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Introduction: During the last few years, a heightened interest has been shown 
in classifying scene images depicting diverse robotic environments. The surge 
in interest can be attributed to significant improvements in visual sensor 
technology, which has enhanced image analysis capabilities.

Methods: Advances in vision technology have a major impact on the areas of 
multiple object detection and scene understanding. These tasks are an integral 
part of a variety of technologies, including integrating scenes in augmented 
reality, facilitating robot navigation, enabling autonomous driving systems, 
and improving applications in tourist information. Despite significant strides 
in visual interpretation, numerous challenges persist, encompassing semantic 
understanding, occlusion, orientation, insufficient availability of labeled data, 
uneven illumination including shadows and lighting, variation in direction, 
and object size and changing background. To overcome these challenges, we 
proposed an innovative scene recognition framework, which proved to be highly 
effective and yielded remarkable results. First, we perform preprocessing using 
kernel convolution on scene data. Second, we perform semantic segmentation 
using UNet segmentation. Then, we extract features from these segmented 
data using discrete wavelet transform (DWT), Sobel and Laplacian, and textual 
(local binary pattern analysis). To recognize the object, we have used deep belief 
network and then find the object-to-object relation. Finally, AlexNet is used to 
assign the relevant labels to the scene based on recognized objects in the image.

Results: The performance of the proposed system was validated using three 
standard datasets: PASCALVOC-12, Cityscapes, and Caltech 101. The accuracy 
attained on the PASCALVOC-12 dataset exceeds 96% while achieving a rate of 
95.90% on the Cityscapes dataset.

Discussion: Furthermore, the model demonstrates a commendable accuracy 
of 92.2% on the Caltech 101 dataset. This model showcases noteworthy 
advancements beyond the capabilities of current models.
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1 Introduction

Scene recognition is a central field in the field of computer vision, 
where the goal is to use advanced computational techniques to break 
and classify complex visual robotic environments (Liu Y. et al., 2022; 
Liu D. et al., 2022; Liu H. et al., 2022; Wang et al., 2022). Understanding 
scenes and analyzing the object within the scene is a challenging task. 
It is a computational process that involves automated interpretation 
and categorization of visual information within the images. The 
process begins with extracting low-level features such as colors, 
textures, and shapes from the visual point. Subsequently, these features 
are utilized to construct higher level representations, enabling the 
system to recognize objects, spatial relationships, and contextual 
elements within the scenes. These systems have achieved the versatility 
of scene recognition, highlighting its significance across diverse fields 
such as smart home technologies (Zhou et al., 2020; Qi et al., 2022), 
surveillance systems (Sae-Ung et  al., 2022), autonomous driving 
(Arnold et al., 2019), healthcare systems (Ulhaq et al., 2020; Angelica 
et al., 2021; Mehmood et al., 2022), and environmental monitoring 
(Yang B. et al., 2023; Yang D. et al., 2023).

For the previous two decades, researchers have been focusing on 
semantic segmentation, feature optimization, processing time, multi-
object identification, and scene recognition. Object segmentation is 
presently used in various applications, including processing images, 
video identification, shadowing detection, human activity detection, 
and several others. It discussed techniques for static and moving 
object detection and segmentation but did not cover feature extraction 
techniques (Khurana et al., 2016). One of the most difficult problems 
in computer vision is semantic segmentation. The computer vision 
community is paying close attention to this task. A survey of RGB-D 
image semantic segmentation by deep learning may face limitations 
in the datasets, potential biases toward certain approaches, and 
challenges in addressing real-world variability and scalability (Noori, 
2021). The method involves utilizing a pre-trained VGG16 model to 
extract features from input images and then using Random Forest for 
classification, displaying efficiency in image segmentation. This 
approach utilizes a pre-trained VGG16 model for feature extraction 
from input images, followed by classification using Random Forest. It 
has demonstrated effectiveness in image segmentation. However, its 
reliance on fixed, pre-defined CNN features restricts adaptability to 
diverse datasets and evolving model architectures. There are potential 
challenges in efficiently managing high-dimensional feature spaces 
(Faska et al., 2023). The article presents a comprehensive approach to 
scene recognition, comprising multiple sequential phases to ensure 
robust performance. It begins by ingesting raw data through various 
picture-acquisition methods, enabling the system to access diverse 
visual information. Subsequently, semantic segmentation techniques 
are applied to the data, enhancing its comprehension and usability by 
partitioning the scene into meaningful regions. This segmentation 
process facilitates the extraction of numerous object features, which 
are crucial for subsequent object recognition tasks employing deep 
belief models. Moreover, the system goes beyond individual object 
identification by analyzing object-to-object relationships, further 
enriching its understanding of composition and dynamics of the 
scene. Ultimately, scene recognition is accomplished through the 
utilization of an AlexNet neural network, leveraging its capabilities to 
discern complex patterns and configurations within the scene data. By 
adapting these phases in a systematic manner, the proposed system 

achieves a high level of resilience and efficacy in recognizing diverse 
scenes accurately. The primary findings and contributions of this study 
are outlined as follows:

 • Utilizing UNet-based semantic segmentation, we segmented each 
object into homogeneous regions.

 • We established a multi-feature strategy that included three 
separate sorts of features: Discrete Wavelet Transform, Sobel, 
Laplacian, and textual features.

 • Object recognition was executed through the utilization of the 
deep belief network.

 • The object-to-object relationship was found, followed by the 
AlexNet Neural Network for predicting scenes in the 
surroundings of scene recognition.

The sections of the article are organized as follows: Section 2 
delves into a literature study on scene recognition. Section 3 discusses 
the suggested methodology in considerable detail. In Section 4. the 
experimental setup is delineated alongside the results obtained from 
conducted experiments, providing empirical insights into the system’s 
performance. Section 5 examines the system’s results and discusses its 
benefits and shortcomings. Section 6 is the conclusion, which 
summarizes the key findings and suggests future research and 
development objectives.

2 Literature review

There has been a tremendous surge in research activities in recent 
years, and efforts aimed at improving scene recognition systems, 
particularly in the context of both outdoor and interior situations. 
Contemporary research trends can be generally categorized into two 
major groups to draw linkages between the approaches suggested in 
this study and actual systems. These are semantic segmentation and 
scene recognition. The next sections expand on these areas, clarifying 
their contributions to the field’s research environment.

