURE 5

Tobacco impurities image acquisition platform and image. (A) Tobacco debris image acquisition platform. (B) Images collected during the day. (C)

Images collected at night.

TABLE 1 Introduction to the dataset.

Name Categories Number of
sheets

bm Fabric 200

hm Sponge 250

mp Sawdust 100

pd Belt 150

pvd PV band 200

rj Latex 256

sl Plastic 344

slbm Plastic film 150

sy Leaf 100

szw Filament 150

xg Wire tube 100

xj Rubber 200

ym Feather 50

zp Scraps of paper 204

module (Sediqi and Lee, 2021) is introduced to expand low-

resolution feature maps and improve the fusion effect of different

feature maps.

An increasing number of scholars have undertaken research

in tobacco impurity detection. To illustrate, Shaotang et al.

(2009) presented a methodology for identifying foreign matter

that involved constructing a standard color library and a typical

foreign matter color library. They removed typical foreign matter

colors and revised the standard color library. Additionally, they

proposed monitoring the action of solenoid valves as a novel

approach to detecting larger foreign objects. Additionally, Fuguang

and Xiaoqing (2012) utilized 20 × 20 pixel blocks as the unit of

measure for cigarette images. These blocks were categorized into

two groups: containing foreign objects and not containing foreign

FIGURE 6

Object class size allocation.

objects. A clustering algorithm based on the Adaptive Iterative Self-

Organizing Data Analysis Technique (ISODATA) was employed

to cluster the pixel blocks that did not contain foreign objects,

and subsequently to determine the clustering center. Finally, the

authors converted the clustering center into HSI color space and

traversed the cells in the cigarette image to detect foreign objects.

Furthermore, Li et al. (2021) proposed a stacked convolutional

neural network, which effectively recognized and detected moldy

tobacco images by extracting and aggregating image features using

convolutional kernels of varying sizes from three branches in a

stepwise manner.

The following conclusions can be drawn from the above

analysis:

(1) These methods deserve more processing power and

memory when dealing with complex feature extraction tasks.

(2) When the object size is too small, the model will have

misdetection and false detection, which will seriously affect the

detection accuracy and lead to the failure of the reliable tobacco

impurity detection task.

(3) Impurity detection methods are capable of detecting

fewer types of impurities, resulting in an inability to
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TABLE 2 The results of the ablation experiments.

YOLOX BCFormer DFA GIoU P (%) R (%) mAP (%) FPS

√
– – – 96.76 87.20 95.50 51.36

√ √
– – 96.92 87.57 96.43 44.15

√
–

√
96.34 91.40 97.69 44.53

√
– –

√
98.65 90.83 97.69 48.61

√ √ √ √
97.67 97.06 98.51 41.51

TABLE 3 A comparison of this method with other methods.

SSD YOLOv3 Faster-
RCNN

Centernet YOLOv5 YOLOv7 YOLOX Ours

bm 73.82 77.23 76.62 75.65 72.95 89.21 91.59 99.12

hm 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

mp 100.00 99.65 97.52 98.75 100.00 100.00 100.00 100.00

pd 40.22 41.32 40.39 39.21 38.34 77.32 78.95 93.50

pvd 74.25 75.65 76.52 77.59 78.51 94.25 93.47 100.00

rj 8.22 11.35 12.32 10.25 9.52 100.00 100.00 98.21

sl 94.32 98.22 98.56 100.00 100.00 100.00 100.00 100.00

slbm 87.55 90.21 89.21 93.21 96.70 99.62 99.05 100.00

sy 88.87 84.21 82.12 82.36 88.45 88.41 88.40 98.11

szw 90.11 92.11 89.39 88.17 89.91 95.26 94.26 98.16

xg 99.12 98.89 99.36 98.52 100.00 100.00 100.00 100.00

xj 88.34 90.21 91.36 88.19 89.21 88.32 91.90 92.06

ym 100.00 100.00 100.00 99.17 100.00 100.00 100.00 100.00

zp 100.00 99.54 99.91 99.34 100.00 98.22 100.00 100.00

mAP 81.77 82.76 82.38 82.17 83.11 95.04 95.50 98.51

FPS 42.84 49.82 47.32 42.24 46.17 50.29 51.36 41.51

F1 0.92 0.95 0.96 0.95 0.93 0.91 0.96 0.97

Params 26.28 61.94 28.48 32.70 31.07 37.62 9.12 9.98

effectively identify and analyse different types of impurities

in complex industrial scenarios, thus affecting product quality

and safety.

