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Background: Combining machine learning (ML) with gait analysis is widely 
applicable for diagnosing abnormal gait patterns.

Objective: To analyze gait adaptability characteristics in stroke patients, develop 
ML models to identify individuals with GAD, and select optimal diagnostic 
models and key classification features.

Methods: This study was investigated with 30 stroke patients (mean age 
42.69 years, 60% male) and 50 healthy adults (mean age 41.34 years, 58% male). 
Gait adaptability was assessed using a CMill treadmill on gait adaptation tasks: 
target stepping, slalom walking, obstacle avoidance, and speed adaptation. The 
preliminary analysis of variables in both groups was conducted using t-tests 
and Pearson correlation. Features were extracted from demographics, gait 
kinematics, and gait adaptability datasets. ML models based on Support Vector 
Machine, Decision Tree, Multi-layer Perceptron, K-Nearest Neighbors, and 
AdaCost algorithm were trained to classify individuals with and without GAD. 
Model performance was evaluated using accuracy (ACC), sensitivity (SEN), F1-
score and the area under the receiver operating characteristic (ROC) curve (AUC).

Results: The stroke group showed a significantly decreased gait speed (p = 0.000) 
and step length (SL) (p = 0.000), while the asymmetry of SL (p = 0.000) and ST 
(p = 0.000) was higher compared to the healthy group. The gait adaptation 
tasks significantly decreased in slalom walking (p = 0.000), obstacle avoidance 
(p = 0.000), and speed adaptation (p = 0.000). Gait speed (p = 0.000) and obstacle 
avoidance (p = 0.000) were significantly correlated with global F-A score in stroke 
patients. The AdaCost demonstrated better classification performance with an 
ACC of 0.85, SEN of 0.80, F1-score of 0.77, and ROC-AUC of 0.75. Obstacle 
avoidance and gait speed were identified as critical features in this model.

Conclusion: Stroke patients walk slower with shorter SL and more asymmetry 
of SL and ST. Their gait adaptability was decreased, particularly in obstacle 
avoidance and speed adaptation. The faster gait speed and better obstacle 
avoidance were correlated with better functional mobility. The AdaCost identifies 
individuals with GAD and facilitates clinical decision-making. This advances the 
future development of user-friendly interfaces and computer-aided diagnosis 
systems.
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Introduction

Stroke is one of the foremost causes of disability among patients 
(Renedo et al., 2024). Approximately 70 to 80% of stroke survivors are 
discharged with persistent impairments in gait speed and walking 
distance, failing to meet the criteria for community ambulation, 
thereby increasing the risk of falls (Zhong et  al., 2021). Adaptive 
walking is a prerequisite for safe community ambulation, requiring 
patients to adjust their gaits to environment, navigate turns and 
obstacles and form a tripartite model of locomotor control 
characterized by stepping and stability (Hollands et  al., 2013; 
Balasubramanian et al., 2014). Early evaluation and diagnosis of gait 
adaptation dysfunction (GAD) is critical for rehabilitation effect in 
stroke patients.

The assessment of gait adaptability currently receives limited 
clinical attention. Some simple walking function tests (e.g., 10-meter 
walk test, timed up and go test) are commonly used to evaluate and 
predict walking recovery (Yang et  al., 2024). However, most gait 
adaptability outcomes show little or only moderate correlation with 
clinical walking and balance (Geerse et al., 2021). Considering the 
complex nature of the construct of gait adaptability, Balasubramanian 
et al. (2014) developed a comprehensive assessment encompassing 
nine domains, including obstacle negotiation, timing, environment, 
cognition, etc. Despite its thoroughness, the validity, reliability, and 
specificity of this “observational gait analysis” remain uncertain 
(Ferrarello et al., 2013). Instrumented gait analysis, using pressure 
sensors or motion capture systems with or without markers, provides 
quantitative kinematic and kinetic parameters (Nadeau et al., 2013). 
It is widely regarded as the gold standard for gait analysis. However, 
the measurement is laborious and requires trained personnel, 
involving large datasets and complex computations (Broström et al., 
2012), making it rarely used for definitive clinical diagnosis (Baker 
et  al., 2016) and challenging to identify specific domains of 
GAD. Additionally, most clinical studies evaluate only one domain of 
gait adaptability constructs, primarily obstacle negotiation (Van 
Swigchem et al., 2014; Van Ooijen et al., 2015). The augmented reality 
(AR)-based CMill treadmill can design environments for gait 
adaptability, enabling real-time recording of kinematic and kinetic gait 
data. Studies have demonstrated the validity and reproducibility of the 
CMill as a measurement tool (Tuijtelaars et al., 2021). Additionally, 
another study employed success rates of CMill gait adaptation task to 
develop a model for detecting freezing of gait (FOG) in Parkinson’s 
disease (PD) using stepwise discriminant analysis (Chen et al., 2021).