2.1 Multi-object segmentation

The research provides a semantic segmentation method for traffic 
image segmentation in the context of automated driving based on the 
UNET network architecture. By accurately segmenting traffic photos, 
the program attempts to increase the car’s understanding of the 
exterior scene. One limitation of this study is that the experiments 
were conducted using a specific dataset, the Highway Driving dataset. 
While this dataset is suitable for semantic segmentation tasks related 
to traffic scenes, the generalizability of the proposed algorithm to 
other datasets or real-world scenarios may need further investigation 
(Wang C. et al., 2023; Wang Q. et al., 2023). Shelhamer et al. (2017) 
convert existing classification networks into fully convolutional 
networks and employ a skip architecture to incorporate semantic and 
appearance information for accurate and thorough segmentation. 
Fully convolutional networks achieve enhanced segmentation on 
diverse datasets while keeping quick inference times. While they faced 
difficulty with gradient propagation when adding depth information 
to RGB images, challenges with gradient propagation can lead to 
issues such as vanishing or exploding gradients, hindering the 
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network’s ability to learn effectively, difficulty in achieving fine-scale 
accuracy measured by mean IU metric, and high computational cost 
and complexity in using large filters for re-architecting layers. Class 
balancing methods have shown minimal improvement due to the 
slightly unbalanced nature of the labels. Liu D. et al. (2022), Liu Y. et al. 
(2022), and Liu H. et al. (2022) proposed that a CNN-based semantic 
segmentation is performed. It includes a Context Semantic Encoding 
(CSE) module for capturing global context information and 
emphasizing category information related to the scene. The generative 
confrontation network’s unsupervised data acquisition distribution 
rule is utilized to handle the spatial relationship between pixels, and a 
multi-scale extracted feature is employed to improve the value of the 
foreground targeted feature. The model struggle with capturing 
intricate spatial relationships between pixels due to the complexity of 
the scenes, potentially affecting segmentation accuracy. 
Badrinarayanan et al. (2017) utilized SegNet, a deep convolutional 
neural network framework, for semantic pixel-wise segmentation that 
comprises an encoding system, a decoding system, and a pixel-wise 
categorization layer. Compared with other architectures, it achieves 
efficient memory use and computational time during inference while 
giving good performance and competitive inference time. The author 
mentioned that the segmentation task faced challenges due to the large 
number of classes, especially smaller and less frequent ones, resulting 
in lower accuracy for these classes. Deep learning architectures such 
as VGG may struggle with indoor scene variability, with smaller 
models showing better performance. To address these issues, more 
comprehensive datasets and specialized training methods are needed 
for improved performance across varying class sizes and scene 
complexities. Rafique et  al. (2022) demonstrated a convolutional 
neural net (CNN)-based segmentation method to recognize objects. 
CNN features are then obtained from these segmented objects, and 
discrete cosine transform and discrete wavelet transform features are 
computed. This fusion is achieved using fusion techniques after 
extracting CNN features and computing customary machine learning 
functions. Then, a minimal feature collection is selected using genetic 
algorithm-based feature selection. This study shows the great results 
but it did not mention the scene recognition accuracy results in terms 
of confusion matrix (Rafique et al., 2020). The proposed recognition 
technique is one kinf of a segmentation framework that uses 
probabilistic multi-object segmentation to train an accurate scene 
structure and separate objects in the scene. The distinguishing features 
of these segregated items are then obtained for further recognizing 
processing using linear SVM. Finally, the scene recognition features 
and weights are delivered to the multilayer perceptron. The proposed 
model’s performance may vary in complex real-world scenarios due 
to the limitations of depth data in capturing intricate scene details. The 
use of limited feature extraction techniques may impact scene 
recognition accuracy. Employing a variety of different features can 
enhance accuracy in scene recognition tasks.

Moreover, Herranz-Perdiguero et al. (2018) proposed that using 
semantic segmentation as input, the research provides a bottom-up 
strategy for solving the challenges of image pixel labeling, object 
recognition, and scene categorization. The ResNet deep network-based 
DeepLab architecture is used to accomplish precise pixel labeling, 
object localization, and scene identification. This model directly 
implements segmentation and detection techniques. By preprocessing 
images and extracting important details, it aims to achieve better 
results in scene analysis and recognition. Kim and Choi (2019) used a 
method for learning a new class containing backdrop and object for 

semantic image segmentation of inside scene photographs. The 
emphasis is on differentiating objects and backgrounds rather than 
learning different object classes, resulting in improved accuracy and 
less learning time. When the same class works independently across 
various environments, the suggested learning approach achieves 
approximately 5–12% higher accuracy than previous methods and 
lowers learning time by roughly 14–60 min. This method shows 
promise in quickly tackling the challenge of distinguishing objects and 
backgrounds in indoor photographs. This model operates solely on 
indoor scenes using a single dataset, which restricts its scalability and 
generalizability to broader contexts or outdoor environments. Das et al. 
(2019) achieved semantic segregation at the superpixel threshold 
employing three distinct levels as semantic context relatives. In 
addition, we used various ensemble techniques, such as maximum 
scoring and balanced mean. They also employed the Dempster–Shafer 
uncertainty theory to investigate class confusion. On the same dataset, 
our method outperformed a number of alternative recent approaches. 
The authors mentioned that they avoided incorporating higher 
combinations of classes because they would unnecessarily increase 
computational complexity without providing significant additional 
information. Specifically, when determining the predicted class of a 
patch, we excluded classes that were likely to be confused with the 
chosen class, reducing complexity while maintaining accuracy 
(Yoshihara et al., 2022). The study investigates the effect of training 
convolutional neural networks (CNNs) on ImageNet object recognition 
using a combination of sharp and blurry images. It finds that mixed 
training on sharp and blurred images makes CNNs closer to humans 
in terms of robust object recognition against changes in image blur, but 
it does not fully achieve a strong shape bias comparable to humans. The 
drawback of this approach is that training with blurred images did not 
noticeably enhance the recognition of overall spatial shapes or the use 
of fine details (high-frequency features) in object recognition tasks. 
Additionally, the models were trained on blurred images struggled to 
effectively use restricted frequency features and were particularly 
sensitive to local obstructions, which differs from how human vision 
handles similar challenges. Girshick et  al. (2014) suggested an 
affordable and flexible detection technique that enhances the mean 
average precision (mAP) by more than 30% and achieves mAP of 
53.3% in comparison to the prior highest results in VOC 2012. Two 
important insights are as follows: (1) Powerful convolutional neural 
networks (CNNs) can be used to find and segment objects from the 
ground-up area predictions; (2) When tagged training data are 
unavailable, pre-supervised data can be used to considerably increase 
performance through auxiliary task training and subsequent 
domain-specific fine-tuning. In region classification, accurately 
locating boundaries between different semantic regions in images 
can be challenging Wang et al. (2024), especially when objects overlap 
or are closely positioned. This can lead to less precise segmentation 
results as the method may struggle to assign accurate semantic labels 
to distinct regions.

2.2 Scene understanding

Scene understanding is a significant area in computer vision that 
aims to enable machines to perceive, analyze, and interpret visual 
scenes such as humans. The goal of scene understanding is to have 
a complete understanding of visual scenes by analyzing the context, 
identifying objects and their relationships, and interpreting the 
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semantic meaning of the scene. This study provides a comprehensive 
survey of scene understanding, covering a wide range of strategies 
and methods (Aarthi and Chitrakala, 2017). Many researchers have 
applied different techniques for scene recognition (Sun et al., 2018). 
The research presents a complete scene recognition representation 
by incorporating deep characteristics from three selective views: 
object meaning, international physical appearance, and context-
dependent appearance. The object semantics representation is 
obtained by a deep learning-based multi-class detection using spatial 
fisher matrices to store item categorization and pattern 
characteristics. To collect the contextual information of the scene 
image, a multi-directional extended temporary memory-based 
model is used. The initialization of a convolutional neural network’s 
completely linked layer depicts an overall look of the scene image’. 
This evaluation has been performed on three different datasets. By 
adding object semantics to deep learning frameworks increase the 
computational cost and training time. This demand restricts the 
scalability of the method due to the resources needed for integrating 
object semantics with appearance features in deep learning. Wang 
et al. (2020) presented a unique deep feature fusion method named 
deep feature fusion through adaptive selective metric learning (DFF-
ADML) to study identical reliable data needed for scene recognition. 
To be  more explicit, they create a novel discriminative metric 
learning problem that not only fully uses discriminative information 
from each deep feature vector but also adaptively combines 
complementary information from distinct deep feature vectors. 
Although the study shows promising outcomes for scene recognition 
through deep feature fusion and adaptive discriminative metric 
learning, its effectiveness could be constrained to certain datasets 
and scenarios. To fully gauge its robustness and applicability, further 
evaluation across diverse datasets and real-world scenarios is 
essential (Zeng et  al., 2021). This study aims to present a 
comprehensive assessment of current advancements in scene 
categorization, including challenges, benchmark datasets, taxonomy, 
and quantitative performance utilizing deep learning (Yin et al., 
2013). This study provided a fuzzy reasoning-based scene semantics 
identification system. The system has three components: image 
preprocessing, target recognition, and a fuzzy reasoning machine. In 
contrast to earlier methods, pattern classifier outputs are fuzzed, 
fuzzy connections among objectives are obtained, and fuzzy 
deduction is performed using fuzzy automata. According to the 
experiment results, this technique might eliminate the problem of 
patter’s mistaken positive and incorrect negative. This method 
encounters challenges in determining suitable thresholds for 
comparisons, which result in false positives and false negatives. 
Additionally, relying on fuzzy reasoning add complexity to 
implementation and interpretation, which could impact scalability 
and generalizability.

