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Brain-inspired biomimetic robot
control: a review

Adrià Mompó Alepuz*, Dimitrios Papageorgiou and Silvia Tolu

Department of Electrical and Photonics Engineering, Technical University of Denmark, Copenhagen,

Denmark

Complex robotic systems, such as humanoid robot hands, soft robots,

and walking robots, pose a challenging control problem due to their high

dimensionality and heavy non-linearities. Conventional model-based feedback

controllers demonstrate robustness and stability but struggle to cope with

the escalating system design and tuning complexity accompanying larger

dimensions. In contrast, data-driven methods such as artificial neural networks

excel at representing high-dimensional data but lack robustness, generalization,

and real-time adaptiveness. In response to these challenges, researchers are

directing their focus to biological paradigms, drawing inspiration from the

remarkable control capabilities inherent in the human body. This has motivated

the exploration of new control methods aimed at closely emulating the

motor functions of the brain given the current insights in neuroscience.

Recent investigation into these Brain-Inspired control techniques have yielded

promising results, notably in tasks involving trajectory tracking and robot

locomotion. This paper presents a comprehensive review of the foremost trends

in biomimetic brain-inspired control methods to tackle the intricacies associated

with controlling complex robotic systems.
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1 Introduction

The field of robotics is advancing toward increasingly sophisticated robots that are
able to perform tasks previously reserved only for humans due to their high complexity,
especially when performed in unstructured environments. Such tasks range from human-
robot interaction with compliance and motion constraints, to handling and manipulating
objects of arbitrary shapes and materials in a dexterous manner, to legged-robot navigation
in challenging environments. In many of these tasks, the robots being developed feature
new structural materials and ways of actuation, and often present a high number of degrees
of freedom. These include anthropomorphic musculoskeletal robotic systems (Diamond
et al., 2012; Asano et al., 2017), soft-robotic arms and grippers (Cianchetti et al., 2018;
Walker et al., 2020) and other robots such as walking robots (Coelho et al., 2021; Lyashenko
et al., 2021). Novel ways of actuation include artificial muscles (Carpi, 2016; Mirvakili and
Hunter, 2018). The high dimensionality and non-linearities present in these systems as well
as the increasing complexity of the tasks the robots need to perform, pose a challenging
control problem.

Conventional model-based control approaches guarantee strong stability properties
of the controlled system and prescribed accuracy, even in the presence of structured
and unstructured uncertainties. However, their design complexity scales very poorly with
dimensionality and, therefore are difficult to generalize, maintain and tune in connection to
complex robot tasks. On the other hand, relying onmodel-free or learning-based solutions,
such asmachine learning and statistical modelingmethods can efficientlymanage extensive
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system dimensions. Yet, they come with heavy computationally
demands, struggle with adaptability to different scenarios and lack
assurance in stability and robustness.

Taking inspiration from biology, where humans and animals
are able to gracefully and efficiently perform complex motion
tasks, the scientific community of robotics has started pursuing
research on new control strategies that are based on biological
learning principles and architectures. More specifically, control
schemes that reflect brain structures relevant to motor control
have recently become central in pursuing efficient adaptive control
of complex motion systems. These schemes are often referred to
as Brain-Inspired Control. Brain-inspired control is included in
the broader category of bio-inspired control, which accounts for
any control method drawing inspiration from biology. Often bio-
inspired control may only approximate biology vaguely and on a
high abstraction level. The methods that more closely model the
working principles of biological systems, in this case the brain, are
referred to as biomimetic control (BC) methods. Figure 1 shows a
diagram with this classification.

This study presents a review of BCmethods applied to robotics.
Specifically, it focuses on those methods that replicate function,
structure or cellular-level processes from certain brain areas
involved in motor control, and some of their interconnections.
The remainder of the paper has the following structure: Section
2 provides an overview of conventional control strategies for
robotics, classifying them according to their use of analytical vs.
data-driven modeling approaches; Section 3 delves deeper into
the core concepts of brain-inspired controllers; Section 4 presents
the most relevant works on BC on recent decades and classifies
them by the brain areas they model and the robotics tasks they
address, and finally Section 5 closes with some remarks and possible
future trends.

2 Overview of robot control methods

In general, the standard procedure for control systems design
can be divided into two steps: model identification and controller
design. For complex systems, the model identification phase
is usually the most laborious one since it requires extensive
knowledge of the equations describing the system. The controller
design phase can vary in difficulty depending on the requirements
of the control task and the level of non-linearity of the
controlled system, which leads to the choice of simpler or more
advanced controllers.

Depending on the level of use of analytical modeling vs.
empirical data measurements to fit a model, controllers can be
classified into several categories. We distinguish four main ones:
model-based controllers, model-free or data-driven controllers and
hybrid controllers. Model-based controllers follow the standard
two-step approach and fully rely on analytical knowledge of the
system; model-free or data-driven controllers may not use a model
at all or rely on data to obtain it, and may also include the
controller design phase in the data-driven modeling procedure;
hybrid controllers use empirical data but impose some constraints
on the model which are usually informed by physics or related
to the control task. Biologically or bio-inspired controllers may
be included in the data-driven category and in some cases in the
hybrid controllers one.

FIGURE 1

Model-free and data-driven controllers categorization. Model-free

controllers may work without a model (Fliess and Join, 2013) or rely

on data to obtain it. Bio-inspired control draws inspiration from

biology to di�erent degrees to design the controller, and

brain-inspired control focuses specifically on methods inspired by

the brain. When these methods closely mimic the processes and

structures in the brain, they are referred to as biomimetic

controllers, and they can just model the overall behavior with

various function-approximation methods (functional approach), or

the neuronal circuits and cells that give rise to such behavior

(cellular approach). This review focuses on biomimetic control (BC).

Next, a brief overview of different existing methods for
the presented controller categories is introduced, showing their
strengths and weaknesses and motivating the research interest in
bio-inspired controllers.

2.1 Model-based control

Conventional model-based controllers face several challenges
when applied to novel robotics systems (difficulty in obtaining
analytical model, hard to tune, poor scalability), however some
solutions have been proposed since they can be useful given
certain simplifying assumptions and for certain tasks and scenarios.
For humanoid, musculoskeletal, and walking robots, part of
the challenge is in scaling for the many degrees of freedom,
which implies that conventional analytical inverse kinematics
and dynamics modeling can be used given enough computing
power. Qiao et al. (2023) presents an overview of several
control strategies, including model-based ones, for controlling
musculoskeletal robots. For hexapod walking robots, Coelho et al.
(2021) presents several kinematics and dynamics-based methods
for control. For quadruped and bipedal conventional control
methods, refer to De Santos et al. (2006) and Westervelt et al.
(2018). In the case of soft robotics, the physical equations of motion
are not trivial to model since the robots deform in a continuous
way across their length and use novel actuation methods with
significant nonlinearities. Different approximations exist, modeling
the dynamics and kinematics to different degrees, trading between
accuracy and efficiency. Santina et al. (2023) shows the state of the
art of model-based control for soft-robotic systems.
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2.2 Model-free and data-driven control

Model-free controllers have been gaining traction in the field
of robotics in recent years for removing the need for a tedious
analytical modeling phase in complex systems. Some literature
(Fliess and Join, 2013) refers to model-free control as the set of
methods that do not use any model to perform control, although
they may have adaptive gains. The methods that use a model
obtained through data, are more correctly referred to as data-
driven controllers. These data-derived models may encompass first
principles (Fasel et al., 2021) or can be black-box input/output
representations. In this paper we do not make a hard distinction
between the different variations of model-free controllers and we
will use this term to refer to all of the model-free types.

The most relevant data-driven methods used for control can be
classified into two main families of algorithms: machine learning
(ML) and statistical modeling. Statistical modeling introduces
fundamental assumptions about the data distribution, enhancing
interpretability but constraining the level of complexity that
the obtained models can represent. Some statistical modeling
techniques used in robotics include (Vijayakumar et al., 2005;
Nguyen-Tuong et al., 2009), with applications in novel robotic
systems such as soft robots (Tang et al., 2022).