To address the above issues and improve the detection

accuracy of tobacco impurities, a new online detection

method of tobacco impurities for tobacco robot is proposed

in this article. The main innovation points of this article

are as follows:

(1) A BCFormer module is proposed to improve the network’s

ability to detect regions of interest by weakening non-critical

information in the image.

(2) An DFA module is proposed to enhance the fusion of detail

information from shallow feature maps and semantic information

from deep feature maps.

(3) An optimized loss function is proposed to provide

more feature information and reduce the inference

time during the training phase, thereby improving the

accuracy and robustness of the detection algorithm against

tobacco impurities.

(4) In this paper, images of tobacco impurities in different

weather conditions have been collected to create a tobacco impurity

dataset.

2 Methods

2.1 Overall network structure

Figure 1 illustrates the structure of our network. The network

uses YOLOX as a base model for detecting tobacco impurities in

complex environments. Firstly, we added the BCFormer attention

mechanism to the backbone network to extract key feature

information of the object region by learning the importance of each

feature. Secondly, the Dual Feature Aggregation module (DFA)

module is added to the Neck part to better achieve the fusion

of the low-level detail information with the high-level semantic

information, so as to reduce the interference of the complex

background on the detection. Finally, the GIoU loss function is
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FIGURE 7

Confusion matrix for tobacco impurities detection. (A) YOLOX. (B) Ours.

used as a regression loss function to enable the model to learn more

accurate bounding box predictions, further improving the accuracy

of object detection.

2.2 BCFormer module

Attention is an important mechanism that focuses on

highlighting important information and adjusting weights to

improve model performance. It is widely used in various object

detection tasks to improve the accuracy and robustness of detection

by selecting and focusing on regions or features that are relevant to

the object. In general, the attention mechanism, usually referred to

as self-attention, is a key technique in the Transformer model. It

assigns weights by calculating the dependencies between different

positions in the input sequence, thus adjusting the level of

attention to each position in the sequence. However, in the original

Transformer network, this structure requires the computation of

the correlation between any two elements in the input sequence.

The computational complexity grows exponentially with the length

of the sequence, so models using such techniques require a large

amount of computational resources.

To solve the above problem, we propose a visual transformer

model called BCFormer, which introduces a Bi-Level Routing

Attention (BRA) module in the visual transformer. This module

improves the feature representation by enabling information

interaction between global and local attention levels. This is

because the global attention mechanism captures the overall

structure and global information of the image, while the local

attention mechanism captures the details and local features of

the image. Therefore, the introduction of the Bi-Level Routing

Attention (BRA) module can better deal with the global and local

relationships in the image and effectively capture the structural and

detailed features of the image. This model significantly improves

the performance in the detection task, and its structure is shown in

Figure 2.

In this paper, Bi-Level Routing Attention is used as the

basic building block, so the BCFormer module first uses 3

× 3 convolution to implicitly encode the relative position

information, and then performs the normalization operation by

Layer Normalization (LN). Then, after the BRA (Bi-Level Routing

Attention) module, the feature map is divided into S × S non-

overlapping regions, and most of the irrelevant key-value pairs are

filtered out from the rough regions, and only a small portion of the

routing regions are retained. Finally, amultilayer perceptron (MLP)

and CspLayer are used to select the most appropriate weights and

biases for feature transformation, information reorganization and

feature extraction.

In the BRA module we define several key concepts: Q is used

to compute the weighted relevance of a query with respect to

a keyword, K denotes the keyword or identifier that provides

information or is used for matching purposes, V is the value

associated with the query result and the keyword information, C is

a scalar factor used to adjust the allocation of attention and control

the focus of attention, A is the adjacency matrix used to represent

the semantics between two regions of correlation, O is the output

of the attention mechanism.