Furthermore, López-Cifuentes et al. (2020) offer a unique scene 
identification, an end-to-end multi-modal CNN technique, that 
includes image and contextual data via a focused component. 
Contextual knowledge in the form of semantic segmentation is used 
to restrict features gathered from a color image using details contained 
in the semantic depiction: the collection of scene objects and 
components and their relative placements. By focusing CNN’s 
responsive fields on them, this restricting technique promotes learning 
of suggestive scene data and enhances scene recognition. The main 

drawback highlighted by the author in the study is that while semantic 
segmentation aids in guiding the scene recognition process with RGB 
images, any inaccuracies or flaws in the semantic segmentation can 
negatively impact the overall performance of the proposed method. 
Seong et al. (2020) used CNN to create a novel scene identification 
approach. Wang et al., 2024 The proposed technique leverages the 
CNN framework, FOS Net (fusion of objects and scenario), based on 
the fusion of object semantics and deep appearance features for scene 
recognition and scene information in the provided image. Moreover, 
to train the FOSNet and improve scene identification performance, a 
unique loss called scene consistency loss (SCL) is being developed. 
Based on the distinctive qualities of the scene such as how the 
“sceneness” expands and how the context class remains constant 
during the picture, the suggested SCL has been developed. This study 
has limitations in determining the appropriate SCL rate (γ) in the loss 
function, which can affect the effectiveness of SCL. The impact of SCL 
on different models and training scenarios needs further investigation 
to understand and address these challenges effectively (Meena et al., 
2022). To begin, the image was represented by a set of local feature 
areas. Then, based on the new model, the probability discovered 
among images, local areas, and semantic categories helps to compute 
the posteriors and recognize the object. The EM algorithm was used 
to estimate the model’s parameters and failed to capture the irregularly 
shaped objects or groups of small objects. Conradsen and Nilsson 
(1987), Wei et al. (2015) and Xu and Wei (2023) proposed a hybrid 
method for multi-label object recognition that uses a transfer learning-
based approach with four separate CNN models and feature fusion, 
resulting in higher accuracy than existing techniques. The HCP 
method struggles with scenes containing overlapping or closely 
positioned objects since it relies on single-shot detection without 
precise bounding box localization. Additionally, its performance 
affected by the quality and diversity of training data, potentially 
limiting its ability to generalize across different multi-label image 
datasets (Pohlen et al., 2017). The study presents a unique architecture 
for semantic segmentation in street scenes that is close to ResNet. It 
combines pixel-level accuracy with multi-scale context, and it achieves 
an intersection-over-union score of 71.8% on the Cityscapes dataset. 
The suggested architecture makes use of two processing streams: one 
that performs pooling operations to provide robust recognition 
features and the other that carries information at a higher resolution 
for exact adherence to segment bounds. The limitations underscore 
challenges related to memory usage, boundary preservation, and 
computational efficiency in semantic segmentation tasks, which could 
impact the model’s overall performance and applicability in real-world 
scenarios (Wang and Yuan, 2016; Zhang et al., 2022). On the PASCAL 
VOC 2007 and 2012 datasets, the suggested Scene-Object Network for 
Detection (SOND) model produces competitive results, outperforming 
the Fast-RCNN baseline by 4.2% on VOC 2007 and 3.4% on  
VOC 2012, with mean average precision (mAP) scores of 74.2 and 
71.8%, respectively. Reducing localization mistakes and improving 
item identification performance are achieved through the use of 
enhanced proposals, which are produced by merging suggestions from 
Edge Box and Selective Search. This methodology enhances the 
outcomes attained using the SOND model. The proposed method 
utilizes a combination of Selective Search and Edge Box proposals, 
which could add complexity and computational overhead to 
the system.
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3 Materials and methods

3.1 System methodology

The proposed methodology introduces an innovative approach 
for multi-object detection and scene recognition utilizing RGB 
image data. The initial phase involves inputting images into the 
semantic segmentation process, wherein several objects in the scene 
are segmented using the UNet model. Subsequently, features of the 
identified objects (Huang et  al., 2022) are extracted using three 
distinct algorithms: Discrete Wavelet Transform (DWT), Sobel, 
Laplacian, and textual analysis through Local Binary Pattern (LBP). 
After that, the deep belief network model uses these properties to 
recognize various things in the image. The recognized objects 
undergo analysis for object-to-object relationships. Finally, an 
AlexNet Neural Network is employed to predict the scene label 
based on the relationships between the objects. An in-depth 
discussion about each phase of this procedure is mentioned in the 
succeeding subsections. Figure 1 depicts the overall architecture of 
the suggested approach. The proposed system’s architecture is 
visually represented in Figure 1.

3.2 Noise removal

Noise removal and image smoothing involve eliminating 
undesired variations or artifacts in an image that do not belong to 
the underlying scene. It is an important step because it enhances 
image quality. This process also entails reducing the high-frequency 
components in the image, resulting in a visually smoother 
appearance by suppressing abrupt changes and fine details. In the 

pre-processing phase (Westin et  al., 2000; Awate and Whitaker, 
2006; Gong et al., 2014; Xu et al., 2022; Chen et al., 2024), the raw 
images within the datasets are gathered under diverse 
circumstances, including variations in illumination and contrast 
distribution, elevated intensity values, and fluctuations in object 
scales within the images (refer to Figure  2A). To mitigate this 
undesired information, an initial step involves adjusting the 
dimensions to 224 × 224 through fixed window resizing. Then, 
we used custom convolution for sharpening enhanced edge features 
and details (Qu et al., 2023). Custom convolution kernel is a tiny 
matrix of numerical values that is used to apply a specific operation 
to an input image. Convolving the kernel with the image entails 
sliding the kernel (Xu et al., 2023) across the image and conducting 
a mathematical operation at each place. This operation computes 
the weighted sum of the image’s pixel values, with the weights 
specified by the kernel values (Yin et al., 2020). Figure 2B displays 
the image following the convolution operation of an enhanced 
image, whereas Figures 2A,B depict the initial unfiltered image. 
Additionally, Figures 2C,D display the histograms of the two photos 
because it is frequently challenging to analyze the differences.

The mathematical formula for a bespoke convolution kernel 
entails representing the kernel’s weights as a matrix (Sun G. et al., 
2019). Let us call the input picture I a b,� � and the convolution kernel 
K(m,n), where m and n indicate the kernel’s spatial coordinates. At a 
given pixel a b,� �, the convolution operation is calculated as follows:

 
I K a b I a m b n K m n

m n
�� �� � � � �� � � ��, , ,

,

.

Here, ∗ donates the convolution operation, and summation is 
performed on the entire kernal region. For 3 3×  kernal:

• Custom kernel 

Preprocessing

• AlexNet

Scene Recognition
•

Object-to-object • Deep belief network

Object Recognition

• DWT 

• Sobel and 

Laplacian

• Local binary pa�ern

Feature Extraction
• UNet 

Semantic Segmentation

FIGURE 1

The architecture of the proposed system.
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The convolution operation for a pixel (x, y) would be as follows:
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This formula computes the balanced total of pixel values of the 
surrounding range x y,� �, according to the values of convolution 
kernal K .

