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Rail surface defect data 
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Rail surface defects present a significant safety concern in railway operations. 
However, the scarcity of data poses challenges for employing deep learning 
in defect detection. This study proposes an enhanced ACGAN augmentation 
method to address these issues. Residual blocks mitigate vanishing gradient 
problems, while a spectral norm regularization-constrained discriminator 
improves stability and image quality. Substituting the generator’s deconvolution 
layer with upsampling and convolution operations enhances computational 
efficiency. A gradient penalty mechanism based on regret values addresses 
gradient abnormality concerns. Experimental validation demonstrates 
superior image clarity and classification accuracy compared to ACGAN, with 
a 17.6% reduction in FID value. MNIST dataset experiments verify the model’s 
generalization ability. This approach offers practical value for real-world 
applications.
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1 Introduction

Rail tracks serve as a crucial component of the transportation system, and the 
research on surface defect detection holds significant importance (Zhang et al., 2019). 
However, traditional detection methods are often limited by their efficiency and 
accuracy, making it difficult to meet the high safety standards of modern railway systems. 
In recent years, deep learning has made significant progress in the field of defect 
detection, providing a new solution for surface defect detection on railway tracks with 
its powerful feature extraction and pattern recognition capabilities. Nevertheless, the 
success of deep learning methods often depends on three key factors: computational 
power, datasets, and algorithms. Among these, obtaining sufficient datasets for defect 
detection remains a significant challenge. The scarcity and complexity of railway track 
defect samples can hinder the convergence of models during training, affecting their 
stability and compromising the accuracy of surface defect detection on railway tracks 
(An et al., 2023). Therefore, addressing the issue of insufficient samples is crucial for 
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achieving effective data augmentation and enhancing the 
performance of deep learning models in this domain.

Image-based data augmentation methods are primarily 
categorized into two types: traditional machine vision techniques 
and machine learning approaches (Jia et al., 2023). Traditional 
machine vision methods typically employ geometric 
transformations, color conversions, and pixel manipulations (Li 
et  al., 2023; Zhang et  al., 2023). While these techniques can 
alleviate the issue of overfitting in neural networks to some extent, 
they fail to fundamentally address the challenge of insufficient 
sample size. Within machine learning methods, generative models 
(Gao et al., 2022) have garnered significant attention due to their 
ability to produce more diverse samples. Goodfellow et al. (2020) 
introduced the Generative Adversarial Network (GAN), which 
revolutionized image generation. However, GANs often suffer 
from convergence issues as they rely solely on the discriminator’s 
ability to distinguish between real and fake samples and are 
sensitive to initial parameter settings. Additionally, their inputs 
are limited to random noise and real samples. As GANs evolved, 
numerous improved models emerged. One such model is the 
Conditional Generative Adversarial Net (CGAN)(Tang et  al., 
2020) which incorporates conditional constraints (such as class 
labels) into both the generator and discriminator to guide the data 
generation process. Despite its advancements, CGAN still faces 
challenges such as unstable training and poor image quality 
(Zhang et al., 2021). The introduction of the Deep Convolution 
Generative Adversarial Network (DCGAN) (Rasheed et al., 2023) 
marked progress in reducing the blurriness of generated images. 
Nonetheless, it struggles with issues like mode collapse and 
convergence difficulties. Guo et al. (2022) proposed a structure 
that combines Convolutional Neural Networks (CNN) with 
DCGAN for accelerated self-diagnosis of sensor faults and self-
recovery of fault signals. This approach enhances the accuracy of 
fault signals and exhibits better noise resistance. Although these 
methods utilize algorithms to aid image generation, they often 
suffer from low image quality due to their limited focus on 
addressing gradient vanishing problems.