Machine learning algorithms include, among other methods,
supervised learning and reinforcement learning (RL), which are the
two most commonly used approaches for learning in robotics. The
work in Singh et al. (2022) presents a survey of RL methods for
general robotics systems, whileWang et al. (2021) presentsmachine
learning-based control methods for soft robotics. Supervised
learning can be used to learn a dynamics model of the robot and
environment which is then used by an adaptive control policy in a
model-based RL setting (Polydoros and Nalpantidis, 2017; Zhang
and Mo, 2021).

In recent years, research in robotics has predominantly focused
on ML algorithms, particularly on artificial neural networks
(ANNs). ANNs excel in handling complex data but demand large
data volumes, posing cost challenges. Moreover, they struggle with
quick online adaptation, suffering from issues like catastrophic
forgetting and slow adjustment to changes in the robot or
environment (Kirkpatrick et al., 2017). Some ML (Hoi et al.,
2021) and statistical modeling techniques (Vijayakumar et al.,
2005; Nguyen-Tuong et al., 2009) offer online learning capabilities,
however they are intricate to fine-tune and less effective with higher
task complexity. Overall, these data-driven methods lack formal
guarantees in robustness and stability due to their black-box nature,
impeding mathematical analysis and limiting extrapolation beyond
training data.

2.3 Hybrid control

Often data-driven methods can benefit from partial knowledge
of the system which can be used to assist or reduce the
extent of the learning task. Alternatively, some model-based
control architectures can use a model that is obtained or tuned
through data-driven methods. This gives rise to hybrid control
methods, which combine model-based and model-free techniques
to complement each other’s shortcomings.

A common modeling choice for systems with complex
nonlinear dynamics is to approximate their behavior with a set of
physics-informed nonlinear dynamics equations whose coefficients
are obtained in a data-driven way. Afterwards, a nonlinear control
system can be built around this model, taking advantage of the
equations obtained. A popular modeling technique in this category
is the Sparse Identification of Nonlinear Dynamics (SINDy)
(Brunton et al., 2016). It uses sparse regression to identify the
most relevant terms in a library of candidate nonlinear functions,
resulting in a concise model that captures the essential dynamics
of the system, making it popular for its interpretability and
computational efficiency. Some examples of robotics applications
of SINDy are found in Chen et al. (2021) for trajectory tracking and
in Bhattacharya et al. (2020) for soft-robot modeling.

Other hybrid controller methods include data-driven model
predictive control (Berberich et al., 2021), which has a broad
application in robotic systems, and the work in Reinhart et al.
(2017), which was used to control a soft-robot arm.

Overall, the area of hybrid controllers is a relatively unexplored
line of research that holds promising results for enhancing
interpretability of data-driven methods while retaining good
stability and robustness properties from model-based approaches.

3 Brain-inspired control paradigms

In the domain of model-free controllers, a different approach
emerges by delving deeper into biological paradigms. Animals,
and particularly humans, are capable of performing advanced
motion tasks dexterously, learning new behaviors efficiently,
and adapting to new physical situations and changes in the
environment. This is realized by highly evolved brains, and
specifically by their sensorimotor brain areas. These areas address
different functions in motion control and complement each other,
presenting a connective structure and activity that can be studied
and modeled. While neuroscience still holds many mysteries, our
current understanding of certain brain regions provides ample
inspiration for developing novel computational methods capable
of emulating their functionalities. By closely mimicking their
operational principles, it becomes possible to attain their desired
attributes, including sparse and efficient computations, lifelong
learning and online adaptation (DeWolf, 2021). This approach
holds the promise of resolving many challenges inherent in
prevalent data-driven algorithms like ANN.

Brain-inspired control algorithms vary in their approximation
of biology, spanning a spectrum from replicating solely high-
level processes or functions to simulating the intricacy of neurons
and neural circuits found within motor areas. On the highest
abstraction level, somemethods that are based on different learning
approaches can be included, such as iterative learning (Wang
et al., 2009) and active inference (Pezzato et al., 2020). ANNs
for control and RL methods are also brain-inspired, however
they only represent a very coarse approximation of the brain
structure (ANNs), or a high level behavioral process (RL). Control
approaches using these learning methods are excluded from this
review, with the exception of some RL cases which are framed in the
context of a specific motor brain area (e.g., the basal ganglia—BG).

This review focuses on the works that attempt to closely
replicate the processes and structures of the motor brain areas. The
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controllers based on these methods are also referred to as BCs.
There are two main approaches to mimicking the brain motor
areas: the functional and the cellular ones. This was a distinction
introduced for cerebellarmodels (Luque et al., 2014), and we extend
it to other brain areas.

The functional point of view identifies the substructures of
each motor area and aims to replicate their behavior with generic
conventional learning or function approximation methods. Then
it establishes the relationships between these substructures with
the proper connections to mimic the transfer of information
taking place in the biological counterpart. This approach does not
harness the full potential of biological networks since the function
approximation methods present their own limitations. Generally,
this approach can be used to validate neuroscientific hypotheses
concerning high level processes, e.g., evaluating the role of specific
motor areas as a whole or their relationships with other areas.

The cellular point of view, also referred to as bio-plausible in
this review, seeks to replicate the lower-level mechanisms of the
brain motor areas by modeling these down to individual cells and
microstructures. Models of neurons create the basis for building
the emulated brain circuits, which are implemented by establishing
the required synaptic connections. The implementation of cellular-
level models still represents an approximation of the whole
biochemistry involved in the neuronal processes, but gives rise to a
desired behavior which is useful for robotics control. Additionally,
this approach allows for testing neuroscientific hypotheses with
finer detail than the functional modeling approach (Tolu et al.,
2023), addressing not only the role of the emulated areas but also of
more specific low-scale groups of neurons and their connections.

To learn and represent functions and behaviors, the bio-
plausible neuron models are connected in a similar way as
traditional artificial neural networks, but with inhibitory and
excitatory connections, and communicate via spike signals. This
distinctive feature gives rise to what are known as spiking neural
networks (SNNs) (Maass, 1997; Ghosh-Dastidar and Adeli, 2009).
Due to the spiking nature of the neurons, these networks present
several desirable characteristics also present in biological networks
conforming animal brains:

• The spike-based communication between neurons is a highly
efficient way to convey information through the network, and
this becomes evident when implemented in energy-efficient
neuromorphic hardware.

• The network is sparsely activated, which means that only a
small subset of the neurons are active at a given time, thus
reducing the energy consumption further.

• The dynamic behavior of the neurons makes SNN a great
candidate to represent time-dependent data, such as dynamic
models in robotics.

Several studies have explored biologically plausible learning
methods for spiking neural networks (SNNs) using spike-timing-
dependent plasticity (STDP) (Feldman, 2012). These include
unsupervised STDP-based models with adaptive mechanisms
(Dong et al., 2023), supervised learning methods combining STDP
with synaptic scaling and intrinsic plasticity (Hao et al., 2020), and
online-learning models for hardware implementation (Qiao et al.,
2019). These works aim to bridge the gap between biologically

plausible approaches and backpropagation-based methods while
providing insights into how learning occurs in biological systems.
Taherkhani et al. (2020) show an overview of biologically plausible
learning methods for SNNs.

Some other studies have explored alternative approaches to
make SNN training and deployment more efficient and robust,
albeit not retaining complete biological plausibility. Tavanaei et al.
(2019) provide an overview of methods for training deep SNNs,
while Kim et al. (2023) analyze temporal information dynamics
during training. Yao et al. (2023) introduce an attention module to
improve performance and energy efficiency, and Yang et al. (2023a)
propose a multi-scale learning rule with dendritic predictive
characteristics. Yang and Chen (2023a,b), and Yang et al. (2023b)
present information-theoretic learning approaches using nonlinear
information bottleneck principles and explore the design space
of the information bottleneck framework to improve robustness,
accuracy, and power efficiency in SNNs.

For an overview of the uses and properties of SNNs as well as
their training methods, refer to Yamazaki et al. (2022) and Pietrzak
et al. (2023) respectively.