3.3 Semantic segmentation

Segmentation is performed to partition an image into 
meaningful regions or objects, aiding in tasks such as object 
recognition, image analysis, and compression. It is useful for feature 
extraction by isolating specific regions of interest, allowing 

extraction of distinctive features from these segments for further 
analysis and processing. Following the pre-processing of the photos, 
each pixel in the image is classified into a distinct class and category 
using image segmentation (Khan et al., 2024). Segmenting a picture 
into many parts is known as image segmentation. Semantic 
segmentation aims to assign a semantic name to each sector after 
segmenting a picture into meaningful parts (Wang et al., 2022). The 
main idea is to build a “completely convolutional” network that, by 
effective inference and learning, can handle indefinitely huge inputs 
and yield similarly enormous outputs. By converting contemporary 
classification networks (AlexNet, VGG, and Google Net) into 
entirely convolutional systems, they can fine-tune the learned 
representations to the segmentation problem. Chen et al. (2014) 
demonstrated that these are all connected to the effectiveness of 
segmentation. Numerous approaches have been looked into to 
address these issues. Conditional random fields (CRFs) employ 
greater context in convolutional networks (CNNs) with graphical 
models to tackle localization problems (Cai et  al., 2023; Wang 
C. et al., 2023; Wang Q. et al., 2023; Zhao et al., 2023). We looked at 
the “update backgrounds” and the “patch-patch” context (between 
image sections) (Sun K. et al., 2019). Their model is therefore better 
at determining the segment borders. A high-quality net (HRNet) 
tackles the reduction of smooth picture detail in the encoder/
decoder-based paradigm (Zhao et  al., 2017). This loss happens 
throughout the encoding procedure. The high-resolution 

FIGURE 2

Outcomes of pre-processing images: (A) the original picture; (B) the filtered image; (C) the original image histogram; (D) the convolved image 
histogram.
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representations are recovered using encoder–decoder models. 
HRNet, on the other hand, preserves high-resolution representations 
by occasionally transferring information (Liu H. et al., 2022; Liu 
Y. et al., 2022; Liu D. et al., 2022; Min et al., 2024; Zhao L. et al., 2024; 
Zhao X. et al., 2024) between resolutions and connecting the high-
to-low convolutions streams in parallel. It is therefore used as the 
basis for future models and improves segmentation accuracy (Liu 
et al., 2021; Fu et al., 2023). The multiscale, pyramid network-based 
Pyramid Scene Parsing Network (PSPN) uses the global context 
representation of a scene.

The graph depicts the accuracy of training and validation. The 
y-axis displays the model’s accuracy as a percentage, and the x-axis 
displays the quantity of training epochs (Jiang et al., 2021; Xiao 
et  al., 2023a,b,c). While the validation loss shows how the data 
model functions on different data, the training loss measures the 
variation between the expected and real target values in the training 
set. It helps the model figure out if it fits the data better or worse. 
The model’s learning ability from the training data is indicated by 
the training accuracy, which is displayed in blue. The validation 
accuracy, indicated in orange, estimates the model’s effectiveness in 
generalizing new and previously unknown data. Figure  3 
illustrates it.

The UNet model is made up of several convolutional blocks for 
feature extraction and up sampling blocks (Yu et al., 2021; Hou et al., 
2023a,b; Xiao et  al., 2023a,b,c) for segmentation. Because of the 
architecture, the model can capture both local and global context 
information, making it useful for semantic segmentation tasks. The 
model has been trained to predict pixel-by-pixel semantic labels, 
which allows it to segment objects and regions in images (Hou et al., 
2023a,b). The number of layers and filters in each block (He et al., 
2023) enhances the model’s ability to learn hierarchical characteristics 
and spatial correlations. We have used seven convolution layers (3 in 
the contracting path, 3 in the expanding path, and 1 in the output 
layer). The number of filters in these layers’ ranges from 64 to 512, 

following increasing and decreasing patterns (Hu et al., 2019; Li et al., 
2022; Xie et  al., 2023) in the contracting and expanding path, 
respectively. The contracting path (encoding) consists of applying two 
3 3×  convolutions repeatedly, (with each one being followed by the 
rectified linear unit activation and a normal kernal initializer), with a 
2 2×  max pooling operations to downsample the spatial dimensions 
after each convolution block (Chen et  al., 2022). The number of 
convolutional filters doubles with each downsample, capturing more 
complex features at multiple scales. After the convolution help, 
optional dropout layers reduce overfitting by randomly dropping units 
from the neural network during training. The expansive path 
(decoding)includes upsampling blocks that consist of a 2 2×  
transposed convolution that halves the number of feature channels, 
followed by concatenation with the cropped feature map from the 
contracting path (Wang C. et al., 2023; Wang Q. et al., 2023; Zhang 
J. et al., 2024; Zhang X. et al., 2024; Zhao X. et al., 2024; Zhao L. et al., 
2024). This convolution is followed by two 3 3×  convolutions, each 
followed by the ReLU activation and normal initialization, which 
refines the feature map and recover spatial information lost during 
downsampling (Lyu et al., 2024). The final layer of the model is a 1 1×  
convolution that maps the feature vector at each pixel to the desired 
number of classes (Xu et al., 2023). The model uses an Adam optimizer 
and a sparse categorical cross-entropy loss function, which are suitable 
for segmentation task (Wu et al., 2023) with non-overlapping labels.

During training, the best model weights (Hou et al., 2017; Wu 
C. et al., 2019; Wu W. et al., 2019; Zhang X. et al., 2024; Zhang J. et al., 
2024) are saved using a checkpoint callback based on validation 
accuracy, which monitors the performance on a validation set 
separated from the training data (Lu et al., 2022). The network weights 
are optimized during the training phase to minimize the loss function 
(Lu et al., 2024) and increase the accuracy of pixel-wise classification 
(Miao et al., 2023; Mou et al., 2023; Xu et al., 2024). The model is 
trained using batches of photos with matching segmentation masks, 
as shown in Figures 4, 5.

FIGURE 3

Histogram of Cityscapes performance during training and validation.
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3.4 Feature extraction

Feature extraction is essential to reduce the complexity of data and 
highlight important information. By extracting meaningful features, 
we can enhance the performance of machine learning algorithms and 
improve accuracy in tasks such as object recognition and classification. 
Additionally, feature extraction aids in improving the interpretability 
of models by highlighting meaningful attributes that contribute to 

decision-making in various applications. Following picture 
segmentation, extracting object characteristics becomes critical, with 
each feature playing a specific function in gaining relevant 
information. The feature extraction procedure employs discrete 
wavelet transform (DWT) features, Sobel and Laplacian features, and 
local binary pattern (LBP). In the next subsections, detailed 
explanations of each feature are provided, along with pseudocode for 
the whole process, as presented in Algorithm 1.

FIGURE 4

Results of image segmentation on Cityscapes (A) original images (B) ground truth (C) segmented results.
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ALGORITHM 1 Object recognition
Input:
‘I’: Set of images ‘I = {i1, i2, i3…., in}
Output: (n0, n1, …, nN): The classification of each image.
Initialization:
D ← []: Image recognition
F← []: Feature Vector
Method:
For k = 1 to size (I):
 resize_img = imrezise([K], target size): Resize image ‘I[K]’ to a 
specific ‘target szie’.
 seg_img = UNet(resize_img): Apply the UNet segmentation on 
the images.
For s = 1 to size (D):
 F← DWT (D[s]): Apply Discrete Wavelet Transform (DWT) to 
the segmented region D[s].
F← Sobel (D[s]): Apply Sobel edge detection to the region D[s].
F←Laplacian (D[s]): Apply Laplacian filter to the region D[s].
F←LBP (D[s]): Apply Local Binary Pattern D[s].
 Img_class = DBN (F): Recognize the image using Deep Belief 
Network (DBN) with features ‘F’.