Machine learning (ML) combined with gait analysis has been 
extensively applied in fall detection, human pose tracking, and 
person identification and authentication. Among the most 
prevalent applications are disease diagnosis and monitoring (Harris 
et al., 2022). In the field of neurorehabilitation, many ML models 
have been developed to identify pathological gait (Ye et al., 2018), 
supporting clinical rehabilitation decision-making. Lau et  al. 
(2009) used two portable sensors to collect kinematic data from 
seven stroke patients with foot drop. They employed a support 
vector machine (SVM) algorithm, which identified five different 
walking patterns with an accuracy of 97.5%. Cui et al. (2018) used 
sensors and electromyography (EMG) to collect trajectory markers, 
kinematics, and EMG signals from participants during walking. 
They trained seven commonly used decision fusion algorithms 
(such as SVM, random forest (RF), artificial neural network) using 

different data modalities to distinguish individuals with 
hemiparetic gait. These biomechanical data measured in gait 
laboratory settings are inefficient for clinical practice. Yet, 
traditional gait capability tests still retain predictive capabilities. 
Abdollahi et al. (2024) utilized common clinical tests for stroke 
patients (balance, 10-meter walk test, timed up-and-go (TUG)) 
alongside kinematic data. They employed supervised learning 
algorithms (SVM, RF, and logistic regression) to differentiate 
between high and low fall risk, with RF achieving the highest 
accuracy and balance and TUG tests being most effective predictors 
of falls. However, there is currently no ML model utilizing CMill 
gait features for classifying GAD.

Classification is the most widely applied ML task in the medical 
field (Yin et  al., 2013). Traditional ML often assumes a relatively 
balanced class distribution, but class imbalance is common in clinical 
settings (Bak and Jensen, 2016). Recently, adaptive boosting 
(AdaBoost) has emerged as a leading ensemble learning technique to 
address class imbalance, widely used in healthcare (Hatwell et al., 
2020; Lu et al., 2021). Diagnostic problems often involve high costs of 
misclassification, especially misdiagnosis. Proper misclassification 
cost considerations are crucial for ML performance. The adaptive 
cost-sensitive algorithm (AdaCost) incorporates a cost function into 
the AdaBoost training sequence, emphasizing the classification of 
minority classes and improving overall performance. The AdaCost 
algorithm has been used to improve prediction accuracy in various 
fields, including transformer fault analysis (Hechifa et  al., 2024), 
tunnel excavation rock mass prediction (Mengqi et al., 2020), lung 
nodule diagnosis (Jinzhu et  al., 2009), and high-risk human 
papillomavirus diagnosis (Park et al., 2003). To address the resource-
constrained settings with small datasets, Fraiwan and Hassanin (2021) 
found the combination of vertical ground reaction force-based 
features and the Adaboost classification model had the highest 
classification accuracy in detecting degenerative neuromuscular 
disease. However, studies using AdaCost as the primary ensemble 
learning method for gait classification remain limited.

AR-based CMill treadmill gait adaptation training is promising. 
However, the lack of comprehensive and standardized walking-
adaptability testing (Balasubramanian et al., 2014), combined with 
insufficient attention to the decline in patients’ gait adaptability, leads 
to inadequate recognition and diagnosis of this functional impairment, 
thereby limiting the effectiveness of post-stroke rehabilitation. 
Developing efficient ML models based on clinical measurements to 
aid in diagnosing GAD and optimizing rehabilitation programs 
remains a crucial issue.

This study aims to simplify data measurement by using 
demographics, gait kinematics, and gait adaptability features to train 
ML models. These models will identify individuals with post-stroke 
GAD, aiding clinical diagnosis and the development of personalized 
rehabilitation plans.

Methods

Subjects

This study enrolled 30 stroke patients from the Rehabilitation 
Department of the First Affiliated Hospital of Zhejiang Medical 
University, along with 50 healthy volunteers. This study was approved 
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by the Ethics Committee of the First Affiliated Hospital of Zhejiang 
Chinese Medical University (Ethics Number: [2021-KL-187-02]), and 
informed consent was obtained from all participants.

The inclusion criteria for stroke rehabilitation patients were as 
follows: (1) first-time stroke resulting in unilateral hemiparesis 
confirmed by CT or MRI, with a duration of less than 180 days; (2) age 
between 20 and 65 years old; (3) adequate communication skills to 
follow instructions; (4) ability to walk at least 10 meters under indoor 
supervision or Functional Ambulation Category (FAC) score of two.