The cellular-level approach can become computationally
expensive depending on the level of biological fidelity and
the number of simulated neurons. This is problematic for
current common computing hardware such as GPUs and CPUs,
but neuromorphic hardware (Young et al., 2019; Rathi et al.,
2023) addresses this issue by implementing the behavior of
neurons on a physical level or in-silico. This substantially
enhances computational power and efficiency. Some neuromorphic
platforms that have been developed by semiconductor companies
include Intel R©Loihi (Davies et al., 2018) with programmable
spiking neural network features, IBM R©TrueNorth (Akopyan et al.,
2015) with 1million neurons and 256million synapses. Others have
been used for large-scale research projects such as the Human Brain
Project (Amunts et al., 2016), including SpiNNaker (Furber et al.,
2014) designed for large-scale spiking neural network modeling,
and BrainScaleS (Pehle et al., 2022) combining analog spiking
neural network emulation with digital components. Several works
on robotics have used some of these platforms to different degrees,
which will be presented later.

Other research groups have developed alternative
neuromorphic platforms that leverage custom mixed-signal
circuits and specialized digital architectures to emulate the
behavior of biological neurons and synapses with varying levels of
abstraction and realism. For example, Yang et al. (2022b) propose
a hybrid neuromorphic platform integrating multiple granules
of SNNs, demonstating the replication cognitive activities like
motor learning and action selection. Yang et al. (2021) focus
on a large-scale cerebellar network model and architecture for
supervised motor learning, with over 3.5 million neurons, better
mimicking the biological cerebellum’s structure. Additionally,
Yang et al. (2024a) presents a neuromorphic architecture with
dendritic on-line learning (NADOL) for brain-inspired intelligence
on embedded hardware, exhibiting superior learning capabilities
compared to GPU platforms. Emphasizing on fault-tolerance,
the works Yang et al. (2022a, 2024b) present neuromorphic
frameworks capable of robust learning and decision-making.
While Yang et al. (2022a) focuses on context-dependent learning of
stimulus-response associations, Yang et al. (2024b) integrates visual
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perception with decision-making, demonstrating high accuracy
and minimal latency.

Neuromorphic computing remains an emerging field,
especially concerning large-scale simulations, yet it holds vast
potential. As hardware progresses, these challenges are poised
to diminish, offering immense promise for the future. Presently,
implementations on conventional computing platforms lean
toward simplified neuron models, retaining their fundamental
characteristics while boosting performance and enabling greater
scalability.

This paper predominantly reviews on cellular-level
implementations within BCs, as they exhibit considerable
promise in replicating brain functions in the future. This potential
amplifies as our structural understanding of the brain evolves
and neuromorphic hardware advances. However, it also touches
upon significant work employing a functional approach, as these
initiatives lay the groundwork for future advancements and possess
adaptability for accommodating SNNs. The main works on BCs
found in literature are presented in the next section.

4 Biomimetic control models

Over the past few decades, the accumulation of evidence
concerning how the brain’s motor areas function has inspired
the creation of computational models. These models aim to
mimic their behavior and utilize their characteristics in robotics
applications. The upcoming sections detail the latest developments
in BCs, striving to merge the exploration and validation
of current neuroscientific theories with the practical task of
controlling robots, encompassing both simulated environments
and real-world scenarios.

Since the works on BCs mostly focus on modeling a single or
few brain areas, these sections are organized according to the main
areas modeled in the brain motor control hierarchy. Inside these
sections, the different robotics tasks addressed are presented. This
is depicted in Figure 2, and summarized in Table 1. Nevertheless,
some works attempt to model a wider range of brain areas and
their interconnections; these are known as systems-level models.

The brain motor control hierarchy

The brain’s motor system comprises specialized areas dedicated to distinct functions in controlling movement. These regions follow
a hierarchical arrangement: higher-level domains oversee broader tasks with considerable abstraction, while lower-level segments
focus on individual muscles, delivering precise signals tailored to the task’s specifics. Complementing this structure are additional
side structures (side loops) responsible for regulating signals within the descending pathways of this hierarchical system. For more
details about the brain motor control hierarchy refer to Byrne and Dafny (1997).

• At higher levels, the motor cortex encodes movement force and spatial details, with subdivisions like the premotor and
supplementary motor areas handling motion anticipation and kinematic information. Simultaneously, the association cortex aids
in environmental representation and action selection based on context.

• At lower levels of the hierarchy, the spinal cord coordinates reflexes, contains Central Pattern Generators (CPGs) for rhythmic
movements, controls muscles, and manages vital sensory pathways. Meanwhile, the brainstem acts as a central hub, linking the
brain to the body’s components, overseeing fundamental functions like balance, breathing, and heart rate.

• Within the side-loop areas, the BG determine suitable motor programs, ensuring the execution of appropriate motor actions.
Conversely, the cerebellum contributes to balance, posture, movement coordination, motor learning and the refinement of motor
skills.

4.1 High-level BC

In the current robotics paradigm, the functions carried out
by the motor cortex and the association cortex can be linked
to well-studied specific tasks. In the association cortex, this
involves trajectory planning and reference generation. Conversely,
the tasks relted to the motor cortex encompass spatial and
coordinate transformations, along with the creation of inverse
dynamics models that convert references into forces or motor
commands. Currently, most studies on bio-inspired controllers
assume that the references are given and thus exclude the
association cortex by replacing it with an analytical trajectory
generation module. Moreover, the role of the motor cortex in
representing an inverse model is frequently overlooked, often
substituted by an analytical controller. This is supplemented by
a model within the cerebellum that offers adjustments based on
motor or sensory input. Nevertheless, the following works have
modeled the functions of the high-level brain motor areas to
certain extents.

The authors in DeWolf and Eliasmith (2011) presented a
framework for simulating the hierarchical structure of the motor
areas, which includes the pre-motor cortex and supplementary
motor area to generate high-level reference control signals.
However, they did not implement all the areas, and only simulated
a model of the motor cortex with SNNs. The system is capable
of controlling a simulated 2-DOF arm for a 2-dimensional target
reaching task. Some years later, in DeWolf et al. (2016), the same
authors introduced the REACH model, a biologically-plausible
adaptive hierarchical approach that incorporates the pre-motor
cortex. This model generates adaptive dynamical motion primitives
to define desired trajectories, controlling a simulated 2-DOF robot
arm in tasks such as trajectory tracking and reaching. The primary
motor cortex plays a role in learning to model dynamics, supported
by the cerebellum. Additionally, it corrects inaccuracies within the
robot’s Jacobian model. It receives the targets from the pre-motor
cortex and the current system state from sensory cortices, and
produces low-level signals as motor commands. Iacob et al. (2021)
used REACH in a real robot with 3 DOF. They noted that
although the tasks are performed successfully, they obtained lower

Frontiers inNeurorobotics 05 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1395617
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Mompó Alepuz et al. 10.3389/fnbot.2024.1395617

FIGURE 2

Visual depiction of the brain motor control areas covered in this review and the main robotics control tasks they specialize in.

TABLE 1 Classification of the di�erent works in literature on brain-inspired motor control, sorted by brain areas modeled, robotics tasks addressed, and

the approach taken to achieve bio-mimicry (cellular-level or functional).