End For
End For
Return ‘img_class’ for each image

3.4.1 Discrete wavelet transforms
The discrete wavelet transform (DWT) is discussed as a wavelet-

based extension of a finite-energy signal, with a focus on signal 
representation economy and flawless signal reconstruction (Alessio 
and Alessio, 2016). An algorithm, for implementing the 2D-DWT 
feature extraction technique, and the extracted coefficients are utilized 
to represent the image for classification (Xiao et al., 2023a,b,c; Zheng 
et al., 2024).

Discrete wavelet transforms used to analyze images in both 
the frequency and spatial domains. The DWT recursively 
decomposes the image into a set of orthogonal wavelet 
coefficients. This is mathematically accomplished by applying 
several filters to the image. First, the image is convolved using 
low-pass and high-pass filters (Hertz et  al., 2022; Sheng et  al., 
2023b; Shi et al., 2023; Fu and Ren, 2024; Qi et al., 2024; Zheng 

et al., 2024), which represent the division of the image into high-
frequency detail and low-frequency approximation components. 
This process is termed as sub-band coding. The filters used are 
derived from a selected wavelet function and scaled accordingly. 
The original image I  is thus separated into four sub-images: the 
approximation coefficients xA, and the detail coefficients xH xV, , 
and xD , representing horizontal, vertical, and diagonal details, 
respectively. The results are presented in Figures  6, 7. 
Mathematically, it is represented as follows:

 
I a b xA a b xH a b xV a b xD a b
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where a and b denote pixel coordinates in the two-dimensional 
image space.

3.4.2 Sobel and Laplacian
The edges in the X and Y axes are recognized in the classic 

Sobel, and some edge information is lost. To address this, an 
enhanced Sobel algorithm with an 8-directional template is 
utilized (Deka and Laskar, 2020). According to the methodology 
proposed in this research study, Laplacian and Sobel visualization 
is used to extract information from each pixel in a picture to 
determine the blurry areas. Next, without the need for picture 
de-blurring, the blur classes (motion blur or defocus blur) are 
identified by SVM model training (Yaacoub and Daou, 2019). 
The design of a fractional order Sobel edge detector is proposed 
in this study. Sobel gradient operators are used for the first order 
derivative, while fractional calculus is used for non-integer orders 
greater than unity.

We employed two distinct edge-detection algorithms to capture 
the inherent structure and edges within the images. The Sobel operator 
works by convolving the image with two separate 3 3×  kernels which 
are approximate to the derivatives (Yang B. et al., 2023; Yang D. et al., 
2023), one for the horizontal changes and other for the vertical. 
G andGX y are two images which at each point contain the vertical and 
horizontal derivative approximations, the combined gradient can 
be computed as follows:

 G G Gx y� �2 2

FIGURE 5

Results of image segmentation on PASCALVOC-12.
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This gradient magnitude corresponds to edge strength of the 
image at each poi t.

Conversely, the Laplacian of Gaussian is a two-step process that 
involves smoothing the image. Mathematically, the LoG operator is 
defined as follows:

 � � �� � ��� ��
2 G x y I x y, ,

where I x y,� � is the original picture, G x y,� � is the Gaussian filter, 
and ∀2 is the Laplacian function.

The Gaussian filter (Sheng et  al., 2023a) suppresses noise by 
smoothing the image, and the subsequent Laplacian filter detects 
regions of rapid intensity change, thereby highlighting edges. Figure 8 
shows the results of the Sobel and Laplacian features.

3.4.3 Local binary pattern
They developed local binary patterns to establish the Hu moment 

approach. Hu’s 7 moments are computed using the response minima 
of the proposed local binary pattern (LBP) model, which correspond 
to the coordination number (CN)* of each contour point of the object. 
A modified model was incorporated with the local binary patterns 
corresponding to the coordinate numbers of object contour points to 
determine the similarity between two binary entities (Kumar and 
Mali, 2021; Fadaei et al., 2023). Orthogonal Distinction, the local 
binary pattern, has been improved. The suggested method divides 
each 33 local window into two groups, extracts local patterns from 

each group, and provides the feature vector by concatenating group 
patterns (Pavithra, 2021). A cascaded strategy for content-based image 
retrieval (CBIR) combining dominant color and uniform local binary 
pattern (texture) features is proposed in this study. On Wang’s 
database, with a 75% retrieval accuracy, the method recovers 
dominating color characteristics at the first level and uniform local 
binary pattern-based texture information (Shuai et al., 2022) at the 
second level.

By taking into account each pixel and its surrounding 
neighborhood of radius r, we  apply LBP to the gray scale image. 
We compare the intensity values of each pixel on a circle of radius r 
with the values of P equally spaced nearby pixels. Neighbors are 
assigned a binary value of ‘1’ if their intensity is greater than or equal 
to the center pixel (Yang et  al., 2022) and ‘0’ otherwise. The LBP 
feature picture is created by concatenating these binary digits to create 
a new binary value, which is then transformed into a decimal integer 
representing the LBP code for the center pixel. It is calculated 
as follows:

 
LBP x y g gc c

p

p
p

p c� � � � � �� �
�

�

�,

0

1

2 1 0.

where LBP value of pixel x yc c, . gc  is the intensity of the center 
pixel,g p is the intensity of P equally spaced pixel on the circumference 
of a circle of radius r around gc , and 1 is the indicator function, equal 
to 1 if g gp c≥  and 0 otherwise. It is shown in Figure 9.

FIGURE 6

Results of DWT features on PASCALVOC-12 (A) grayscale image (B) horizontal features (C) vertical features (D) diagonal features.

FIGURE 7

Results of DWT features on PASCALVOC-12. (A–D) Show on the Cityscapes.

https://doi.org/10.3389/fnbot.2024.1398703
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Alazeb et al. 10.3389/fnbot.2024.1398703

Frontiers in Neurorobotics 11 frontiersin.org

3.5 Multi-object recognition

Multi-object recognition is crucial because it allows systems to 
identify and understand multiple objects within an image or scene. 
This individual object recognition is essential for scene recognition 
because by recognizing each object separately, we  can then 
understand and recognize the overall scene. We have used deep 
belief network. This study proposes an object recognition method 
based on the DBN architecture, primarily for localizing and 
categorizing objects in photos as Bounding Boxes (B-Box) (Huo 
et al., 2021). This study offers a neural network model for multi-
source heterogeneous iris recognition (MSH-IR) dubbed stacked 
convolutional deep belief networks-deep belief network 
(CDBNs-DBN). The model uses a region-by-region extraction 
technique and positions the convolution kernel through the hidden 
layer offset to find the effective local texture feature structure. It also 
employs DBN as a classifier to reduce reconstruction error using the 
auto-encoder’s negative feedback mechanism. Experimental results 
on the IIT Delhi iris database recorded by three different iris sensors 
demonstrate the model’s robustness and identification abilities. 
Sihag and Dutta (2015) by combining deep belief networks (DBNs) 
and discrete wavelet transform (DWT), reduces training time and 
computational complexity in object categorization. The use of DWT 

facilitates the acquisition of low-resolution pictures, which are 
subsequently utilized to train multiple DBNs. A weighted voting 
technique is used to integrate the results of various DBNs. Compared 
with standard DBNs, the performance of this technique is proven to 
be competent and faster. Hongmei and Pengzhong (2021) suggested 
a sparse penalty mechanism for the convolutional restricted 
Boltzmann machine (CRBM) model that is based on cross-entropy. 
This mechanism helps to maintain the hidden layer units at a lower 
activation state and reduces homogeneity of the convolution kernel 
in the convolutional deep belief network (CDBN). To compensate 
for the gradient, the proposed model employs a parameter learning 
technique that blends supervised and unsupervised learning and 
integrates prior knowledge from the samples. The result is shown in 
Figure 10 for the multiple object recognition. The results are shown 
in Figure 11.