2.3 Dual Feature Aggregation module

There are objects of different sizes in the image, and objects

of different sizes have different features. Simple objects can

be discriminated using shallow features, while complex objects

can be discriminated using deep features. Previous studies have

shown that shallow features are able to extract more information

such as location and details due to their high resolution, but

lack semantic information and are susceptible to noise; on the
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FIGURE 8

Comparison of images of tobacco impurities. (A) YOLOv5. (B) YOLOX. (C) Ours.

contrary, deep features contain more semantic information but

have lower resolution.

The YOLO algorithm will gradually lose some of the image’s

feature information as the network layers deepen during the

detection process, resulting in insufficient feature learning for

small objects and poor detection performance. Therefore, some

researchers try to adjust the feature maps to the same size and then

merge them. However, this method may lose some information of

the feature map itself during the merging process.

To address this problem, we propose the Dual Feature

Aggregation (DFA) module, shown in Figure 3, which aims to

improve the information fusion between feature maps at different

scales. The specific workflow of this module is as follows: first,

we perform a simple alignment fusion process on the feature

tensor of two branch networks for subsequent processing. Next, the

fusion results are used as guidance information to generate weight

parameters by the GPM module. Finally, these weights are used to

perform a weighted transformation on the fused feature tensor, and

the weighted features are used as inputs to the next module.

Since the DFA module cannot be directly integrated into the

structure of YOLOX, we have modified it to suit YOLOX’s needs.

The specific structure is shown in Figure 3. We apply the DFA

module structure to replace the Concat operation in Neck to

establish an attention mechanism between Input1 and Input2. DFA

module is not only able to fuse the information of feature maps of

different scales, but also able to learn to establish the attention to

feature maps of different scales, which improves the accuracy of the

network in detecting tobacco impurities.
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FIGURE 9

Comparison of images of tobacco impurities. (A) YOLOv5. (B) YOLOX. (C) Ours.

2.4 Loss function

The loss function of YOLOX mainly includes regression

loss, confidence loss and classification loss. Among them, the

cross-entropy loss function is used for confidence loss and

classification loss, while the IoU loss function is used for

regression loss.

In regression loss, the IoU loss function is used to calculate

the degree of overlap between the predicted frame and the real

frame, but it cannot reflect the distance between the two frames,
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FIGURE 10

Fourteen types of recalls obtained.

resulting in a gradient of 0, which cannot be optimized. To solve

this problem, this paper uses GIoU instead of IoU as the loss

function. The GIoU is shown in Equations 1 and 2:

GIoU = IoU −
∣

∣C\(A ∪ B)
∣

∣

|C|
(1)

IoU =
A ∩ B

A ∪ B
(2)

Where A represents the prediction frame, B represents the true

frame, and C represents the A and B minimal outer box, as shown

in Figure 4.

When YOLOX adopts the GIoU loss as the regression

loss function, the function integrates the overlap area and the

scale, which better satisfies non-negativity and symmetry during

training and improves detection accuracy. The LGIoU formula is

shown in Equation 3:

LGIoU = 1− GIoU (3)

Therefore, the loss function of this model is specified is shown

in Equation 4:

Loss =
Lcls + LGIoU + λLconf

Npos
(4)

Where λ is the regression loss compensation coefficient, which

in this paper is assumed to be 5.Npos is the number of anchor points

divided into positive samples, and confidence loss and classification

loss are shown in Equation 5:

BCE = − log(Pt) =







− log(y), (y = 1)

− log(1− y), (y = 0)
(5)

Where y = 1 is a positive sample and y = 0 is a negative sample.
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FIGURE 11

Robotic system for tobacco impurity detection.

By introducing the loss function into the constructed

network, the convergence speed of the model in the

training process is effectively improved, which in turn

further improves the accuracy of the model for detecting

tobacco impurities.

3 Experiments

3.1 Dataset

To verify the effectiveness of the algorithm in detecting

tobacco impurities, a dataset of tobacco impurities was

constructed in this paper. The images of this dataset

were taken by researchers from the Zhengzhou Tobacco

Research Institute of China Tobacco Corporation on a real

production line in two scenarios: day and night, as shown in

Figure 5.