Brain motor areas Robotics control tasks Biomimetic modeling approach

Cellular-level Functional

High-level areas Trajectory planning DeWolf and Eliasmith, 2011; DeWolf et al.,
2016; Iacob et al., 2021; Baladron et al., 2023

Gentili et al., 2012, 2016; DeWolf et al., 2023

Reference conversion, motor
commands

DeWolf and Eliasmith, 2011; DeWolf et al.,
2016, 2023; Iacob et al., 2021; Zahra et al.,
2021a,b, 2022a,b; Baladron et al., 2023

Gentili et al., 2012, 2016; Garrido et al., 2013;
Corchado et al., 2019; Abadia et al., 2021a;
Zhang et al., 2023

Low-level areas Locomotion, pattern generation Pearson et al., 2007, 2010, 2011; Sullivan
et al., 2012; Cuevas-Arteaga et al., 2017;
Gutierrez-Galan et al., 2020; Polykretis et al.,
2020; Spaeth et al., 2020; Strohmer et al.,
2020; Antonietti et al., 2022

Massi et al., 2019; Pitchai et al., 2019;
Jeppesen et al., 2020; Schmidt et al., 2021;
Shao et al., 2022

Basal ganglia Action selection Baladron et al., 2023; González-Redondo
et al., 2023

Prescott et al., 2006; Mannella and
Baldassarre, 2015

Reinforcement learning González-Redondo et al., 2023

Cerebellum Dynamics learning, disturbance
rejection

Carrillo et al., 2008; Luque et al., 2011a,b,
2014; Garrido et al., 2013; Casellato et al.,
2014, 2015; Antonietti et al., 2019; Corchado
et al., 2019; Naveros et al., 2020; Abadia et al.,
2021a,b; Zahra et al., 2021a,b, 2022a

Tolu et al., 2012, 2013, 2020; DeWolf et al.,
2016, 2023; Capolei et al., 2019, 2020;
Kalidindi et al., 2019; Liu et al., 2020; Wilson
et al., 2021; Alepuz et al., 2022; Wilson, 2023;
Zhang et al., 2023

Gaze stabilization Garrido et al., 2013; Naveros et al., 2020 Wilson et al., 2016

performance than in the original paper. They also proved that
the architecture is capable of disturbance rejection. In their work
detailed in DeWolf et al. (2023), the REACH model was employed
to oversee a 7-DOF simulated robot arm. Notably, the approach

did not involve a biomimetic method for generating references.
Instead, it was solely utilized to compute joint forces based
on desired workspace forces. Throughout these experiments, the
authors consistently employed the Neural Engineering Framework
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(NEF) (Eliasmith and Anderson, 2003), a framework designed for
simulating assemblies of spiking neurons.

A functional model of the prefrontal regions was used in
Gentili et al. (2012, 2016) to send the desired reaching position.
This model learns the relationship between joint and spatial
coordinates. In Zahra et al. (2021b), the authors introduced a
differential map designed to convert desired velocities within task
space into correspondingmotor commands within joint space. This
mapping is executed through SNNs and is trained offline before
task execution. Notably, the same approach is employed by these
authors in subsequent works (Zahra et al., 2021a, 2022a,b), where
they successfully implemented it to control a real robotic arm.
Baladron et al. (2023) used a pre-motor cortex model to generate
goal positions, and a motor cortex-basal ganglia loop to select
a concrete action. They implemented the algorithm with SNNs
to control a simulated arm with 4 DOF. The work discussed in
Corchado et al. (2019) implemented an iterative learning controller,
specifically a Learning Feedback Controller, designed to simulate
the function of the motor cortex. This controller generates control
actions by considering the tracking error as a basis for its decision-
making process. In Zhang et al. (2023), a recurrent neural network
is used as the primary motor cortex that sends motor commands to
a musculoskeletal robot, based on several targets to be reached.

Some works use other non-biologically inspired methods but
still link them with the cortical areas. For example, in Garrido et al.
(2013) and Abadia et al. (2021a), the authors use a conventional
trajectory planner with known inverse kinematics and refer to it
as the association cortex, and in Garrido et al. (2013), the motor
cortex is represented by a recursive Newton-Euler algorithm that
provides approximate motor commands given the available inverse
dynamic model.

4.2 Low-level BC

The most relevant role for robotics carried out by these areas
is rhythm generation. This takes place in the spinal cord by groups
of neurons within CPGs. The rhythms generated by CPGs can be
modulated through sensory feedback to adapt to different scenarios
that demand alteration of gait speed or pattern. CPGs have been
mostly applied to legged robots, especially hexapod robots.

Several neuromorphic hardware implementations of CPGs
have been proposed. In Cuevas-Arteaga et al. (2017), the authors
deployed a spiking CPG in SpiNNaker to control an hexapod
robot with different gaits that are chosen based on the visual
information obtained from an event camera. Gutierrez-Galan et al.
(2020) implemented in SpiNNaker a CPG that can change online
between three different gaits to control a hexapod. Polykretis
et al. (2020) proposed presented a CPG spiking network on
Intel R©Loihi to control an hexapod, showing robustness to noise
and different speeds.

Regarding works that take a cellular-level approach inmodeling
CPGs, Spaeth et al. (2020) presented a minimal network of
simulated spiking neurons modulated by sensory feedback that
achieves nontrivial behaviors in a flexible walking robot. Strohmer
et al. (2020) developed a spiking CPG model capable of
continuously changing amplitude, frequency, and phase online,
which enables adaptation through feedback.

Massi et al. (2019) modeled several brain motor areas through
functional approximations, using non-linear oscillators to model
a CPG (functional model). They proposed the use of a learning
controller during the optimization process of the locomotion
parameters to obtain a final controller configuration with better
performance on the walking task of a quadruped robot. In Pitchai
et al. (2019), the authors combine a functional CPG with a radial
basis function network (RBFN) for locomotion learning of a
complex beetle-like robot through reinforcement learning. They
focus on the role of the RBFN which determines the shape of
the motor patterns, and show that the robot travels faster and
is more energy-efficient than using only a CPG. In Shao et al.
(2022), the authors control the gait of a gecko-inspired robot by
using functional CPGs and a RBFN, combined with exteroceptive
sensory feedback to evaluate the terrain. This allows the robot to
climb tracks with various slopes and bumps/obstacles, establishing
a foundation for climbing robots with adaptive capabilities against
rough terrains. Jeppesen et al. (2020) control the oscillations
of soft robot through a functional CPG with an adaptation
mechanism that modulates the amplitude of the signals upon
external perturbations. In Schmidt et al. (2021), the authors
compared reflexes, functional CPGs, and a combined approach
for controlling a biomimetic robot leg. They found pure reflexes
outperformed continuously feedback-adapted CPGs for motion
stability and energy efficiency, though pure CPGs allow easier signal
modulation. Their results indicate combining reflexes and CPGs
could be improved by modulating the control signal shape.

Another application of low-level BC and CPGs in robotics
can be found in the control of whisker-like structures for robots,
mimicking those found in rodents, to expand the sensory
capabilities of mobile robots. In this line of research, Pearson
et al. (2007) proposed a multidisciplinary project to reproduce
the rodent whisker sensor system in a robotic implementation
(Whiskerbot). This project replicated the morphology and
mechanics of large whiskers, the whiskers movement via a
spiking whisker pattern generator (WPG), based on a CPG, and
a biologically plausible model of a central nervous system area
(specifically the superior colliculus) for sensing and controlling
the robot behavior with action selection through a basal ganglia
model. It effectively demonstrated the adaptation of the whisking
pattern after contact, displayed also by rats. The development of
this project was continued with (SCRATCHbot) (Pearson et al.,
2010), where the authors increased the number of whiskers and
degrees of freedom to test for more complex WPGs and improving
the whisker-environment interaction. In a succeeding work,
the same authors developed a new whiskering robot (Shrewbot)
(Pearson et al., 2011) with improved snout morphology, which
allowed to discern between different surface textures by using a
statistical classifier on the whiskering sensor data (Sullivan et al.,
2012). In simulation, Antonietti et al. (2022) developed a SNN
model of the mouse sensorimotor peripheral whisker system,
including a CPG, and integrated it into a virtual mouse robot
within the Neurorobotics Platform. Together with a cerebellum-
inspired controller, they could reproduce active whisking with
learning capabilities, matching neural correlates observed
in mice.

The research conducted on CPGs for legged-robots, soft-
robots and tactile-like (whisker) sensors, has exhibited promising
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results in terms of both achieving tasks successfully and mirroring
the corresponding biological processes. These methods have
been effectively deployed in neuromorphic hardware on multiple
occasions, showcasing the capacity to replicate the adaptability
mechanisms observed in biological systems.