The visible layer is v and the hidden layers are x x xk1 2
, , .… , where 

k  is the number of hidden layers. The joint distribution over visible 
and hidden units is given as follows:

 
P v x x x

Z
E v h h hk k

, , , , , ,
1 2 1 21

�� � � � �� �� �. exp .

where E v h h hk, , ,
1 2 �� �.  is the energy function defined as follows:

FIGURE 8

Results of Edge detection over Cityscapes and PASCALVOV-12. (A) Shows the Sobel (B) shows the Laplacian of Gaussians over Cityscapes (C,D) show 
over PASCALV0C-12.

FIGURE 9

Results of textual pattern (A) and (B) shows on Cityscapes and (C) over the PASCALVOC-12.
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where Wi represents the weight matrix between the visible layer 
and the ith hidden layer. bi  and c are the bias terms. Z  is the partition 
function to normalize the distribution.

Given the visible layer and vice versa, the conditional probabilities 
for the hidden layers are computed as follows:

 
P h v W h bi i i i

|� � � �� ��� 1
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FIGURE 10

Architecture of deep belief network.

FIGURE 11

Recognition Results (A) shows the PASCALVOC-12 (B) over the Cityscape.
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where σ  is the logistic sigmoid function.

3.6 Object-to-object relation

After recognizing the objects within an image, the next step 
involves identifying the relationships between these objects and how 
they interact with each other to form a cohesive scene. Understanding 
these relationships is a key to interpreting the overall context and 
meaning of the scene. Object-to-object relations are concerned with 
describing and comprehending the interactions and relationships that 
exist between particular objects in a given scenario. This analysis 
frequently considers qualities, spatial arrangements, and functional 
interdependence to provide insights into how objects connect to one 
another in a specific scenario, such as an airplane likely to be seen in 
the sky or run way not in the middle of roads. The OOR between the 
object of scene sailing their attributes would be boat size (dimension 
of boat), type (sailboat, motorboat), and color. Peron (sitting or 
standing, pose), water (texture, color), and spatial arrangement would 
be the boat maybe located in the water, either floating or anchored. 
The person could be on the boat, near the shore, or in the water. The 
spatial arrangements involve the relative positions of the scene’s boat, 
person, and elements. Functional dependencies include the boat’s 
reliance on the water for movement and buoyancy. A person may 
interact with the boat for navigation or recreation. The scene type of 
bike riding includes (rider, motorbike and road) and airplane runway 
(airplane, runway, and sky). It is computed as: each object is 
represented by a vector vi in a feature space. The relation function is 
defined as R v vi j� �  that quantifies the relationship between object 
i and object j . Then, object relation is computed as follows:

 
M w vij

i

N
i i�

�
�

1

.

where Mij  represents the relationship between the object i and 
another object j . N  is the number of features. wi  is the weight 
associated the i th− feature. vi is the feature.

3.7 Scene recognition

Scene recognition involves analyzing the relationships between 
recognized objects to understand the context and layout of a scene. 
This process allows models to understand how various objects 
interact within a scene, leading to a deeper comprehension of the 
overall context and enabling accurate scene recognition. Zhang et al. 
(2020) introduce an improved HS-AlexNet model for indoor 
location that combines the advanced AlexNet network model with 
Harris feature detection to boost generalization and robustness. The 
model decreases randomness error in complex and changing 
placement contexts while improving accuracy and speed. It can 
be integrated with existing visual indoor positioning technologies to 
improve the positioning system’s accuracy and speed. Hanni et al. 
(2017) presented a new technique for indoor scene recognition 
utilizing RGB and depth pictures, reaching an indoor dataset 
accuracy of up to 94.4%. The suggested deep CNN model beats the 
GoogLeNet and AlexNet frameworks, achieving a better accuracy of 

75.9% on the benchmark NYUv2 dataset. Sun et  al. (2016) 
introduced a novel approach for scene picture classification based 
on deep image properties obtained from the Alex-Net model and 
support vector machine. The experimental results show that the deep 
convolutional neural network (DCNN) can successfully extract 
image features, enhancing scene image classification and achieving 
state-of-the-art classification accuracy. Yun-Zhou et  al. (2022) 
addressed the advancement of artificial intelligence technology in 
China as well as the shortcomings of the template matching model 
in neural network recognition. It emphasizes the significance of 
detecting photos that differ from the template and introduces 
AlexNet, a model that integrates new technological elements and 
GPU processing acceleration.

The final step of the proposed system is the scene recognition. 
We used AlexNet for the scene recognition. This model consists of 
specific convolution and fully connected layers. It has an input layer, 
five convolution layers with ReLU activation, max-pooling layers, and 
three fully connected layers. The final layer has a number of output 
nodes which are equal to the specified num classes, and in our case, 
there were 15 scenes. It takes input images of 224 224×  pixels. This 
model is trained for 20 epochs using the Adam optimizer and cross-
entropy loss. The training loop iterates through batches of images, 
computes the loss, performs back-propagation, and updates the model 
parameters, as shown in Figures 12, 13. Mathematically, it is computed 
as follows:

Size of feature map can be calculated as follows:

 
Size of feature map N f P

S
  � � ��

��
�
��
�

2
1

where N  represents the input size, f  is the size of convolution 
kernels, P denotes the padding, and S is the strides.

Convolution layer is expressed as follows:

 
Conv X W b W X b, ,� � � � �� ��

where X  is the input feature map, W  is the convolution filter, b 
represents the bias term, ∗ denotes the convolution operation, and σ  
is the ReLU activation function.

ReLU activation function:

 ReLU X X� � � � �max 0,

Max pooling operation:

 MaxPool X X pool stridesize� � � � �, ,

Fully connected layer operations:

 
FC X W b W X b, ,� � � �� �� .

X is the flattened input vector, W  is the weight matrix, and b is the 
bias term.

Cross Entropy class:
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where m is the first-order moment estimate, v is the second-order 
moment estimate, β1  and β2  are decay rates, α  is the learning rate, 
andε  is a small constant to prevent division by zero.

4 Experimental setup and datasets

4.1 Experimental setup

The three publicly accessible datasets that were utilized to 
validate the suggested system are described in this section. The 
overview is followed by the specifics of the implementation and the 
outcomes of several tests conducted in the three datasets. Caltech 
101, Cityscapes, has been utilized for object identification, and 
PASCALVOC-12 has been utilized for scene recognition. The 

Scene label Sailing       Horse riding  Airplane runway

Object
s 

FIGURE 12

Recognition Results of the PASCALVOC-12 dataset.

Scene label City                                    Street                                Road

Object
s 

FIGURE 13

Recognition Results of the Cityscapes dataset.
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cross-validation technique has been used to assess the suggested 
system. Every subject serves as the test set only once in this strategy. 
It is a unique type of k-fold cross-validation where the number of 
folds is the same as the total number of dataset instances. Python 
was used for all processing and experimentation on Windows 11 
operating system with 16 GB of RAM, a core i7 processor, and an 
Intel(R) UHD GPU.

4.2 Dataset description

In the subsequent subsection, we  provide comprehensive and 
detailed descriptions of each dataset used in our study. Each dataset is 
thoroughly introduced, highlighting its unique characteristics, data 
sources, and collection methods.