To address the issue of gradient vanishing in Generative 
Adversarial Networks (GANs), Martin Arjovsky et  al. (2017) 
introduced the Wasserstein GAN (WGAN), which replaces the 
Jensen-Shannon (JS) divergence and Kullback–Leibler (KL) 
divergence with the Wasserstein distance. However, this approach 
suffers from weight polarization, potentially leading to gradient 
explosion. Gulrajani et al. (2017) proposed the WGAN-GP model, 
which mitigates the gradient explosion issue in WGAN by using 
gradient penalty instead of weight clipping. Nevertheless, the 
model still struggles with generating high-quality images. Mao 
et al. (2017) presented the Least Squares Generative Adversarial 
Networks (LSGAN), replacing the GAN loss function with a least 
squares loss function to alleviate issues of unstable training and 
poor image quality. However, training instability remains a 
concern. Niu et al. (2021) introduced a novel GAN architecture 
based on adaptive pyramid graphs and variant residuals, aiming 
to enhance the detection of weak texture anomalies by generating 
more abnormal images and reducing the need for manual 
annotations. However, this network also faces gradient vanishing 

challenges. Wu et al. (2020) designed the ResMask GAN, which 
includes global and local discriminators, along with a coarse-to-
fine module that seamlessly integrates generated defects into the 
background, achieving impressive detection accuracy even with 
limited samples. However, its generated results lack classification 
capabilities. Zhang et  al. (2022) proposed the Multi-Scale 
Progressive Generative Adversarial Network (MAS-GAN), 
combining non-leaking data augmentation and a self-attention 
mechanism to synthesize surface defect images for assisting deep 
learning-based object detection algorithms. While capable of 
generating multi-scale defect images, the image quality remains 
low. Odena et  al. (2017) introduced the Auxiliary Classifier 
Generative Adversarial Network (ACGAN), which can determine 
the class of generated images but is prone to mode collapse. Li 
et  al. (2022) presented the Modified Auxiliary Classifier GAN 
(MACGAN), incorporating the Wasserstein distance into a new 
loss function to overcome mode collapse and gradient vanishing. 
Spectral normalization is used to replace weight clipping, 
constraining the discriminator’s weight parameters. This approach 
significantly improves the accuracy and stability of generated 
samples. In summary, most GAN models struggle with gradient 
vanishing issues, leading to mode collapse and affecting the 
diversity and clarity of generated images. Addressing these 
challenges, this paper proposes an improved ACGAN method to 
mitigate gradient vanishing, achieve data augmentation, and 
enhance image quality. The main contributions of this work are 
summarized as follows:

 (1) We improve the network structures of both the generator and 
discriminator by introducing residual blocks and Spectral 
Norm Regularization (SNR) to optimize issues related to 
gradient vanishing and abnormal gradient changes. 
Additionally, we replace the deconvolution in the generator 
with upsample followed by convolution and incorporate 
downsample layers in the discriminator to reduce 
computational complexity.

 (2) We enhance the network’s loss function by treating the 
discrimination task in GANs as a Positive-Unlabeled (PU) 
learning approach. Furthermore, we  incorporate a gradient 
penalty mechanism based on the minimax regret method to 
constrain the magnitude of the discriminator’s gradient 
changes, enabling the network to focus more on generating 
image quality.

The refined model not only elevates the quality of generated 
images but also effectively mitigates issues like gradient vanishing and 
mode collapse. Initially, this paper briefly introduces the fundamental 
concepts of Generative Adversarial Networks and Conditional 
Generative Adversarial Networks. Subsequently, it delves into the 
optimizations made to the network architecture and objective function 
within the proposed enhanced model. To substantiate the efficacy of 
our refined model, a series of experiments are conducted on a dataset 
of rail surface defects in the third section. Comparative results with 
traditional ACGAN methods demonstrate improvements in terms of 
generated image quality and diversity. Finally, we  conclude by 
summarizing the entire study.
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2 Related work

2.1 Generative adversarial network

The concept of GAN is inspired by zero-sum games, a type of 
non-cooperative game theory. In the context of neural networks, this 
translates into a generator producing samples and a discriminator 
assessing their authenticity. These two components continually oppose 
each other, resulting in the generation of increasingly realistic samples. 
The ultimate goal of a GAN is to achieve a Nash equilibrium between 
its two networks. As illustrated in Figure 1, a GAN primarily consists 
of a generator and a discriminator, often implemented using 
Convolutional Neural Networks (CNNs) or Multilayer Perceptrons 
(MLPs). The primary objective of a GAN is to attain the optimal 
solution for its optimization function, GAN’s optimization function is 
shown in Equation 1:

 

max min , log

log

~

~

D G
x P

z P z

V D G E D x

E D G z

r

z

( ) = ( ) 

+ − ( )( )( )


( ) 1   
(1)

Where x represents an image, z is a sample from the latent space, G 
is the generator, D is the discriminator, Pr denotes the distribution of real 
samples, and Pz represents the distribution of samples in the latent spac.