Inclusion criteria for healthy participants were as follows: (1) aged 
between 20 and 65 years old; (2) absence of known musculoskeletal, 
neurological, cardiovascular, or other conditions affecting walking 
ability; (3) normal cognitive function and following instructions.

Exclusion criteria for both groups were: (1) body weight ≥ 135 kg, 
height ≥ two meters; (2) severe visual or auditory impairments 
affecting walking; (3) severe neurological or lower limb disorders, 
respiratory or cardiovascular diseases, psychiatric disorders, and 
pregnancy that affect the walking ability and gait patterns.

Measurement

CMill treadmill
Participants were assessed using the CMill VR+ treadmill (Motek 

Medical B.V, Netherlands) (Supplementary Figure S1), which employs 
AR to project virtual objects onto the treadmill, providing visual and 
auditory cues. The treadmill features an embedded force plate 
recording gait parameters at 500 Hz. Participants completed one to 
two practice sessions for familiarization. Stroke participants wore 
safety harnesses per standard protocol during testing, supervised by a 
rehabilitation physician and a physical therapist.

The program of CMill gait adaptation task
The CMill gait adaptation program includes a warm-up period and 

four gait adaptation tasks (as shown in Figure 1 for task scenarios; Table 1 
for task details). Before each session, the treadmill’s force plate is reset. 
Participants warm up at a chosen speed, then sequentially complete the 
target stepping, slalom walking, obstacle avoidance, and speed adaptation 
tasks with visual and auditory cues. Each task lasts approximately 
2–3 min with 30-s walking intervals, totaling around 15 min.

Clinical function measures
FAC and Activities of Daily Life (ADL) were used to assess 

participants’ walking ability and self-care ability, respectively (Table 1). 
Based on the FAC and ADL, a global F-A score was created by 
standardizing the FAC and ADL scores and using their average as the 
overall observation of mobility.

Data acquisition and preprocessing

Clinical baseline characteristics include demographics and 
mobility function performance through interviews, while the gait data 
were automatically collected, calculated, and reported by CMill. The 
composite dataset includes 18 variables: 8 clinical baseline variables, 
6 gait kinematic variables, and 4 gait adaptability variables (success 
rate determined by CMill based on foot positions relative to virtual 

targets, obstacles, or pathways). Detailed definitions and explanations 
for each variable are provided in Supplementary Table S1.

For data preprocessing, outliers were removed based on the 
principle of being greater or less than three standard deviations. 
Missing values for different data types were imputed using either the 
mean or the mode.

Data analysis

Before applying ML, a preliminary analysis was conducted on the 
clinical baseline and gait characteristics of the two groups. 
We employed SPSS 22 to perform t-tests between the two groups. This 
analysis helped assess whether the variables could be extracted as 
feature inputs. Pearson correlation coefficient (r) was employed to 
assess the relationship between different variables and the global F-A 
score within the stroke group. The sign (positive or negative) of the r 
indicates the direction of the correlation, with stronger correlations 
approaching an absolute value of one. A significance level of p < 0.05 
was used to determine statistically meaningful differences.

Establishment of machine learning 
diagnosis models

The ML model consists of input, training, testing, and 
performance evaluation. The objective is to compare the performance 
of different classifiers to generate the best ML model for classifying 
individuals as having or not having post-stroke GAD (Figure 2A). Key 
steps include data preparation, data splitting, model training, 
and evaluation.

Data preparation
Feature Selection: There is no unified standard for feature 

selection in ML (Bush et al., 1992). We referenced the two groups’ 
statistical differences and correlation results, along with findings from 
other ML studies (Rodrigo et al., 2021; Al-Ramini et al., 2022) and 
correlation analyses (Dommershuijsen et al., 2020; Guzelbulut et al., 
2022). Based on these, 14 variables were extracted from the dataset as 
feature inputs (Table 2), using binary labels of having or not having 
post-stroke GAD for supervised learning.

Data splitting
The dataset was divided into training and testing sets in an 80:20 

ratio using the sklearn library in Python.

Model training
Binary classification tasks were constructed using SVM, 

decision tree (DT), Multi-Layer Perceptron (MLP), K-Nearest 
Neighbors (KNN), and AdaCost algorithms, resulting in 
corresponding models. The principles and decision-making 
processes of each algorithm vary, as shown in 
Supplementary Table S2. Random search was used for 
hyperparameter tuning across all models. Given our dataset’s 
characteristics, we  hypothesize that the AdaCost algorithm will 
achieve superior performance. The training process for this model 
is as follows. (Figure 2B).
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 (1) Selecting Base Learner: The classification and regression trees 
(CART) algorithm was chosen as the base learner for the 
AdaCost. This binary tree recursively builds the classification 
tree from the root node using the training set.