4.2.1 The Cityscapes dataset
The Cityscapes dataset (Cordts et  al., 2016) represents an 

extensive database devoted to the semantic interpretation of urban 
street scenes. The dataset consists of instance-wise, dense, and 
semantic annotations for pixels in 30 different classes, which are then 
further categorized into 8 broad categories: objects, flat surfaces, 
people, cars, buildings, nature, sky, and nothingness. The technique 
of gathering data comprised taking pictures in 50 cities for several 
months in a variety of daytime situations with ideal weather. The 
frames, which were originally captured in video format, were 
carefully chosen to highlight particular elements including a large 
variety of dynamic objects, various scenario layouts, and 
varied backgrounds.

4.2.2 The PASCALVOC-12 dataset
The PASCALVOC-12 dataset (Shetty, 2016) encompasses 21 

distinct classes, specifically emphasizing urban street scenes for 
semantic scene understanding. The dataset comprises 17,000 images 
capturing diverse and complex scenarios, including both indoor and 
outdoor settings. The object classes in the dataset include, but are not 
limited to, person, car, potted plant, motorbike, bicycle, bird, airplane, 
boat, bottle, bus, cat, dog, chair, cow, dining table, horse, sheep, sofa, 
and TV/monitor. Moreover, this dataset poses the challenge of 
illumination variation and motion blur.

4.2.3 The Caltech-101 dataset
Images from Caltech-101 (Kinnunen et al., 2010) classes and one 

class were dedicated to background clutter make up Caltech-101. 
There is just one labeled object per image. There are between 40 to 800 
photos in each class, for approximately 9,000 photos. Images are 
available in a wide range of sizes, with 200 to 300 pixels serving as the 
typical edge length. Cougar, brontosaurus, sidewalk, chair, motorbike, 
aeroplane, dalmatian, dolphin, faces, ketch, water and tree are among 
the objects taught in Caltech-101.

5 Results and analysis

In this section, we  performed different experiments for the 
proposed system. The system is evaluated using different matrices, 
including confusion matrix, precision, recall, F1 score, and receiver 

operating characteristic (ROC) curve. The detailed discussion and 
analysis are described below.

5.1 Object recognition accuracies

Across the tests, our suggested method outperformed the others 
in terms of accuracy across all three datasets. Confusion matrices are 
used to illustrate the recognition accuracy obtained for each of the 
three dataset classes. A classifier’s performance is summed up in a 
confusion matrix by true, false, and negative positives and negatives. 
The diagonal of the matrix displays the quantity of true positives or 
correctly identified classes. The confusion matrices for the Cityscapes, 
PASCALVOC-12, and Caltech 101datasets are shown in Tables 1–3.

5.2 Receiver operating characteristic curve 
for Cityscapes, PASCALVOC-12, and 
Caltech-101 dataset

Illustration of a binary classification model’s performance at 
various classification thresholds is called a Receiver Operating 
Characteristic (ROC) curve. It plots the genuine positive rate 
(sensitivity) against the false positive rate (1-specificity) for different 
threshold settings. It can evaluate and contrast model performance 
since it visually depicts a model’s capacity to distinguish between 
positive and negative scenarios across various threshold values. The 
results are shown in Figures 14–16. It is calculated as follows:
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5.3 Scene recognition accuracy

In this experimental setup, we extracted the scenes recognition. 
The experimentation involved utilizing the PASCALVOC-12 datasets. 
We extracted the 15 scenes over the PASCALVOC-12, and Table 4 
shows the confusion matrix for scene recognition on the PASCALVOC 
112 dataset. The experiment with 30 iterations resulted in an average 
recognition accuracy of 97.32%.

5.4 The dataset’s results in terms of 
F1-score, specificity, and precision

In this experimental study, we assessed the effectiveness of 
the proposed system by conducting a comparative analysis with 
the AlexNet model. The evaluation of performance was carried 
out based on precision, recall, and F1-score metrics. The 
comparative results are presented in Table  5, showcasing the 
performance of scene recognition over the PASCALVOC-12 
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dataset. The outcomes obtained over the PASCALVOC-12 dataset 
are shown in Table 6.

5.5 Comparison with other state-of-the-art 
methods

The recognition accuracies attained by the suggested system have 
been compared with contemporary approaches that have been assessed 
on the same three testing datasets. Table 5 presents the outcomes of the 
suggested system compared with other SOTA object identification and 
scene comprehension techniques assessed on one or more of the three 
datasets utilized in this study. The accuracy scores demonstrate how much 
better the suggested system performs than any of them.

6 Discussion

The scene recognition framework starts by improving the quality of 
input images using special techniques. It then identifies different objects 
within the images through a process of UNet segmentation technique. 

Next, it extracts important features such as edges and textures from these 
objects using methods such as Discrete Wavelet Transform. These features 
help achieve high accuracy in recognizing scenes. A deep belief neural 
network is used to recognize multiple objects, followed by analyzing how 
these objects relate to each other. Finally, an AlexNet model assigns labels 
to scenes based on the recognized objects.

This system utilizes three distinct datasets: PASCALVOC-12, 
Cityscapes, and Caltech- 101. For the scene recognition task on the 
PASCALVOC-12 dataset, our analysis encompasses 15 diverse scenes, 
namely, airplane runway, beach, bike riding, city, cycling, flying plane, 
forest, horse riding, parking, plants, road traffic, sailing, sea, sport, and 
train. Within the Cityscapes dataset, our recognition efforts extend to 
11 classes, namely, bicycle, building, bus, car, motorbike, person, road, 
sky, sidewalk, tree, and train. Finally, the recognition task on the 
Caltech 101 dataset focuses on 10 distinct classes, namely, aeroplane, 
brontosaurus, carside, chair, cougar, dalmatian, dolphin, faces, ketch, 
and motorbike. This method works well across different datasets, 
achieving high recognition accuracies of 96, 95.90, and 92.2% on 
PASCALVOC-12, Cityscapes, and Caltech-101 datasets, respectively. 
These results show that the proposed method is effective compared 
with other SOTA techniques, as shown in Table 5.

TABLE 1 Object recognition accuracy over the Cityscapes dataset.

Obj B1 BG BS CR MK PS RD SK SW TR TN

BI 0.96 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.00

BG 0.00 0.96 0.00 0.01 0.00 0.00 0.00 0.03 0.00 0.00 0.01

BS 0.00 0.00 0.94 0.00 0.00 0.00 0.00 0.05 0.00 0.01 0.00

CR 0.00 0.00 0.00 0.98 0.00 0.00 0.02 0.00 0.00 0.00 0.00

MK 0.01 0.00 0.01 0.00 0.91 0.00 0.00 0.05 0.00 0.02 0.00

PS 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.03 0.00

RD 0.00 0.00 0.03 0.00 0.00 0.00 0.96 0.00 0.01 0.00 0.00

SK 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.97 0.00 0.01 0.00

SW 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.97 0.00 0.00

TR 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.97 0.00

TN 0.00 0.01 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.96

Recognition accuracy = 95.90%

Confusion matrix Cityscape dataset, BI, bicycle, BG, building, BS, bus, CR, car, MB, motorbike, PS, person, RD, road, SK, sky, SW, sidewalk, TR, tree, TN, train.

TABLE 2 Object recognition accuracy over the Caltech 101 dataset.