2.2 ACGAN

In contrast to standard GAN architectures, ACGAN integrates 
both a noise input z for its generator component and a categorical 
label constraint c in its generative process. This dual approach aims to 

direct the generator toward producing samples of a specified category. 
Meanwhile, the discriminator in ACGAN performs dual functions: it 
not only distinguishes the authenticity of the samples but also 
contributes to their classification. The fundamental structure of 
ACGAN is depicted in Figure 2.

The loss function of ACGAN consists of both discriminative loss 
and classification loss. The discriminative loss (Ldis) is utilized to discern 
between genuine and fake samples. The classification loss (Lcla) gages 
the accuracy of the output sample categories, as shown in Equation 2:

 L E L x c E L G z c ccla x P D x z P z c P Dr z c
= ( )  + ( )( ) ( )~ ~ , ~ ,  (2)

Where LD is the category loss function, cx represents the category 
label, c ~ Pc is the category label for the generated sample, and Pc is the 
distribution of category labels. The loss function L (D) for the 
discriminator D is given by:
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 L D L L Dcla dis( ) = + ( ) (4)

The loss function L (G) for the generator G is:
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(5)

 L G L L Gcla dis( ) = + ( ) (6)

In fact, Equations 3, 5 are optimization functions for the discriminator 
and generator, respectively. Equations 4, 6 are generation functions for the 

FIGURE 1

The basic structure diagram of GAN.

FIGURE 2

The basic structure diagram of ACGAN.
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discriminator and generator, respectively. In the end, ACGAN is designed 
to both generate high-quality samples and classify them.

3 Improved ACGAN

ACGAN represents an advancement over GAN by incorporating 
image classification abilities while simultaneously enhancing the 
quality of generated samples. Nevertheless, when utilized for 
generating samples of rail surface defects with limited datasets, 
ACGAN may encounter obstacles such as subpar sample quality, 
unstable model training, and mode collapse. To mitigate these 
challenges, this paper introduces an enhanced ACGAN model, 
depicted in Figure 3. In this refined model, a random noise vector, 
along with the category label, serves as input to the generator. Both the 
real samples and those generated by the generator are then fed into the 
discriminator, tasked with not only distinguishing authenticity but 
also performing classification. Subsequently, the optimization of this 
ACGAN model is approached comprehensively, addressing both 
network architecture and objective functions.

3.1 Optimization of the network model

To address lingering issues like gradient vanishing in the ACGAN 
network, this paper introduces improvements from the perspective of 
optimizing the network structure. The specific methods are as follows:

 (1) To alleviate the gradient vanishing issue, residual blocks have 
been incorporated into both the generator and discriminator. 
These blocks elevate network performance, enhancing the 
generator’s sample generation capabilities, bolstering the 
discriminator’s ability to distinguish between real and fake 
samples, and facilitating classification. Figure  4 depicts the 
residual structure employed in both the generator and 
discriminator. The Tanh function is employed in the generator’s 
output layer, while the remaining layers utilize the “Batch 
Normalization (BN) + ReLU” configuration, coupled with 

residual blocks to train deeper networks effectively. In the 
discriminator, LeakyReLU activation functions are used 
throughout all layers to mitigate the “neuron death” issue 
commonly associated with the ReLU function.