 (2) Defining the Cost Matrix: A 2×2 cost matrix C was defined, 
where the element Cij represents the misclassification cost of 
incorrectly diagnosing a normal gait adaptability as impaired. 
This reflects the relative diagnostic loss due to misclassification 
of gait adaptability states in the assessment of GAD.

 (3) Hyperparameter Tuning: It was conducted using a random 
search strategy with 50 iterations.

 (4) Training the Model: The ML model was developed in a Python 
3.8 environment on a Windows operating system. Relevant 
libraries were used to set model parameters and match input 
and output variables.

Model evaluation
In binary classification models, performance metrics such as 

accuracy (ACC), sensitivity (SEN), F1-score, precision, and the area 
under the receiver operating characteristic (ROC) curve (AUC) can 
be calculated based on the confusion matrix (Supplementary Tables S3, S4). 
ACC is the initial assessment that represents the true results, while the 
F1-score is a single metric in imbalanced datasets. SEN indicates the 

model’s ability to identify participants with GAD, and precision assess a 
low false positive rate. ROC-AUC evaluates the classifier’s ability to 
identify between classes. Higher values of these metrics closer to one, 
indicate better model performance.

Results

Descriptive analysis

Clinical baseline characteristics: The stroke group included 18 
males with a mean age of 42.69 years, height of 1.62 m, and weight of 
57.9 kg. The healthy group comprised 29 males with a mean age of 
41.34 years, height of 1.65 m, and weight of 62.37 kg. There were no 
significant differences in demographics between the two groups 
(p > 0.05). The average onset of stroke was 99 days, with 6 individuals 
(20%) experiencing left hemiplegia. The mean level of FAC was 2.2 
(t = −19.66, p = 0.000), and the ADL score was 66 (t = −15.86, p = 0.000), 
both significantly lower compared to the healthy group. (Table 3).

Gait kinematics and adaptability: In Table 3, compared to the healthy 
group, the stroke group exhibited a significantly lower average gait speed 
of 1.01 km/h (t = −15.07, p = 0.000), step length (SL) on the affected side 
of 0.25 m (t = −10.27, p = 0.000), and SL on the unaffected side of 0.20 m 
(t = −17.32, p = 0.000). Stroke patients showed a significantly higher 

FIGURE 1

The gait adaptation task. (A) Target stepping. Participants were instructed to step on random targets with visual guidance. (B) Slalom walking. 
Participants keep their feet walking in the virtual curve of the treadmill. (C) Obstacle avoidance. Participants need to cross or avoid the obstacles with 
both feet. (D) Speed adaptation. Participants adjust their gait and speed to keep their feet always walking in the target area.
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asymmetry of SL (ASL) at 1.44 (t = 6.71, p = 0.000), and asymmetry of ST 
(AST) at 2.19 (t = 6.64, p = 0.000), as well as lower success rates of 87.03% 

(t = −11.12, p = 0.000), 73.1% (t = −8.62, p = 0.000), and 92.6% (t = −5.71, 
p = 0.000) for slalom walking, obstacle avoidance, and speed adaptation, 
respectively. Additionally, differences within the limbs in stroke patients 
were significant, with SL longer on the affected side at 0.25 m (t = −2.53, 
p = 0.01), but ST shorter on the affected side at 0.36 s (t = 4.40, p = 0.000).

Pearson correlation analysis

The correlation between various variables and the global F-A 
score in the stroke group was assessed (Table 4). The onset of stroke 
(r = −0.798, p = 0.000) and the affected side (r = −0.912, p = 0.000) were 
significantly negatively correlated with the global F-A score. Gait 
speed (r = 0.803, p = 0.000) and obstacle avoidance (r = 0.823, p = 0.000) 
have strongly positive correlations with the global F-A score.

The significant correlation suggests that faster gait speed and 
better gait adaptability of obstacle avoidance are associated with better 
functional mobility.

ML models results

In Figure 3, AdaCost shows the highest ACC at 0.85, followed by 
DT at 0.81, and SVM, MLP, and KNN were below 0.8.

The SEN of AdaCost model is 0.8, followed by MLP (0.77) and 
SVM (0.75), with DT and KNN scoring below 0.70.

The precision of AdaCost is 0.64, lower than SVM of 0.65 and 
other ML models.

Using F1-score as a single evaluation metric for imbalanced 
datasets, AdaCost achieved 0.76, followed by KNN (0.73), SVM (0.71), 
MLP (0.70) and DT (0.63).