The total dataset contains 2,454 images, including 200 fabrics,

250 sponges, 100 sawdust, 150 belts, 200 PV bands, 256 latex, 344

plastics, 150 plastic films, 100 leaves, 150 filaments, 100 wire tubes,

200 rubber, 50 feathers and 204 paper scraps, among other common

tobacco impurities categories. In the dataset, 2,000 images were

selected as the training set and the remaining images were used

as the validation set. The specific data classification is shown in

Table 1.

In this dataset, the object area is <32 × 32 pixel, we consider

it a small object; when the object area is between 32 × 32 pixels

and 96 × 96 pixels, it is considered as a medium object; and

when >96 × 96 pixels, it is considered as a large object. In this

case, we can classify small, medium and large objects based on

the area ratio of the label box and the image. After classification,

the number of small, medium and large objects in our dataset is

1,869, 322 and 263, respectively. The specific sample distribution

for each category and the overall sample distribution are shown in

Figure 6.

3.2 Implementation details

The experimental environment of this paper uses a computer

with Windows 10, 64-bit operating system, Intel(R) Core(TM) i7-

11700 processor, NVIDIA RTX4000 discrete graphics card, and 8G

of RAM. It runs under Python 3.6, Pytorch 1.7.0 and CUDA 11.8.

In this work, a freeze and thaw procedure is used in the training

phase. At the beginning of training, for the first 50 generations,

a batch size of 16 and a learning rate of 1e-3 are used for freeze

training. From 50 to 300 generations, a batch size of 8 and a

learning rate of 1e-4 is used for thaw training. The optimizer used

was adam with an internal dynamics parameter of 0.937. Due to

the limitations of the mAP calculation principle, the network has

to obtain almost all prediction frames when calculating the mAP.

Therefore, the confidence level was set at 0.5. Note that all images

were automatically scaled to 640× 640 for the detection task.

3.3 Evaluation metrics

In this experiment, Precision (P), Recall (R), Mean Average

Precision (mAP) and FPS are used as evaluation indices. P, R, and

mAP are calculated as shown in Equations 6–9:

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

AP =
∫ 1

0
P(R)dR (8)

And mAP is the mean of all APs in N classes.

mAP =
∑n

k=1 APk

n
(9)
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FIGURE 12

Detection e�ect of tobacco impurities on the production line.

Where TP are positive samples predicted as positive samples,

FP are negative samples predicted as positive samples, FN are

positive samples predicted as negative samples, APκ̇ refers to the

average precision of the kth class of detected objects, i.e. the area

under the PR curve, and mAP is the sum of the average precision of

all classes divided by the number of classes.

3.4 The ablation experiment

In this paper we present a series of comparative experiments,

each designed to evaluate the effectiveness of the proposed

modules. Table 2 shows the results of the removal experiments

performed on the Tobacco Impurities dataset, with the bold graph

showing the best results. Our results show that the addition of

the BCFormer module leads to a 0.16% improvement in P, a

0.37% improvement in R and a 0.93% improvement in mAP,

despite the reduction in FPS. This suggests that the BCFormer

module improves the focus of the network on relevant information

and suppresses irrelevant data. Replacing the Concat section in

Neck with the DFA module resulted in a 4.2% improvement in R

and a 2.19% improvement in mAP, with a decrease in FPS. The

applicability of the DFA module for tobacco impurity detection is

demonstrated. In addition, the inclusion of the GIoU loss improved

P by 1.89%, R by 3.63% and mAP by 2.19%, demonstrating the

effectiveness of this module in the detection of tobacco impurities.

Finally, the BCFormer, DFA and GIoU losses were combined to

give YOLOX+BCFormer+DFA+GIoU. The experimental results

showed that this model increased precision, recall and mean

average precision by 0.91%, 9.86%, and 3.01% respectively.

Table 2 displays the results of the ablation experiments that

were conducted on tobacco Impurities data using this method.

3.5 Comparison with existing methods

To demonstrate the effectiveness of the method in detecting

tobacco impurities, the same trained parameters were used to

compare with other state-of-the-art methods on the same tobacco

impurity dataset. Table 3 compares the mAP, FPS, F1, and Params

obtained by different algorithms, with the bold graph showing the

best results.