 (2) Incorporating SNR (Zhang et al., 2019) into both the generator 
and discriminator enhances model performance. During 
extensive network training, models may converge toward 
Sharp Minimizers, compromising their generalization 
capabilities. Spectral norm regularization ensures that the 
weight matrices utilized by neural networks maintain a 
controlled spectral norm, thus mitigating this issue. By 
leveraging the SNR method, the trained model’s sensitivity to 
perturbations in test data is diminished. High sensitivity at 
local minima negatively impacts the generalization 
performance of the model. Therefore, based on the premise 
that flatter local minima equate to stronger generalization 
abilities, this paper establishes a correlation between local 
flatness and singular values, leading to the introduction of 
SNR. Specifically, in neural networks, regularization 
constraints are imposed from the perspective of the spectral 
norm of each layer, preventing abnormalities such as rapid 
parameter growth and gradient fluctuations in the generator. 
Input perturbation for neural networks ξ, The calculation for 
measuring disturbances is shown in Equation 7:
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Among them, fΘ Represents the nonlinear activation function, x 
represents the input, using WΘ,xx + bΘ, x as an affine mapping to 
represent fΘ, the spectral norm of x, for a matrix A, it is defined as 
shown in Equation 8:

FIGURE 3

The basic structure diagram of the improved ACGAN.
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The spectral norm is the maximum singular value of matrix A, 
therefore, if WΘ, If the spectral norm of x is maintained at a small 
value, then fΘ Will be insensitive to disturbances in x. To limit WΘ, the 
spectral norm of x is achieved by adding a regularization term to the 
loss function:
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Where l represents the l-th layer of the neural network.
 (3) This article replaces the deconvolution layer in the generator 

with a combination of upsample and convolution, while 
constructing the discriminator using downsample convolution. 
The modified structures of both the generator and discriminator 
are depicted in Figure 5, with the generator on the left side and 
the discriminator on the right. Specifically, the generator 
employs nearest neighbor interpolation for upsample, effectively 
doubling the feature map and mitigating the checkerboard 
artifact commonly associated with deconvolution operations. 
Conversely, the discriminator incorporates an average pooling 
operation with a stride of 2, reducing computational complexity 
and expanding the receptive field range.

3.2 Optimization of the objective function

Traditional ACGAN disregards variations in the quality of 
generated samples, leading to unstable model training, imbalanced 
sample generation, and ultimately affecting classification accuracy. To 
mitigate these issues, this paper approaches the problem by classifying 
positive and unlabeled samples, treating the discrimination of real and 
fake samples in ACGAN as a Positive-Unlabeled (PU) learning 

technique. Under this framework, the distribution of generated 
samples can be expressed as:

 P x P x P xq hq lq( ) = ( ) + −( ) ( )δ δ1  (10)

A B

FIGURE 4

The basic structure diagram of residual block. (A) Residual blockG; (B) Residual blockD.

FIGURE 5

The modified generator and discriminator network structure 
diagram.
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Where Phq (x) and Plq (x) represent the probability distributions of 
high-quality and low-quality generated samples, respectively, and δ 
indicates the proportion of high-quality samples in the total 
generated samples.

In ACGAN, the discriminator is tasked not only with discerning 
the authenticity of samples but also distinguishing between high and 
low-quality generated samples. Assuming δ is given, the objective 
function for the discriminative loss will become:

 

L D E D x
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x P
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The expectation Ex ~ Phq in the formula represents the expected 
value, where x is sampled from the high-quality distribution Phq.

Considering high-quality samples and real samples as one 
category, where a high-quality sample xhq can be represented by a real 
sample xr, the distribution of low-quality generated samples, based on 
Equation, 10, is represented as:

 1−( ) ( ) = ( ) − ( )δ δP x P x P xlq q r  (12)

In Equation, 12, the target data distribution Pq (x) can 
be represented as a weighted combination of the low-quality data 
distribution Plq (x) and the reference data distribution Pr (x).

According to Equations 11, 12, the objective function for the 
discriminator is:
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Where the max{} function is used to prevent the occurrence of 
negative loss functions.