Lastly, as shown in Figure 4, the ROC-AUC for AdaCost was 0.75, 
larger than MLP (0.7). The area of SVM, DT and KNN was all 
below 0.7.

TABLE 1 The description of CMill gait adaptation program and clinical 
function measure.

Measurement Description

CMill gait adaptation program

Warm-up Participants walk on CMill treadmill without guidance 

and select a comfortable speed.

Target stepping Instruct the participants to step on the virtual targets 

projected on the belt to practice foot positioning.

Slalom walking A slalom pathway was generated on the belt. Participants 

need to navigate the curve to improve motor control

Obstacle avoidance Participants take steps to avoid visual obstacles appearing 

intermittently ahead.

Speed adaptation Participants were instructed to keep walking within the 

changing target area, either accelerating or decelerating to 

adjust their gait

Clinical function measures

FAC (level) Level 0: inability to stand and walk; Level 1: indoor 

ambulation with assistance within 10 meters; Level 2: 

indoor ambulation of up to 20 meters under supervision; 

Level 3: independent indoor ambulation of 50 meters; 

Level 4: continuous walking of over 100 meters and ability 

to cross typical obstacles; Level 5: independent outdoor 

ambulation.

ADL (score) The Modified Barthel Index was used to assess ADL with 

a maximum score of 100. A score of 60 indicates self-

sufficiency, with higher scores indicating better self-care 

ability and less dependence.

FAC, functional ambulation category; ADL, activities of daily living.

FIGURE 2

Establishment of machine learning diagnosis model. (A) The aided diagnosis basic flowchart. The workflow of the simple diagnostic classifier includes: 
(1) Participants complete basic assessments. (2) Data is preprocessed, and features are extracted and selected. (3) The diagnostic classifier is applied. (4) 
The classifier maps gait data to GAD and non-GAD output spaces based on the data features. (B) Training and testing of diagnostic classifier. The 
process outlines the steps of model establishment, including data preparation, data splitting, and model training and testing. The training set is used to 
train five major classifiers, with AdaCost as an example (cost matrix and base learner selection). The test set evaluates classifier performance, 
calculating metrics based on the confusion matrix. GAD, gait adaptation dysfunction; CART, classification and regression trees; SVM, support vector 
machine; DT, decision tree; MLP, multi-layer perceptron; KNN, k-nearest neighbors; Adacost, adaptive cost-sensitive algorithm; ACC, accuracy; SEN, 
sensitivity; AUC, the area under the receiver operating characteristic curve.
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TABLE 3 Comparison of the variables between the two groups.

Healthy group (n  =  50) Stroke group (n  =  30) p-value

Clinical baseline characteristics

Age, y 41.34 (8.01) 42.69 (6.54) 0.415

Male 29 (58%) 18 (60%) 0.860

Height, m 1.65 (0.06) 1.62 (0.08) 0.082

Weight, kg 62.37 (9.42) 57.9 (13.9) 0.126

Onset of stroke, d – 99 (55.6) –

Affected side (left) – 6 (20%) –

FAC 5 (0) 2.2 (0.78) 0.000*

ADL 100 (0) 66 (11.74) 0.000*

Gait kinematics (gait spatiotemporal parameters)

Gait speed, km/h 2.69 (0.47) 1.01 (0.49) 0.000*

Step width, m 0.15 (0.03) 0.16 (0.04) 0.329

Affected side Unaffected side

SL, m 0.44 (0.06) 0.25 (0.09)* 0.20 (0.06)*#

ST, s 0.40 (0.07) 0.36 (0.17) 0.59 (0.23)*#

ASL 1.01 (0.03) 1.44 (0.35) 0.000*

AST 1.00 (0.06) 2.19 (0.98) 0.000*

Gait adaptability (success rate of gait adaptation task)

Target stepping, % 95.93 (4.33) 95.01 (3.59) 0.309

Slalom walking, % 96.92 (3.77) 87.03 (3.90) 0.000*

Obstacle avoidance, % 96.2 (3.67) 73.1 (14.4) 0.000

Speed adaptation, % 97.92 (3.50) 92.60 (4.32) 0.000

Continuous variables are presented as mean (SD); Categorical variables presented as number (%); FAC, functional ambulation category; ADL, activities of daily living; SL, step length; ST, 
single stance time; ASL, asymmetry of step length; AST, asymmetry of stance time. *The comparison between the two groups, p < 0.05. #The comparison between affected side and unaffected 
side within the stroke group, P < 0.05.