From Table 3 it can be concluded that the mAP and F1

values obtained by this algorithm are better than the other

algorithms and have a smaller number of parameters. Among

the 14 types of impurities detected, nine of them achieved

100% mAP detection. Compared with other types of impurities,

the detection accuracy of xj is relatively low, mainly due to

the severe occlusion of xj, which makes it difficult to extract

effective feature information. However, in our method, the real-

time detection performance of the model is affected to some extent,

as the number of parameters increases while the object detection

accuracy improves.

According to Figure 7, we can find that 17, 28, 8, 13, 17, 7,

11, 14, 24, 94, 18, 34, 7, 6 were detected for cloth, sponge, wood

chip, belt, pv belt, latex, plastic, plastic film, leaf, filament, wire

pipe, rubber, feather and paper, respectively, which is more than the

original model, with twomore belts, onemore leaves, and twomore

filaments detected. The experimental data proved the correctness of

themethod proposed in this paper, and provided a certain reference
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significance for the improvement of the detection technology of

tobacco filament impurities.

Figure 8 shows the detection results of four types of impurities,

namely pvd, pd, xj, and xg, in daytime scenarios. It can be seen

that compared with the other two state-of-the-art algorithms,

the algorithm proposed in this paper not only effectively detects

impurities, but also has a relatively high confidence level. As can

be seen, the addition of the BCFormer module to extract multi-

scale feature information can significantly improve the sensory field

of the network. In addition, incorporating the DFA module can

enable the network to focus more precisely on the object region

of interest, thereby improving the object detection accuracy. Thus,

it is evident that the method proposed in this paper is capable

of significantly reducing the leakage object detection rate under

daytime conditions.

The detection results of different algorithms for impurities such

as bm in the night environment are shown in Figure 9. Similar

conclusions can be drawn that our method can achieve excellent

impurity detection results, the clutter detection level of which is

higher than that of the comparison methods. In addition, this

algorithm can also achieve excellent detection performance for

impurities with strong occlusion.

In summary, this algorithm can achieve accurate impurity

detection in all weather conditions, providing accurate data for

accurate impurity removal in subsequent tobacco production lines.

Figure 10 shows the recall detection results of 14 types of

impurities obtained by the algorithm in this article. It can be seen

that the algorithm in this article can achieve a high recall rate for

most impurities, but the detection effect for belts is poor. After

analysis, it was found that the shape volume of belts is small and

their morphological features are similar to those of tobacco, which

further affects the accuracy of belt feature extraction.

3.6 Practical scenario application

According to the algorithm proposed in this paper, a tobacco

impurity detection system is designed and applied to a tobacco

impurity detection robot, which mainly consists of an image data

acquisition subsystem and a data processing subsystem, as shown

in Figure 11.

Figure 12 shows the detection effect of tobacco impurities on

the actual production line. It can be seen that the system can achieve

accurate detection of various impurities, and the average confidence

level is more than 0.9, which fully verifies the effectiveness of

the algorithm in this paper. At present, the system has been put

into operation and is in good working condition. The accuracy

of tobacco impurity detection is high, effectively improving the

intelligent level of tobacco impurity detection.

4 Conclusions

To improve the detection accuracy of tobacco impurities,

this paper proposes a new online detection method of tobacco

impurities for tobacco robot, which significantly improves the

accuracy of tobacco impurity detection. The YOLOX-based

algorithm with BCFormer module and DFA module enables the

tobacco robot to pay more attention to the region of interest and

effectively suppress irrelevant information in the image. The GIoU

loss function further reduces the model complexity and improves

the detection efficiency. The tobacco robot based on this proposed

method, implemented in a real production line, performs well and

achieves accurate detection of impurities with high confidence.

However, there are still some challenges in detecting leakage in

complex contexts. To further improve the efficiency of this method,

we will strive to optimize it in our next research to reduce the

leakage detection rate in complex environments.

In future work, we will continue to collect images of more

types of tobacco impurities to improve the model to detect a

larger number of impurities. Meanwhile, we will also improve and

optimize the model according to detection tasks in other scenarios

to extend the applicability of the model in this paper.
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