Equation 9 categorizes the discriminator’s output into low and 
high-quality samples, assigning higher weights to the latter to 
encourage the generator’s production of superior samples. 
Nonetheless, this approach may result in the GAN synthesizing 
numerous similar high-quality samples, leading to excessive 
homogeneity. Simultaneously, the discriminator’s gradient is 
susceptible to exploding, destabilizing the network and hindering 
effective data augmentation. To mitigate these challenges, this paper 
incorporates Spectral Norm Regularization, which stabilizes the 
Generative Adversarial Network (GAN) by imposing constraints on 
the spectral norm of each discriminator layer. This method boasts a 
lower computational cost and obviates the need for hyperparameter 
tuning compared to alternative techniques. Furthermore, a gradient 
penalty mechanism rooted in the max-min regret method is integrated 
into the discriminator’s objective function. Originating from 
two-player zero-sum games (Liu et al., 2021), the max-min regret 
method computes the Nash equilibrium, thereby limiting the 
magnitude of the discriminator’s gradient variations. The 
corresponding formula is presented as follows:

 L E D xGP x P U x xr r
= ( ) ∇ +( ) − ~ , ~ϕ σ ϕ0 1

2
,  (14)

Where φ represents the noise information.
The improved generator discriminative loss function for 

ACGAN is:

 
L G E D G zdis z P zz

( ) = − ( )( )( )



( )~ log 1
 

(15)

In addition to the discriminative loss, the category loss also needs 
further optimization. The classification loss for real and generated 
samples is separated, and the discriminator and generator are 
optimized separately. Ultimately, by using Equations 13, 14, and the 
calculation of the discriminator’s objective function L (D) is calculated 
as shown in Equation 16:

 L D L D L E L x cdis GP x P D xr( ) = ( ) + + ( ) λ γ ~  (16)

Where λ is the weight of the gradient penalty, and γ is the 
proportion of the total loss function represented by the classification 
loss. The generator’s objective function L (G), composed of 
Equation 15 and the category loss for generated samples, The specific 
calculation is as shown in Equation 17:

 L G L G E L G z c cdis z P c P Dz c( ) = ( ) + ( )( ) γ ~ , ~ ,  (17)

4 Experiments and analysis

4.1 Experimental dataset and experimental 
environment settings

This article utilizes a dataset specifically tailored for rail defects in 
its experimental endeavors. This comprehensive dataset encompasses 
images showcasing various rail surface imperfections (Yu et al., 2018), 
ensuring the inclusion of at least one defect in each image. The dataset’s 
visual representations originate from both fast tracks and regular/heavy 
tracks, offering a diverse range of scenarios. The defective images can 
be neatly categorized into five distinct groups: cracks, regular circles, 
irregular shapes, small points, and blurred areas, as depicted in Figure 6. 
Specifically, crack defects are characterized by narrow fissures traversing 
the steel rail’s surface; circular defects denote imperfections in the form 
of circles on the track’s surface; irregular defects encompass those 
potentially arising from numerous fine-grained shapes; small point 
defects pertain to minute surface blemishes on steel rails, discernible 
upon image enlargement; and fuzzy defects refer to those where the rail 
defect’s outline is indistinct to the naked eye.

This study conducted the training of network models in a 
hardware environment equipped with an AMD Ryzen 75800H with 
Radeon Graphics processor, an NVIDIA GeForce RTX 3050 graphics 
card, 16GB of memory, and a Windows operating system. To ensure 
the accuracy and objectivity of the research, we employed the PyTorch 
deep learning framework and trained all network models using 
identical parameter settings. During the training process, all models 
underwent 200 epochs of iteration on the same dataset, maintaining 
a batch size of 8 to guarantee a fair comparison and prevent biases in 
the training process.
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4.2 Effect of dataset-generated samples