4.3 Side-loop BC

4.3.1 Basal ganglia-based controllers
Research on computational models for the BG in robotics

primarily revolves around replicating the mechanisms and sub-
regions responsible for action selection based on cortical signals
(Gurney et al., 2001; Frank, 2011; Véronneau-Veilleux et al., 2021).
These models aim to generate specific actions and dynamics while
incorporating learning mechanisms through RL. In the context of
comprehensive brain-motor system models intended for physical
robots operating in a complex environment, BG models are
essential. They enable the RL feature essential for learning and
selecting optimal high-level actions to operate effectively within the
complex environment.

While the BG remain among the least understood brain areas
concerning specific connections, interactions, and operational
principles, there exists sufficient evidence to model certain
functionalities. This evidence allows for testing the distinct roles
of their BG sub-regions. The following presented works focused
on modeling these roles and functions, employing simulated
agents for action selection and robotic or human-like arms for
motion-related tasks.

Prescott et al. (2006) integrated a BG model into a small
mobile robot, enabling it to select actions amidst various sensory
and motivational conditions. While the model effectively selects
between competing actions in most cases, it encounters difficulty
when faced with two highly probable actions, resulting in
oscillation between two behaviors.Mannella and Baldassarre (2015)
noted that previous assumptions on how action selection works
in the BG are challenged by new perspectives, and proposed a
computational model accounting for these. The model was tested
on a simulated 3-DOF joint-actuated arm for target reaching
tasks, and a 20-DOF hand to reach specific postures. It provided
a successful implementation of new properties observed in the
BG and not tested before, although they used some biologically
implausible simplifications such as supervised learning in certain
areas, pointing toward possible further work to bring it closer
to biology.

In González-Redondo et al. (2023), the authors proposed a
computational model designed to associate complex input patterns
with rewarded actions, enabling informed decision-making. A
spiking model of the stratium, a BG component, was implemented
to perform RL tasks with a simulated agent. This study underscores
the pivotal role that different connections and mechanisms within
the BG play in facilitating effective action selection. Baladron et al.
(2023) adopted a systems-level approach in their implementation,
including a cortex-basal ganglia loop. Their system uses novelty-
based Hebbian learning to update the interconnections, selecting
actions that drive their robotic arm’s end-effector to novel positions.

4.3.2 Cerebellum-based controllers
While the previous brain areas contribute significantly to

biological motor control and have been modeled to different
extents for robotics, the cerebellum distinguishes itself by directly
aligning with two pivotal tasks in robotics control: online error
correction and dynamicsmodeling (Albus, 1971; Itō, 1984;Wolpert
and Kawato, 1998; Wolpert et al., 1998). The cerebellum is
capable of short-term and long-term adaptation (Wulff et al.,
2009; Wang et al., 2014). In the short-term adaptation, it swiftly
rectifies inaccuracies arising from the motor cortex commands,
and effectively rejects disturbances from the external environment.
This adaptation facilitates rapid adjustments inmotion. In contrast,
long-term adaptation in the cerebellum learns detailed dynamic
models over time, encompassing the body and environment. This
allows for the prediction of sensory and motor outcomes based on
the current state and undertaken actions. Consequently, it refines
motion beyond the limitations of relying solely on signals from the
motor cortex.

The cerebellum has also been suggested to assist in other
motion control tasks or even more general learning tasks
(Sendhilnathan et al., 2020). Among them, the one that has been
mostly studied and tested in humanoid robots with head and eyes
is the function of the vestibulo-ocular reflex (VOR) (Troost, 1984),
which stabilizes the gaze of the eyes while the head is in motion.

The cerebellum capabilities if reproduced successfully with
computational models, may allow novel robotic systems to
overcome the issues posed by their nonlinearities andmany degrees
of freedom, by adapting online to learn the system dynamics or
any change in these, as well as to quickly correct any errors that
may arise during the motion task due to unexpected disturbances.
If successfully replicated through computational models, the
capabilities of the cerebellum could potentially empower robots to
surmount these challenges.

In Carrillo et al. (2008), authors introduced a real-time spiking
model of the cerebellum based on EDLUT (Ros et al., 2006), a
SNN simulator developed by their research group. They controlled
a 2-DOF simulated and physical robot arm, showing dynamic
adaptation to different tasks. This constituted the first real-time
application of SNN for robot control. The same research group
has developed further work on SNN for robot control based
on EDLUT. In Luque et al. (2011a), they showed a cerebellar
network that on top of the sensory inputs, it receives additional
information regarding the context of the task of a robotic arm.
This allows for faster adaptation to newer contexts and for
robustness against misleading contextual information. This work
was extended in Luque et al. (2011b) by combining a feedforward
and a recurrent network topology, which shows robustness against
noise. In Luque et al. (2014), they performed further experiments
on a simulated robot to show incremental learning of different
dynamics models with minimal mutual interference. Garrido et al.
(2013) also showed a detailed biomimetic cerebellum architecture
that controls a simulated robot arm, and remarked its ability for
showing short-term error compensation and long-term adaptation
when the model is changed. More recently, Abadia et al. (2021a)
have implemented a larger scale SNN based on EDLUT, showing
real-time continuous learning on a real compliant robot against
unstructured interactions. They also show in Abadia et al. (2021b),
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that this cerebellar network can deal with non-deterministic delays
in robotics applications. Finally, based on the same SNN simulator,
Naveros et al. (2020) developed a real time control loop to operate
a real robot humanoid performing different VOR tasks.

Casellato et al. (2014, 2015) adapted the cerebellar model
developed in Garrido et al. (2013) and tested it on a real robot in the
different scenarios where the cerebellum plays an important role
(dynamics learning, VOR and Pavlovian conditioning). Antonietti
et al. (2019) pioneered a scaled-up version of this model,
broadening its scope tomanipulate additional DOFs in a humanoid
robot. Their research delved into testing transfer learning across
varied trajectories. The subsequent work by Corchado et al. (2019)
advanced this by introducing a spiking learning feedback (LF)
controller, mirroring the motor cortex. Their study demonstrated
promising results through the fusion of LF and the spiking
cerebellarmodel, hinting at the potential for enhanced performance
through optimized hyperparameter tuning.

In an alternate work mentioned in the high-level BC section,
DeWolf et al. (2016) and DeWolf et al. (2023) proposed a method
that models several brain motor areas using SNNs. However,
their focus lies not in replicating the structural properties but
rather capturing the functionality of these regions. Notably, their
cerebellum model lacks detailed anatomical representations of
the microcircuit; instead, it is represented by a generalized SNN.
This cerebellar module is designed to learn the inverse dynamics
model of the system, targeting the inertia and gravity components
within the torque dynamics equation. Simultaneously, it provides
corrective control signals to counteract inaccuracies arising from
the primary motor cortex module’s generated control actions.

Prior works relied on obtaining comprehensive online
measurements of robot joint states, essential for the cerebellar
model’s computation of required torques through inverse
dynamics. However, scenarios might arise where only partial joint
state information, e.g., joint angles, is available online. In this case,
the limitation renders the accuracy of the dynamics model, as it
depends on non-measurable states. To tackle this challenge, Zahra
et al. (2021b) introduced an innovative solution—an SNN-based
differential map function akin to a Jacobian projection. This map
relates task-space to joint-space, compensating for incomplete
measurements. Their approach involved an optimization
procedure to determine the network’s hyperparameters, followed
by offline training using data gathered from motor babbling.
This differential map concept was further explored in Zahra
et al. (2021a), where it was combined with a cerebellar network
to control a real robot arm. This integration implemented a
Smith-predictor (Smith, 1957), a control structure adept ad
handling delays, taking inspiration from Tolu et al. (2020). In
this structure, the cerebellum acted as a forward-dynamics model,
offering task-space sensory adjustments to the differential map.
Consequently, the map generated joint commands based on
task-space information. Building upon this foundation, the work
presented in Zahra et al. (2022a) refined the previous model,
introducing a more detailed network and an optimization-driven
method to fine-tune the entire network’s hyperparameters. This
enhanced model showcased its efficacy in controlling a robot arm
amidst disturbances, demonstrating significant improvements over
prior iterations