Notably, the important classification features were obtained based 
on the weight of each feature in the AdaCost ensemble learning 

model, ranging from 0.5 to 27.9% (Figure  5). The top five most 
important features were obstacle avoidance (27.9%), gait speed 
(13.4%), SL, age, and ASL. Obstacle avoidance and gait speed were the 
representatives of gait adaptability and kinematics, corroborating their 
strong correlation with global F-A scores.

The models’ results indicate AdaCost algorithm provides higher 
accuracy, sensitivity, and robustness in clinical settings for early 
identification of GAD.

Discussion

Based on ML algorithms, using demographics and gait features of 
30 stroke patients and 50 healthy controls as inputs, individuals were 
classified with or without GAD. Results showed that: (1) Stroke 
patients’ gait kinetics and adaptability decreased in gait speed 
(p = 0.000), SL (p = 0.000), obstacle avoidance (p = 0.000) and speed 
adaptation (p = 0.000) with more asymmetry of limbs (p = 0.000). (2) 
All ML models could identify individuals with GAD, with the 
AdaCost achieving the best performance (ACC = 0.83, SEN = 0.8, 
AUC = 0.75). (3) Obstacle avoidance and gait speed were the critical 
features for classification in this mode.

GAD is a common dysfunction in stroke patients, but there is no 
“gold standard” assessment. C-Mill can be  used to evaluate gait 

TABLE 2 Features extraction as inputs.

Number Data source Features

1 A: Clinical baseline 

characteristics 

(demographics)

A1: Age (y)

2 A2: Gender (male/female)

3 A3: Height (m)

4 A4: Weight (kg)

5 B: Gait kinematics (gait 

spatiotemporal 

parameters)

B1: Gait speed (km/h)

6 B2: Step width (m)

7 B3: SL (m)

8 B4: ST (s)

9 B5: ASL

10 B6: AST

11 C: Gait adaptability 

(success rate of gait 

adaptation task)

C1: Target stepping

12 C2: Slalom walking

13 C3: Obstacle avoidance

14 C4: Speed adaptation

SL, step length; ST, stance time; ASL, asymmetry of step length; AST, asymmetry of stance time.
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adaptability (Tuijtelaars et al., 2021, 2022). Tuijtelaars et al. (2021) 
used the C-Mill to set target stepping and obstacle avoidance tasks, 
validating the hypothesis that gait adaptability is decreased in polio 
patients. However, they did not analyze other domains of gait 
adaptability. Our study found that stroke patients also exhibit reduced 
abilities in slalom walking and speed adaptation. The gait kinematics 
assessed by C-Mill are generally consistent with the gait characteristics 
of elderly hemiplegic patients as reported previously (Sang et  al., 
2013). However, there are significant differences in the patterns of ASL 
among different stroke patients (Balasubramanian et al., 2007; Allen 
et al., 2011). The SL on the affected side is longer in our finding, which 
is related to the weakened propulsive force of the affected limb, 
suggesting the impaired dorsiflexion of the affected ankle or an altered 
gait pattern on the treadmill (Soni and Lamontagne, 2021). The gait 
assessment validated the feasibility of CMill for gait adaptability 
evaluation and provided a partial reference for feature selection, 
addressing gaps in clinical walking adaptability assessments.

Many studies have focused on integrating artificial intelligence 
(AI) with gait analysis for hemiparetic gait analysis and diagnostic 
prediction. Li et al. extracted new gait features (dynamic time warping 
distance, sample entropy, and empirical mode decomposition) to 
evaluate gait symmetry, regularity, and stability. They used classical 
algorithms (SVM and KNN) to assess the recognition of these new 
gait features for hemiparetic gait (Li et  al., 2019). Although new 
features in classification can achieve good performance, these features 
may lack clear clinical significance. Moreover, many ML models are 
black boxes, often unable to be  explained (Hatwell et  al., 2020). 
We found that superior performance in obstacle avoidance and faster 
gait speed were positively correlated with improved functional 
mobility. These two variables, obstacle avoidance and gait speed, were 
also identified as significant features in the AdaCost model. The 

TABLE 4 The correlation between variables and clinical function measure 
(global F-A) for stroke group.

Coefficient (r) P-value

Clinical baseline characteristics

Age, y −0.069 0.639

Gender (male-to-female ratio) 0.177 0.256

Height, m 0.167 0.247

Weight, kg 0.173 0.230

Onset of stroke, d −0.798 0.000

Affected side (left-to-right ratio) −0.912 0.000

Gait kinematics (gait spatiotemporal parameters)

Gait speed, km/h 0.803 0.000

Step width, m −0.100 0.49

SL-affected side, m −0.266 0.256

SL-unaffected side, m −0.355 0.125

ASL −0.250 0.288

ST-affected side, s 0.425 0.062

ST-unaffected side, s 0.441 0.051

AST −0.003 0.989

Gait adaptability (success rate of gait adaptation task)

Target stepping, % 0.388 0.091

Slalom walking, % 0.286 0.044

Obstacle avoidance, % 0.823 0.000

Speed adaptation, % 0.202 0.159

SL, step length; ASL, asymmetry of step length; ST, stance time; AST, asymmetry of stance 
time.