Firstly, experiments were conducted using the rail surface defect 
dataset. Figure 7 presents an example of generated rail surface defect 
samples, with Figure 7A showcasing the performance of ACGAN 
and Figure 7B exhibiting the results of our model after 5,000 rounds 
of training. Ideally, the image categories should progress from small 
defects in the first column to cracks, irregular circles, regular circles, 
and blurry defects in the subsequent columns, respectively. From the 
graphs, it is evident that both our proposed model and the ACGAN 
exhibit image blurring and misclassification during the initial stages 
when the training rounds are less than 10,000. In Figure 7A, the 
ACGAN’s training results after 10,000 rounds reveal mismatches in 
the preset types for the small, irregular circle, regular circle, and 
fuzzy classes, marked in red. Similarly, in Figure 7B, our model’s 
results after the same number of rounds indicate mismatches in the 
preset types for the crack and regular circle classes, also marked in 
red. As the number of training iterations increases to 20,000, the 
ACGAN’s training results in Figure 7A still do not allow for a specific 
distinction of defect types. However, in Figure  7B, despite some 
blurriness, our model can already distinguish between crack, 
irregular circle, and regular circle defects, marked in orange boxes. 
When the training rounds reach 30,000, both our model and 
ACGAN generate defect images that are somewhat blurry compared 
to the original dataset. Nevertheless, our model can clearly 
distinguish all five types of defect images. In contrast, ACGAN’s 
generated fuzzy defect images exhibit classification errors, marked 
with blue boxes in Figure 7A. By comparing the display effects, it is 

evident that our proposed model demonstrates superior generation 
performance compared to ACGAN.

Figure 8 illustrates the average accuracy and loss values of the 
model presented in this study, utilizing the steel rail surface dataset. 
In Figure 8A, the classification accuracy curve demonstrates a sharp 
ascent prior to 2000 rounds, succeeded by a gradual increase between 
2,500 and 5,000 rounds. Subsequently, after 5,000 rounds, the curve 
stabilizes within the range of 0.85 to 0.95. Notably, the Nash 
equilibrium, a dynamic state of balance, is evident in the curve’s 
pattern. Despite experiencing fluctuations, it consistently returns to 
a value around 0.9, suggesting that this approximate value represents 
a temporary equilibrium solution. Similarly, the discriminator’s 
accuracy curve initially rises slightly, then declines, and stabilizes 
between 0.5 and 0.7 by approximately 20,000 rounds. It attains a 
temporary equilibrium at a value of approximately 0.6, further 
indicating the model’s attainment of Nash equilibrium. Turning to 
Figure 8B, the generator loss curve exhibits a slight increase followed 
by stabilization, whereas the discriminator loss curve progressively 
decreases and stabilizes. These patterns collectively suggest that the 
model exhibits strong convergence performance.

Upon comparing the results obtained from the steel rail defect 
dataset, it is evident that the enhanced model introduced in this study 
surpasses ACGAN in terms of sample generation clarity and 
classification accuracy. Examination of the average accuracy chart and 
loss value chart for the steel rail defect dataset reveals that the refined 
model steadily enhances and stabilizes the classification accuracy 
curve as training rounds increase, without any notable decline in 
accuracy. Additionally, the absence of significant fluctuations in the 

FIGURE 6

The types of rail defects.

https://doi.org/10.3389/fnbot.2024.1397369
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhendong et al. 10.3389/fnbot.2024.1397369

Frontiers in Neurorobotics 08 frontiersin.org

loss curve during the loss update indicates that the model effectively 
addresses the issues of gradient disappearance and gradient anomaly.

4.3 Comparison of FID values

To comprehensively evaluate the quality of samples generated by 
the enhanced ACGAN model, this study employs the Fréchet 
Inception Distance (FID)(Heusel et al., 2017) as the core evaluation 
metric, which is widely recognized in GAN performance assessments. 
FID quantifies the dissimilarity between the feature vectors of real and 
generated samples, with a lower FID value indicating superior image 
quality. The choice of FID as the core indicator for image quality 
assessment is not only based on its solid theoretical foundation but 
also on its significant advantages in practical applications. It effectively 
captures the perceptual similarity between images, providing a 
comprehensive and in-depth evaluation of the model’s generative 
capabilities. By leveraging FID, we aim to reveal more accurately the 
performance of the enhanced ACGAN model in generating high-
quality samples.

When comparing ACGAN with our proposed model using the 
steel rail defect dataset, the FID values presented in Table 1 show a 
consistent decrease across all categories for our model. Specifically, 
fuzzy defects, which exhibit complex features, are better captured by 
our model, leading to a more pronounced reduction in FID values 
compared to ACGAN. Conversely, small defects with more obvious 
features are easily generated by both models, resulting in a lesser 
decrease in FID values. Overall, our model achieves an average FID 
reduction of 17.6% compared to ACGAN, indicating a significant 
improvement in the quality of generated samples.