Most of the previously presented works adopted a bio-plausible
approach, closely emulating the cellular mechanisms found within
the cerebellum. However, there is a distinct line of research that
diverges from biological plausibility, employing computational
models of the cerebellum to achieve remarkable results in robotics
tasks. One such noteworthy contribution is the work by Tolu
et al. (2012, 2013), where they implemented a modified adaptive
filter model (Fujita, 1982; Dean et al., 2010) of the cerebellum.
Their approach used the incremental learning algorithm Locally
Weighted Projection Regression (LWPR) (Vijayakumar et al.,
2005) for long-term dynamics model learning. LWPR is a
regression technique that can model non-linear functions in
high-dimensional spaces by combining locally linear models
that are created and updated online, making it suitable for
incremental learning. Additionally, Tolu et al. integrated an extra
module for fast adaptation and disturbance rejection, leveraging
LWPR’s receptive fields (the membership function of each linear
model) and updating based on feedback error. This methodology
demonstrated successful control of a simulated multi-DOFs robot
arm executing cyclic trajectories despite the presence of external
disturbances. Continuing this trajectory, Capolei et al. (2019)
extended this work by employing a larger cerebellum model
to tackle a more complex task: balancing a ball on a table
using the arm of a simulated iCub robot. In Capolei et al.
(2020), the same researchers introduced an augmented architecture
featuring additional synapses and learning rules, aligning more
closely with biological principles but still without spiking neuron
models. While showcasing good tracking accuracy and robustness
against perturbations and noise in controlling 3-DOFs in the
simulated iCub robot arm, this model struggles to generalize to
all tested scenarios. The authors argued that a more biologically
plausible architecture, incorporating additional brain areas could
potentially enhance the results. In a similar vein, Tolu et al.
(2020) presented a cerebellar-based Smith predictor. Their results
highlighted anticipation and adaptation against dynamic changes,
demonstrating a significant improvement for tracking accuracy
on a real robot arm. The cerebellar model used by Tolu
et al. (2012, 2013) was also tested on an underwater robot in
simulation, showing the ability to learn a dynamics model with
cross-coupling effects and disturbance rejection (Alepuz et al.,
2022).

Another work that proposed a functional model of the
cerebellum based on echo state networks (ESN) is found in
Kalidindi et al. (2019). This model is adept at learning to
supplement an approximate inverse kinematics model, specifically
in the context of a soft-robot arm engaged in trajectory tracking
tasks. In Zhang et al. (2023), the authors use a functional model of
the cerebellum and control a musculoskeletal robot. A recurrent
neural network acts as the primary motor cortex sending motor
commands to the robot based on the targets to be reached.
Then, the cerebellar model, which is composed by two networks,
first predicts the outcome of these commands with an ESN, and
then sends corrective signals with a second network that learns
using bio-plausible learning rules. The motion performance greatly
improves with the use of the cerebellar model.

An alternate approach to modeling the cerebellum involves
implementing the adaptive filter (AF) hypothesis (Fujita, 1982;
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Dean et al., 2010). In this framework, the cerebellum microcircuit
is replicated as a set of second-order low-pass filters with different
time constants and multiplicative weights assigned at their outputs.
These weights are adapted online from an error signal. The
weighted sum of all the filters outputs allows for approximating
the system dynamics. Wilson et al. (2016) implemented an AF
model of the cerebellum together with an inverse model of the
plant represented by a brainstem model, that are used to control a
nonlinear electroactive polymer actuator in a VOR application. In
Wilson et al. (2021), the same authors have used a similar model
of the cerebellum applied to a range of tasks in robot adaptive
control and sensorimotor processing. More recently,Wilson (2023)
used an AF to control the force of a biomimetic muscle model, by
converting the processed AF signals into spiking signals.

Recent evidence suggests a significant role for the cerebellum
in supporting RL processes in the brain. Liu et al. (2020)
investigated and introduced a cerebellar model that enables RL
without relying on explicit teacher signals. This model exhibited
success in accomplishing a target-reaching task, demonstrating its
effectiveness in both simulated human arm and a real robot arm.

5 Conclusion

The works presented in this review on brain-inspired
biomimetic control reproduce models of the brain motor areas
to different degrees of biological plausibility, conditioned by the
current neuroscientific knowledge of these areas.

In some neural areas like the motor cortex and BG, the exact
network structure remains unclear for replication in a bio-plausible
model. Consequently, functional models are utilized. Conversely,
areas like the cerebellum and spinal cord (e.g., CPGs) benefit from
a deeper understanding, enabling bio-plausible implementations.
Functional models of the motor cortex and BG handle tasks
involving high-level information processing, such as planning
and generating motor commands based on objectives, and action
selection and RL. However, their bio-plausible implementations
are limited due to lack of structural knowledge. Furthermore,
only simple robotic tasks have been addressed, which currently
are easily solved by conventional non-biomimetic methods,
like trajectory planners or basic RL. For more advanced tasks
(e.g., more complex environments, behaviors and goals), more
advanced bio-plausible models of these areas will be necessary.
On the contrary, the cerebellum and spinal cord CPGs address
fundamental low-level control issues necessary before integrating
higher behavioral complexity. Even for basic tasks, accurate
execution relies on a robust dynamics model (cerebellum) and
adaptive locomotive patterns (CPGs). Hence, currently robotics
predominantly focuses on these areas for biologically inspired
computational models.

While some works attempt a comprehensive representation
of the brain motor system, they often lack complete biological
plausibility. Future endeavors should concentrate on modeling
multiple areas with bio-plausible frameworks, establishing their
interactions (e.g., cerebellum-BG, cerebellum-CPGs) and exploring
unexplored brain regions like the brainstem. As robotics evolves
to tackle more intricate tasks, holistic models encompassing the

entire motor cortex, sub-structures, and their interactions will
become imperative.

An important consideration in the development and validation
of these biomimetic controllers is the use of real robots vs.
simulations. While simulations offer a controlled and safe
environment for initial testing and validation with fast iterations,
they inevitably fail to capture all the complexities of the real world.
On the other hand, physical robots face real-world dynamics with
uncertainties and disturbances, providing the ultimate scenario
for evaluating the robustness and adaptability of these models.
However, working with physical systems introduces additional
challenges, such as real-time constraints, sensor noise, and
hardware limitations.

Indeed, many of the works presented in this review
acknowledge the complex nature of real robotics tasks. Even
if testing only in simulation, the introduction of artificial noise
and disturbances aims to prove their methods robust and able
to generalize to the real world. At the same time, the works
that test on real robots demonstrate a higher maturity of their
methods and readiness to use in real scenarios. As discussed, the
cerebellum plays a big role in noise and disturbance rejection,
making it a crucial component for the success of future biomimetic
controllers. Ultimately, a combination of simulations and real-
robot experiments is likely necessary, with simulations serving
as a initial development and testing platform, and real-robot
experiments providing the final validation and refinement of
these models.
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Pietrzak, P., Szczȩsny, S., Huderek, D., and Przyborowski, Ł. (2023). Overview of
spiking neural network learning approaches and their computational complexities.
Sensors 23:3037. doi: 10.3390/s23063037

Pitchai, M., Xiong, X., Thor, M., Billeschou, P., Mailänder, P. L., Leung, B.,
et al. (2019). “CPG driven rbf network control with reinforcement learning for gait
optimization of a dung beetle-like robot,” in Artificial Neural Networks and Machine
Learning – ICANN 2019: Theoretical Neural Computation. ICANN 2019. Lecture Notes
in Computer Science, Vol. 11727, eds. I. Tetko, V. Kurkova, P. Karpov, and F. Theis
(Cham: Springer), 698–710. doi: 10.1007/978-3-030-30487-4_53

Polydoros, A. S., and Nalpantidis, L. (2017). Survey of model-based reinforcement
learning: applications on robotics. J. Intell. Robot. Syst. Theory Appl. 86, 153–173.
doi: 10.1007/s10846-017-0468-y

Polykretis, I., Tang, G., and Michmizos, K. P. (2020). “An astrocyte-modulated
neuromorphic central pattern generator for hexapod robot locomotion on Intel’s
Loihi,” in ICONS 2020: International Conference on Neuromorphic Systems 2020 (New
York, NY: ACM), 1–9. doi: 10.1145/3407197.3407205