FIGURE 3

The performance metrics for each machine learning algorithm model. The X-axis represents the evaluation metrics, and the Y-axis represents the 
metric values. Different colors of the bar represent different classifiers. SVM, support vector machine; DT, decision tree; MLP, multi-layer perceptron; 
KNN, k-nearest neighbors; AdaCost, adaptive cost-sensitive algorithm; ACC, accuracy; SEN, sensitivity.
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FIGURE 4

ROC curve of each machine learning algorithm model. The X-axis represents the false positive rate and the Y-axis represents the true positive rate. 
Different colors of the line represent different classifiers. A dashed line runs from the bottom left corner (0,0) to the top right corner (1,1), indicating the 
scenario where the false positive rate equals the true positive rate (the random guessing). If a classifier’s ROC curve is above this dashed line, it indicates 
performance better than random guessing and vice versa. ROC, receiver operating characteristic; AUC, the area under the receiver operating 
characteristic curve; SVM, support vector machine; DT, decision tree; MLP, multi-layer perceptron; KNN, k-nearest neighbors; AdaCost, adaptive cost-
sensitive algorithm.

consistency between correlation analysis and model feature 
importance partly interprets the ML clinical significance and can 
further guide rehabilitation strategies for GAD, highlighting the 
importance of prioritizing obstacle avoidance and gait speed in 
rehabilitation programs. The correlation results are consistent with 
previous findings on gait adaptability. AR-based CMill gait adaptation 
training can improve short-term strategy selection, reaction time, and 

automated postural control during obstacle avoidance (Weerdesteyn 
et al., 2008). Gait speed is often referred to as the “sixth vital sign,” 
reflecting overall function and physiological changes, predicting 
patients’ recovery potential (Bishnoi et  al., 2022). Yet, the lower 
importance and weaker correlation of ASL and AST suggest the 
immediate effects of treadmill interventions on interlimb differences. 
Harris et  al. discovered that chronic stroke patients immediately 

FIGURE 5

Importance of features in the AdaCost algorithm model. The X-axis represents the feature importance scores, which reflect the contribution of each 
feature to the model predictions, and the Y-axis represents the feature names or labels. The sum of importance scores for all features is one. AdaCost, 
adaptive cost-sensitive algorithm; SL, step length; ST, single stance time; ASL, asymmetry of step length; AST, asymmetry of stance time.
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improved their asymmetry after treadmill walking, reducing 
interlimb differences (Harris-Love et al., 2001). We need to consider 
the transfer and continuity of treadmill training effects on 
overground walking.

The ML algorithms proposed in previous studies demonstrated 
good classification performance (Al-Ramini et  al., 2022). In our 
study, the SVM, DT, KNN, and MLP models exhibited different 
strengths in ACC (0.75–0.81), SEN (0.64–0.77), F1-score (0.56–0.69), 
precision (0.44–0.65), and ROC-AUC (0.6–0.7), but the overall 
performance was moderate. The initial concern may be related to 
feature selection. A review suggests that kinetic features yield higher 
accuracy as outputs (Alfayeed and Saini, 2021). However, for 
classifiers, features relevant to disease characteristics are also crucial 
for improving generalization (Li et al., 2019). Our study focused on 
GAD after stroke, so we retained all gait features and some general 
demographic features. This approach is similar to some ML models. 
Rodrigo et al. (2021) used demographics, clinical symptoms, and 
treatment data to predict the success of cognitive behavioral therapy 
for tinnitus with six algorithms with acceptable ACC (56.3–70.7%) 
and sensitivity (range 68.6–78.3%). Zhang et al. (2022) combined all 
kinematic gait parameters with walking tests to improve the 
diagnostic value for PD with an AUC of 0.924, but there was no 
training and testing data for their study.