4.4 Comparative experiment

To assess the effectiveness of the model presented in this 
study, we  conducted experiments using commonly employed 
generative adversarial networks such as CGAN, DCGAN, and 
WGAN, alongside ACGAN. A comparative analysis of the 
generation outcomes for surface defect samples on steel rails is 
depicted in Figure 9. As evident from the figure, CGAN struggles 

A B

FIGURE 7

The sample generation effect of rail surface defects. (A) ACGAN; (B) Improved ACGAN.

BA

FIGURE 8

The mean accuracy and loss value maps of improved ACGAN in rail defect dataset. (A) Average precision graph for the improved ACGAN; (B) Loss 
value graph for the improved ACGAN.
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with the irregular circle class, DCGAN exhibits a poor generation 
effect for the fuzzy class, and WGAN falters in the regular circle 
class, all deviating from established defect patterns. Furthermore, 
due to gradient anomalies arising during the training process of 
these three networks as training rounds increase, early 
improvements in image clarity do not correlate with the number 
of training rounds. Consequently, the resulting images appear 
blurry, hindering accurate identification of the generated 
defect types.

The comparison of FID values between our model and 
CGAN, DCGAN, and WGA is shown in Table 2. From the table, 
it can be seen that our model has the lowest FID values in various 
categories compared to other models. The performance of fuzzy 
defects is the best among them. From the average data, it can 
be seen that the model in this article is lower than the other three 
models, indicating that the sample quality generated by the 
model in this article is better.

4.5 Generalization experiment

To assess the generalized performance of the enhanced model 
in this study, we  conducted experiments using the MNIST 
handwritten dataset (LeCun et al., 1998). The selection of the 
MNIST dataset stemmed from its widespread utilization and 
established reputation in machine learning, especially for 
benchmarking image processing and recognition models. This 
dataset encompasses labels for 10 digits ranging from 0 to 9, 
presenting a diverse and challenging collection of handwritten 

samples. By leveraging the MNIST dataset, we aimed to provide 
a comprehensive and reliable evaluation of the model’s 
generalization abilities.

Figure 10 illustrates the performance of the generated MNIST 
handwritten digit samples. Specifically, Figures  10A,B depict the 
outcomes of our model and ACGAN, respectively, after 1,000 training 
rounds. It is evident from the figure that our model can produce clear 
images even at 5,000 rounds, without exhibiting issues such as blurring 
or font adhesion. Conversely, ACGAN exhibits noticeable image 
blurring and font adhesion issues even after 5,000 rounds, particularly 
pronounced in the digits 2, 3, 6, and 8. These experimental findings 
demonstrate a substantial improvement achieved by our proposed 
model compared to ACGAN.

Figure 11 presents the mean accuracy and loss values of the model 
proposed in this study, evaluated on the MNIST handwritten dataset. 
As observed in Figure 11A, the discrimination accuracy approaches 
unity at around 1,500 rounds and remains consistent thereafter. 
Initially, the classification accuracy experiences a slight increase, 
followed by a decrease to approximately 0.5 after 1,500 rounds, settling 
at a point near 0.5, indicating that the model has attained a Nash 
equilibrium state. Furthermore, in Figure 11B, the loss values for both 
the generator and discriminator exhibit a rapid decline and stabilize 
after approximately 1,500 rounds, signifying excellent convergence 
performance of the network model.

Upon comparing Figure  8A with Figure  11A, it becomes 
evident that the enhanced model exhibits superior performance 
on the MNIST dataset as compared to the rail defect dataset. This 
disparity arises from the fact that the MNIST dataset boasts 
clearer images and greater contrast between foreground and 
background elements than the steel rail defect dataset. 
Furthermore, the MNIST dataset’s image complexity is notably 
lower than that of the steel rail defect dataset. Moreover, a 
comparison of the average FID values presented in Tables 1, 3 
reveals that the FID values associated with the MNIST dataset are 
considerably smaller than those of the rail surface defect dataset. 
This difference stems from the simpler features and higher 
contrast inherent in the MNIST dataset. A closer examination of 
the FID values across both datasets indicates that our model 
achieves a lower FID value than ACGAN, suggesting that our 
model produces images of superior quality. Additionally, these 
findings underscore the versatility of the model proposed in this 
article, demonstrating its suitability for generating tasks across 
multiple datasets and highlighting its impressive generalization  
capabilities.