Prescott, T. J., González, F. M. M., Gurney, K., Humphries, M. D., and Redgrave, P.
(2006). A robot model of the basal ganglia: behavior and intrinsic processing. Neural
Netw. 19, 31–61. doi: 10.1016/j.neunet.2005.06.049

Qiao, G. C., Hu, S. G., Wang, J. J., Zhang, C. M., Chen, T. P., Ning, N., et al.
(2019). A neuromorphic-hardware oriented bio-plausible online-learning spiking
neural network model. IEEE Access 7, 2169–3536. doi: 10.1109/ACCESS.2019.
2919163

Qiao, H., Wu, Y. X., Zhong, S. L., Yin, P. J., and Chen, J. H. (2023). Brain-inspired
intelligent robotics: theoretical analysis and systematic application. Mach. Intell. Res.
20, 1–18. doi: 10.1007/s11633-022-1390-8

Rathi, N., Chakraborty, I., Kosta, A., Sengupta, A., Ankit, A., Panda, P., et al. (2023).
Exploring neuromorphic computing based on spiking neural networks: algorithms to
hardware. ACM Comput. Surveys 55, 1–23. doi: 10.1145/3571155

Reinhart, R. F., Shareef, Z., and Steil, J. J. (2017). Hybrid analytical and data-driven
modeling for feed-forward robot control. Sensors 17:311. doi: 10.3390/s17020311

Ros, E., Carrillo, R., Ortigosa, E. M., Barbour, B., and Agís, R. (2006). Event-driven
simulation scheme for spiking neural networks using lookup tables to characterize
neuronal dynamics.Neural Comput. 18, 2959–2993. doi: 10.1162/neco.2006.18.12.2959

Santina, C. D., Duriez, C., and Rus, D. (2023). Model-based control of soft robots:
a survey of the state of the art and open challenges. IEEE Control Syst. 43, 30–65.
doi: 10.1109/MCS.2023.3253419

Schmidt, A., Feldotto, B., Gumpert, T., Seidel, D., Albu-Schäffer, A., Stratmann,
P., et al. (2021). Adapting highly-dynamic compliant movements to changing
environments: a benchmark comparison of reflex- vs. cpg-based control strategies.
Front. Neurorobot. 15:762431. doi: 10.3389/fnbot.2021.762431

Sendhilnathan, N., Ipata, A. E., and Goldberg, M. E. (2020). Neural correlates
of reinforcement learning in mid-lateral cerebellum. Neuron 106, 188–198.e5.
doi: 10.1016/j.neuron.2019.12.032

Shao, D., Wang, Z., Ji, A., Dai, Z., and Manoonpong, P. (2022). A gecko-inspired
robot with cpg-based neural control for locomotion and body height adaptation.
Bioinspir. Biomim 17:036008. doi: 10.1088/1748-3190/ac5a3c

Singh, B., Kumar, R., and Singh, V. P. (2022). Reinforcement learning in
robotic applications: a comprehensive survey. Artif. Intell. Rev. 55, 945–990.
doi: 10.1007/s10462-021-09997-9

Smith, O. J. (1957). Closer control of loops with dead time. Chem. Eng. Prog. 53,
217–219.

Spaeth, A., Tebyani, M., Haussler, D., and Teodorescu, M. (2020). “Neuromorphic
closed-loop control of a flexible modular robot by a simulated spiking central pattern
generator,” in 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft) (New
Haven, CT: IEEE). doi: 10.1109/RoboSoft48309.2020.9116007

Strohmer, B., Manoonpong, P., and Larsen, L. B. (2020). Flexible spiking
CPGS for online manipulation during hexapod walking. Front. Neurorobot. 14:41.
doi: 10.3389/fnbot.2020.00041

Sullivan, J. C., Mitchinson, B., Pearson, M. J., Evans, M., Lepora, N. F., Fox, C.
W., et al. (2012). Tactile discrimination using active whisker sensors. IEEE Sens. J. 12,
350–362. doi: 10.1109/JSEN.2011.2148114

Taherkhani, A., Belatreche, A., Li, Y., Cosma, G., Maguire, L. P., McGinnity, T. M.,
et al. (2020). A review of learning in biologically plausible spiking neural networks.
Neural Netw. 122, 253–272. doi: 10.1016/j.neunet.2019.09.036

Tang, Z., Wang, P., Xin, W., and Laschi, C. (2022). Learning-based approach for
a soft assistive robotic arm to achieve simultaneous position and force control. IEEE
Robot. Automat. Lett. 7, 8315–8322. doi: 10.1109/LRA.2022.3185786

Frontiers inNeurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1395617
https://doi.org/10.1016/j.neucom.2019.11.007
https://doi.org/10.1016/j.neunet.2019.09.007
https://doi.org/10.1016/j.neucom.2021.04.112
https://doi.org/10.1007/978-3-030-64313-3_18
https://doi.org/10.1007/978-3-030-63833-7_64
https://doi.org/10.1109/ROBOSOFT.2019.8722735
https://doi.org/10.1609/aaai.v37i7.26002
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1109/ACCESS.2020.3042994
https://doi.org/10.1016/j.robot.2014.08.002
https://doi.org/10.1109/TNN.2011.2156809
https://doi.org/10.1142/S0129065711002900
https://doi.org/10.36079/lamintang.ijortas-0302.252
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1007/s00422-015-0662-6
https://doi.org/10.3389/fnbot.2019.00071
https://doi.org/10.1002/adma.201704407
https://doi.org/10.1109/TCYB.2019.2899246
https://doi.org/10.1109/IROS.2008.4650850
https://doi.org/10.1098/rstb.2011.0164
https://doi.org/10.1007/978-3-642-15193-4_9
https://doi.org/10.1177/1059712307082089
https://doi.org/10.3389/fnins.2022.795876
https://doi.org/10.1109/LRA.2020.2974451
https://doi.org/10.3390/s23063037
https://doi.org/10.1007/978-3-030-30487-4_53
https://doi.org/10.1007/s10846-017-0468-y
https://doi.org/10.1145/3407197.3407205
https://doi.org/10.1016/j.neunet.2005.06.049
https://doi.org/10.1109/ACCESS.2019.2919163
https://doi.org/10.1007/s11633-022-1390-8
https://doi.org/10.1145/3571155
https://doi.org/10.3390/s17020311
https://doi.org/10.1162/neco.2006.18.12.2959
https://doi.org/10.1109/MCS.2023.3253419
https://doi.org/10.3389/fnbot.2021.762431
https://doi.org/10.1016/j.neuron.2019.12.032
https://doi.org/10.1088/1748-3190/ac5a3c
https://doi.org/10.1007/s10462-021-09997-9
https://doi.org/10.1109/RoboSoft48309.2020.9116007
https://doi.org/10.3389/fnbot.2020.00041
https://doi.org/10.1109/JSEN.2011.2148114
https://doi.org/10.1016/j.neunet.2019.09.036
https://doi.org/10.1109/LRA.2022.3185786
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Mompó Alepuz et al. 10.3389/fnbot.2024.1395617

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., and Maida,
A. (2019). Deep learning in spiking neural networks. Neural Netw. 111, 47–63.
doi: 10.1016/j.neunet.2018.12.002

Tolu, S., Capolei, M. C., Vannucci, L., Laschi, C., Falotico, E., Hernández, M. V.,
et al. (2020). A cerebellum-inspired learning approach for adaptive and anticipatory
control. Int. J. Neural Syst. 30. doi: 10.1142/S012906571950028X

Tolu, S., Strohmer, B., and Zahra, O. (2023). Perspective on investigation of
neurodegenerative diseases with neurorobotics approaches. Neuromorphic Comput.
Eng. 3. doi: 10.1088/2634-4386/acc2e1

Tolu, S., Vanegas, M., Garrido, J. A., Luque, N. R., and Ros, E. (2013). Adaptive
and predictive control of a simulated robot arm. Int. J. Neural Syst. 23:1350010.
doi: 10.1142/S012906571350010X