Obj AE BR CS CH CG DM DP FS KT MB

AE 0.99 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

BR 0.00 0.85 0.08 0.00 0.04 0.02 0.00 0.00 0.00 0.01

CS 0.00 0.00 0.98 0.00 0.00 0.01 0.00 0.01 0.00 0.00

CH 0.00 0.06 0.00 0.86 0.01 0.01 0.00 0.00 0.00 0.06

CG 0.00 0.03 0.00 0.00 0.90 0.00 0.05 0.00 0.02 0.00

DM 0.05 0.00 0.00 0.00 0.02 0.84 0.05 0.00 0.03 0.01

DP 0.00 0.00 0.01 0.00 0.00 0.00 0.92 0.00 0.03 0.04

FS 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.97 0.00 0.00

KT 0.03 0.00 0.00 0.02 0.00 0.00 0.01 0.02 0.92 0.00

MB 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.99

Recognition accuracy = 92.2%

Confusion matrix Caltech 101 dataset; AE, aeroplane; BR, brontosaurus; CS, casrside; CH, chair; CG, cougar; DM, dalmatian; DP, dolphin; FS, Faces; KT, ketch; MO, motorbike.
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FIGURE 14

ROC curve over the Caltech dataset.

FIGURE 15

ROC curve over the PASCALVOC-12 dataset.
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TABLE 3 Object recognition accuracy over the PASCALVOC-12 dataset.

Obj AP BC BD BL BS BT CH CR CT CW DG DT HE MB TN PP PR SF SH TV

AP 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BC 0.0 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BD 0.0 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BL 0.0 0.02 0.00 0.77 0.00 0.00 0.00 0.00 0.03 0.00 0.07 0.00 0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.00

BS 0.0 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BT 0.0 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

CH 0.0 0.00 0.02 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

CR 0.0 0.00 0.00 0.03 0.00 0.00 0.00 0.87 0.00 0.00 0.04 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.03 0.00

CT 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CW 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DG 0.0 0.04 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DT 0.0 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HS 0.0 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MB 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00

TN 0.5 0.00 0.05 0.00 0.02 0.05 0.00 0.00 0.03 0.05 0.00 0.05 0.00 0.05 0.60 0.00 0.00 0.03 0.00 0.02

PP 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.0 0.00 0.00

PR 0.0 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.00

SF 0.0 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.00

SH 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 0.00

TV 0.0 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.97

Recognition accuracy = 96%

Confusion matrix PASCALVOC-12 dataset; AP, aeroplane; BC, bicycle; BD, bird; BE, bottle; BI, bicycle; BS, bus; BT, boat; CH, chair; CR, car; CT, cat; CW, cow; DG, dog; DT, dinnintable; HS, 
horse; MB, motorbike; TN, train; PP, pottedplant; PR, person; SF, sofa; SH, sheep; TV, television/monitor. Receiver Operating Characteristic Curves for Cityscapes; PASCALVOC-12 and 
Caltec-101 dataset.

FIGURE 16

ROC curve over the Cityscape dataset.
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TABLE 4 Scene recognition achieved over the PASCALVOC-12 dataset.

Scn AI BE BI CE CY FL FO HO PA PL RO SA SE SP TR

AI 96.30 3.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BE 2.50 97.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BI 0.00 0.00 96.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CI 0.00 0.00 0.00 84.85 15.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CY 0.00 0.00 0.00 0.00 98.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FL 0.00 0.00 0.00 0.00 0.00 96.97 0.00 0.00 0.00 0.00 0.00 1.72 0.00 0.00 0.00

FO 0.00 0.00 0.00 0.00 0.00 0.00 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 98.33 0.00 0.00 0.00 0.00 0.00 1.67 0.00

PA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 98.46 0.00 0.00 0.00 0.00 1.54 0.00

PL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.12 0.00 97.75 0.00 0.00 0.00 1.12 0.00

RO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 0.00 0.00 0.00 0.00

SA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 96.49 1.75 0.00 0.00

SE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 0.00 0.00

SP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 0.00

TR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.59 0.00 0.00 0.00 98.41

Scene recognition accuracy = 97.32%

Confusion matrix PASCALVOC-12 dataset; AI, airplane runway; BE, beach; BI, bike riding; CI, city; CY, cycling; FL, flying plane; FO, forest; HO, horse riding; PA, parking; PL, plants; RO, 
road traffic; SA, sailing; SE, sea; SP, sport; TR, train.

TABLE 5 A comparison of proposed system with other SOTA methods.

Methods Accuracy %

PASCALVOC-12 Cityscape Caltech 101

Jalal et al. (2021) 93.53 89.26

Rafique et al. (2023) 87.57 88.60

Guo and Gould (2015) 70.7 –

Hussain et al. (2020) – 90.13 –

Khodabandeh et al. (2019) 81.80 – –

Wei et al. (2015) 85.6 –

Wang et al. (2018) – 80.1 –

Wu C. et al. (2019) and Xie et al. 

(2019)

– – 87.24

Thitisiriwech et al. (2022) – 78.86 –

Proposed 96 95.90 92.2

TABLE 6 Measurement of the PASCALVOC-12 dataset in terms of precision, specificity, and F1-score.

Scenes Precision Sensitivity Specificity F1-
Score

Scenes Precision Sensitivity Specificity F1-
Score

AI 0.98 0.96 1.00 0.97 PA 1.00 0.98 1.00 0.98

BE 0.91 0.97 1.00 0.94 PL 0.99 0.98 1.00 0.98

BI 1.00 0.96 1.00 0.98 RO 0.95 1.00 1.00 0.98

CI 1.00 0.85 1.00 0.92 SA 1.00 0.96 1.00 0.98

CY 0.92 0.98 0.99 0.95 SE 0.98 1.00 1.00 0.99

FL 1.00 0.97 1.00 0.98 SP 0.93 1.00 1.00 0.96

FO 0.95 1.00 1.00 0.97 TR 1.00 0.98 1.00 0.99

HO 0.98 0.98 1.00 0.98 Mean 0.98 0.98 1.00 0.98

AI, airplane runway; BE, beach; BI, bike riding; CI, city; CY, cycling; FL, flying plane; FO, forest; HO, horse riding; PA, parking; PL, plants; RO, road traffic; SA, sailing; SE, sea; SP, sport; TR, 
train.

https://doi.org/10.3389/fnbot.2024.1398703
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Alazeb et al. 10.3389/fnbot.2024.1398703

Frontiers in Neurorobotics 20 frontiersin.org

7 Conclusion

In this study, we developed a segmentation method based on 
UNet to identify multiple objects in images. Our model accurately 
recognizes objects in complex environments using three benchmark 
datasets, namely, PASCALVOC-2012, Cityscapes, and Caltech 101. 
We start by preprocessing input images, followed by segmenting them 
and extracting features using techniques such as Discrete Wavelet 
Transform, Sobel, Laplacian of Gaussian, and Local Binary Pattern. 
The objects are classified into different classes using a deep belief 
network (DBN). Finally, we find the relationships between objects and 
predict scene labels using AlexNet. Our approach performs 
exceptionally well in terms of accuracy, F1-score, specificity, sensitivity, 
and ROC curves. Despite its success, we  encountered several 
limitations while working with this model.

8 Research limitation

The scene recognition framework has some limitations that need 
to be addressed for future improvements. A significant challenge 
involves handling the complex and cluttered backgrounds present in 
datasets such as Pascal VOC 2012 and Cityscapes, which are more 
intricate compared with Caltech-101. The model struggles with 
objects that are hidden or look similar to each other because these 
datasets contain messy and complex information. Additionally, 
combining classical feature extraction methods with deep learning 
techniques was difficult in achieving exceptional object recognition 
and scene recognition accuracy, especially with diverse and 
intricate scenes.

In the future, we aim to improve object and scene recognition by 
implementing different deep learning techniques to overcome the 
challenges encountered in this study. We aim to explore new feature 
extraction strategies and improve the model’s interpretability by 
investigating contextual relationships between objects within scenes. 
We  will also focus on making the model’s decisions more 
understandable and exploring multi-modal approaches for better 
scene understanding. These efforts will enhance the overall 
effectiveness and adaptability of our scene recognition system.
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