Table 3 further illustrates the comparison of FID values between 
ACGAN and our model specifically on the MNIST dataset. It is 
apparent from Table 3 that our model consistently exhibits reduced 
FID values across various categories. On average, our model achieves 
a notable  76% reduction in FID values compared to ACGAN, 
indicating a significant improvement in generating samples with 
simpler features.

TABLE 1 FID values for each type of rail surface defect dataset.

Class Blurred Cracks Irregular Regular circles Small Average value

ACGAN 352.1 178.6 248.6 206.2 153.2 227.7

Improved ACGAN 254.8 156.8 212.5 168.4 146.5 187.5

FIGURE 9

Comparison of sample generation effects for surface defects on 
steel rails.
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A B

FIGURE 11

The mean accuracy and loss value maps of improved ACGAN in MNIST dataset.

TABLE 3 FID values of MNIST dataset.

Class 0 1 2 3 4 5 6 7 8 9
Average 

value

ACGAN 211 238 195 187 199 208 196 165 156 165 192

Improved ACGAN 16 42 60 63 60 78 49 31 21 25 46

5 Conclusion

This article introduces an enhanced ACGAN approach tailored for 
augmenting rail surface defect data. This method can generate defect 
images that correspond to specific input categories. Building upon the 
foundation of ACGAN, we  have incorporated residual blocks and 
spectral norm regularization into both the generator and discriminator 
networks. These additions effectively address gradient vanishing and 
anomaly issues, thereby bolstering the network’s stability. Furthermore, 

we have replaced the deconvolution method in the generator with a 
combination of upsample and convolution, while the discriminator 
employs downsample to reduce the overall computational burden. 
We view the authenticity discrimination problem in GANs through the 
lens of PU learning, assigning weights to high-quality samples to 
prioritize image quality during generation. Additionally, a gradient 
penalty mechanism, rooted in the maximum and minimum regret value 
method, has been integrated into the discriminator loss function to 
constrain gradient changes. To evaluate the effectiveness of our approach, 

TABLE 2 FID values for each model.

Class Blurred Cracks Irregular Regular circles Small Average value

Improved ACGAN 254.8 156.8 212.5 168.4 146.5 187.5

CGAN 362.3 192.4 271.3 222.7 176.2 245.2

DCGAN 321.5 179.6 243.8 213.5 166.9 225.1

WGAN 297.6 171.2 236.8 196.3 158.4 212.1

ACGAN 352.1 178.6 248.6 206.2 153.2 227.7

A B

FIGURE 10

The sample generation effect of MNIST dataset. (A) Improved ACGAN; (B) ACGAN.

https://doi.org/10.3389/fnbot.2024.1397369
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhendong et al. 10.3389/fnbot.2024.1397369

Frontiers in Neurorobotics 11 frontiersin.org

we conducted experiments using a dataset of steel rail surface defects, 
assessing both the generation quality and FID values. The results are 
compelling: compared to ACGAN, our model produces images of 
superior quality without any classification errors. A comparative analysis 
of FID values further underscores the model’s ability to generate samples 
that are more aligned with real-world examples, highlighting the 
superiority of our generated samples. Even when pitted against other 
popular generative adversarial networks, our model emerges as a 
frontrunner in terms of image quality. Beyond this, we have also validated 
our model’s versatility through tests on the MNIST handwritten digit 
dataset. The performance of this study largely depends on the quality and 
diversity of the training data. Additionally, it faces challenges such as high 
computational overhead and improper allocation of authenticity weights. 
Future work may focus on addressing these limitations and further 
enhancing the performance and applicability of this method.
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