AUTHOR=Zhang Xudong , Ge Yunlong , Wang Yifeng , Wang Jun , Wang Wenhao , Lu Lijun TITLE=Residual learning-based robotic image analysis model for low-voltage distributed photovoltaic fault identification and positioning JOURNAL=Frontiers in Neurorobotics VOLUME=18 YEAR=2024 URL=https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2024.1396979 DOI=10.3389/fnbot.2024.1396979 ISSN=1662-5218 ABSTRACT=
With the fast development of large-scale Photovoltaic (PV) plants, the automatic PV fault identification and positioning have become an important task for the PV intelligent systems, aiming to guarantee the safety, reliability, and productivity of large-scale PV plants. In this paper, we propose a residual learning-based robotic (UAV) image analysis model for low-voltage distributed PV fault identification and positioning. In our target scenario, the unmanned aerial vehicles (UAVs) are deployed to acquire moving images of low-voltage distributed PV power plants. To get desired robustness and accuracy of PV image detection, we integrate residual learning with attention mechanism into the UAV image analysis model based on you only look once v4 (YOLOv4) network. Then, we design the sophisticated multi-scale spatial pyramid fusion and use it to optimize the YOLOv4 network for the nuanced task of fault localization within PV arrays, where the Complete-IOU loss is incorporated in the predictive modeling phase, significantly enhancing the accuracy and efficiency of fault detection. A series of experimental comparisons in terms of the accuracy of fault positioning are conducted, and the experimental results verify the feasibility and effectiveness of the proposed model in dealing with the safety and reliability maintenance of low-voltage distributed PV systems.