Secondly, model performance is impacted by data imbalance. 
Consistent with previous medical ML studies (Cohen et al., 2006), 
our dataset has a significant class imbalance, with fewer samples in 
the stroke group. In our study, there were 30 stroke patients and 50 
healthy controls, with a ratio of approximately 1.6, similar to the 
stroke-healthy ratio in the datasets of Hussain and Park (2021) and 
Luo et  al. (2020). The two groups were matched for age, gender, 
height, and weight. When constructing stroke prediction models or 
hemiplegic gait classification using ML techniques, it is necessary to 
introduce appropriate algorithms (such as AdaCost) to mitigate the 
issue of low model accuracy caused by data imbalance. However, 
many datasets involve class imbalance issues, but the handling of this 
imbalance is not clearly defined, which may affect model 
performance. In our future work, we still need to further validate that 
AdaBoost is suitable in the real clinical setting. AdaCost ensemble 
learning algorithm considers the influence of minority class samples 
on overall classification accuracy, making it particularly suitable for 
small, imbalanced datasets (Jinzhu et al., 2009; Lakshmanarao et al., 
2021). Compared to the well-known single classifier SVM in our 
study, AdaCost algorithm improved ACC by 10% (0.85), SEN by 5% 
(0.80), F1-score by 8% (0.77), and AUC by 7% (0.75), indicating this 
ensemble learning algorithm is effective and reliable. In developing a 
model to predict small ubiquitin-like modifier protein sites, Ye (2020) 
addressed data imbalance using the AdaCost algorithm and increased 
ACC by 0.25 and F1-score by 1.52. The high SEN of the AdaCost 
model indicates its strong capability to identify most individuals with 
GAD, ensuring patients receive the necessary interventions. The 
results of ACC and F1-score indicate the AdaCost model maintains 
a good balance between correctly identifying true cases and avoiding 
false positives. The AUC of 0.75 demonstrates that the model can 
discriminate cases, aligning with Chen’s model using CMill gait 
adaptation data to distinguish the FOG in PD (AUC = 0.755; Chen 
et al., 2021). While there is potential for further enhancement in the 
precision metric, it is crucial to evaluate performance metrics within 
the specific context of the medical application (Hicks et al., 2022). 

Early and accurate diagnosis of post-stroke GAD is critical for 
ensuring that patients receive timely and appropriate treatment. 
Therefore, the model should prioritize improving SEN over precision 
in this study.

Developing an aided diagnostic system based on ML algorithms can 
facilitate user-friendly interfaces suitable for clinical practice. This design 
is part of a computerized clinical decision support system (CDSS) which 
can enhance the complex decision-making process of clinicians (Sutton 
et al., 2020). Our study is the initial step toward this goal, showing some 
clinical feasibility. Kunhimangalam et al. (2014) developed a diagnostic 
system for peripheral neuropathy using fuzzy logic, taking symptoms 
and test results as input and achieving an accuracy of 93%. Google, IBM, 
and DeepMind have developed products used in CDSS, including tumor 
detection, automated tumor grading, and recurrence prediction through 
advanced pixel recognition and image classification algorithms (Sutton 
et al., 2020). Experts predict that most diagnostic imaging interpretations 
will be computer-performed or pre-processed in the future (Erickson, 
2016). However, data quality, technical operability, maintenance, and 
financial considerations remain crucial. Currently, AI and CDSS 
technologies can complement clinical diagnosis. In our future studies, 
further data mining, extraction of appropriate features, continuous 
model training, and external validation are needed to improve diagnostic 
model performance and better serve clinical diagnosis.

Limitations

The study still has limitations: 1. In this study, the participants 
were recruited from a single center with a small sample size. We did 
not split a specific validation dataset to verify the model, leading to a 
potential of model overfitting. Our future study should expand the 
sample size and design a larger, more diverse cohort study to validate 
the model’s efficacy and promote its generalizability. 2. We did not 
collect more gait kinematic and kinetic data, which may limit the 
accuracy of this model. In the future, integration of multimodal data 
will be necessary to enhance model performance, including joint 
angles, limb trajectories, ground reaction force, center of pressure, 
and electrophysiology. 3. The longitudinal data was unavailable to 
access the changes in gait adaptation over time. A prospective study 
should be conducted to explore the characteristics of GAD over time 
and assist in rehabilitation guidance. 4. We did not develop a user-
friendly interface and computer-aided diagnosis system. AdaCost 
should be  further trained and explored, integrating it into the 
workflow to facilitate ease of clinical decision-making for 
healthcare professionals.

Conclusion

Stroke patients walk slower with shorter SL and more asymmetry 
of SL and ST. Their gait adaptability was decreased, particularly in 
obstacle avoidance and speed adaptation. Furthermore, faster gait 
speed and better performance in obstacle avoidance correlate with 
better functional mobility. The AdaCost classifier performs well in 
identifying individuals with GAD, facilitating clinical rehabilitation 
diagnostics and decision-making, particularly in obstacle avoidance 
and gait speed. This advances the future development of user-friendly 
interfaces and computer-aided diagnosis systems.
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