Tolu, S., Vanegas, M., Luque, N. R., Garrido, J. A., and Ros, E. (2012). Bio-inspired
adaptive feedback error learning architecture for motor control. Biol. Cybern. 106,
507–522. doi: 10.1007/s00422-012-0515-5

Troost, B. T. (1984). The neurology of eye movements. Neurology 34:845.
doi: 10.1212/WNL.34.6.845-c

Véronneau-Veilleux, F., Robaey, P., Ursino, M., and Nekka, F. (2021).
An integrative model of Parkinson’s disease treatment including levodopa
pharmacokinetics, dopamine kinetics, basal ganglia neurotransmission and motor
action throughout disease progression. J. Pharmacokinet. Pharmacodyn. 48, 133–148.
doi: 10.1007/s10928-020-09723-y

Vijayakumar, S., D’Souza, A., and Schaal, S. (2005). LWPR: a scalable method
for incremental online learning in high dimensions. Neural Comput. 17, 2602–2634.
doi: 10.1162/089976605774320557

Walker, J., Zidek, T., Harbel, C., Yoon, S., Strickland, F. S., Kumar, S., et al. (2020).
Soft robotics: a review of recent developments of pneumatic soft actuators. Actuators
9:3. doi: 10.3390/act9010003

Wang, W., Nakadate, K., Masugi-Tokita, M., Shutoh, F., Aziz, W., Tarusawa, E.,
et al. (2014). Distinct cerebellar engrams in short-term and long-term motor learning.
Proc. Natl. Acad. Sci. USA. 111, E188–E193. doi: 10.1073/pnas.1315541111

Wang, X., Li, Y., and Kwok, K. W. (2021). A survey for machine
learning-based control of continuum robots. Front. Robot. AI 8:730330.
doi: 10.3389/frobt.2021.730330

Wang, Y., Gao, F., and Doyle, F. J. (2009). Survey on iterative learning
control, repetitive control, and run-to-run control. J. Process Control 19, 1589–1600.
doi: 10.1016/j.jprocont.2009.09.006

Westervelt, E. R., Grizzle, J. W., Chevallereau, C., Choi, J. H., and Morris, B. (2018).
Feedback Control of Dynamic Bipedal Robot Locomotion. CRC Press.

Wilson, E. (2023). Adaptive filter model of cerebellum for biological muscle control
with spike train inputs. Neural Comput. 35, 1938–1969. doi: 10.1162/neco_a_01617

Wilson, E. D., Assaf, T., Pearson, M. J., Rossiter, J. M., Anderson, S. R.,
Porrill, J., et al. (2016). Cerebellar-inspired algorithm for adaptive control of
nonlinear dielectric elastomerbased artificial muscle. J. R. Soc. Interface 13:20160547.
doi: 10.1098/rsif.2016.0547

Wilson, E. D., Assaf, T., Rossiter, J. M., Dean, P., Porrill, J., Anderson, S.
R., et al. (2021). A multizone cerebellar chip for bioinspired adaptive robot
control and sensorimotor processing: a multizone cerebellar chip for bioinspired
adaptive robot control and sensorimotor processing. J. R. Soc. Interface 18:20200750.
doi: 10.1098/rsif.2020.0750

Wolpert, D. M., and Kawato, M. (1998). Multiple paired forward and inverse
models for motor control. Neural Netw. 11, 1317–1329. doi: 10.1016/S0893-6080(98)0
0066-5

Wolpert, D. M., Miall, R. C., and Kawato, M. (1998). Internal models in the
cerebellum. Trends Cogn. Sci. 2, 338–347. doi: 10.1016/S1364-6613(98)01221-2

Wulff, P., Schonewille, M., Renzi, M., Viltono, L., Sassoè-Pognetto, M., Badura, A.,
et al. (2009). Synaptic inhibition of purkinje cells mediates consolidation of vestibulo-
cerebellar motor learning. Nat. Neurosci. 12, 1042–1049. doi: 10.1038/nn.2348

Yamazaki, K., Vo-Ho, V. K., Bulsara, D., and Le, N. (2022). Spiking neural networks
and their applications: a review. Brain Sci. 12:863. doi: 10.3390/brainsci12070863

Yang, S., and Chen, B. (2023a). Effective surrogate gradient learning with high-order
information bottleneck for spike-basedmachine intelligence. IEEE Trans. Neural Netw.
Learn. Syst. doi: 10.1109/TNNLS.2023.3329525

Yang, S., and Chen, B. (2023b). Snib: improving spike-based machine learning using
nonlinear information bottleneck. IEEE Trans. Syst. Man Cybern. Syst. 53, 7852–7863.
doi: 10.1109/TSMC.2023.3300318

Yang, S., Pang, Y., Wang, H., Lei, T., Pan, J., Wang, J., et al. (2023a). Spike-driven
multi-scale learning with hybrid mechanisms of spiking dendrites. Neurocomputing
542:126240. doi: 10.1016/j.neucom.2023.126240

Yang, S., Wang, H., and Chen, B. (2023b). Sibols: robust and energy-efficient
learning for spike-based machine intelligence in information bottleneck framework.
IEEE Trans. Cogn. Dev. Syst. 1–13. doi: 10.1109/TCDS.2023.3329532

Yang, S., Wang, H., Pang, Y., Azghadi, M. R., and Linares-Barranco, B. (2024a).
Nadol: neuromorphic architecture for spike-driven online learning by dendrites. IEEE
Trans. Biomed. Circuits Syst. 18, 186–199. doi: 10.1109/TBCAS.2023.3316968

Yang, S., Wang, H., Pang, Y., Jin, Y., and Linares-Barranco, B. (2024b). Integrating
visual perception with decision making in neuromorphic fault-tolerant quadruplet-
spike learning framework. IEEE Trans. Sys. Man Cybern. Syst. 54, 1502–1514.
doi: 10.1109/TSMC.2023.3327142

Yang, S., Wang, J., Deng, B., Azghadi, M. R., and Linares-Barranco, B.
(2022a). Neuromorphic context-dependent learning framework with fault-
tolerant spike routing. IEEE Tran. Neural Netw. Learn. Syst. 33, 7126–7140.
doi: 10.1109/TNNLS.2021.3084250

Yang, S., Wang, J., Hao, X., Li, H., Wei, X., Deng, B., et al. (2022b). Bicoss: toward
large-scale cognition brain with multigranular neuromorphic architecture. IEEE Trans.
Neural Netw. Learn. Syst. 33, 2801–2815. doi: 10.1109/TNNLS.2020.3045492

Yang, S., Wang, J., Zhang, N., Deng, B., Pang, Y., Azghadi, M. R., et al.
(2021). Cerebellumorphic: large-scale neuromorphic model and architecture for
supervised motor learning. IEEE Trans. Neural Netw. Learn. Syst. 33, 4398–4412.
doi: 10.1109/TNNLS.2021.3057070

Yao, M., Zhao, G., Zhang, H., Hu, Y., Deng, L., Tian, Y., et al. (2023). Attention
spiking neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 45, 9393–9410.
doi: 10.1109/TPAMI.2023.3241201

Young, A. R., Dean, M., Plank, J. S., and Rose, G. S. (2019). A review of spiking
neuromorphic hardware communication systems. IEEE Access 7, 135606–135620.
doi: 10.1109/ACCESS.2019.2941772

Zahra, O., Navarro-Alarcon, D., and Tolu, S. (2021a). “A fully spiking neural control
system based on cerebellar predictive learning for sensor-guided robots,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA). (New York, NY: ACM).
doi: 10.1109/ICRA48506.2021.9561127

Zahra, O., Navarro-Alarcon, D., and Tolu, S. (2022a). A neurorobotic embodiment
for exploring the dynamical interactions of a spiking cerebellar model and a
robot arm during vision-based manipulation tasks. Int. J. Neural Syst. 32:2150028.
doi: 10.1142/S0129065721500283

Zahra, O., Tolu, S., and Navarro-Alarcon, D. (2021b). Differential mapping
spiking neural network for sensor-based robot control. Bioinspir. Biomim. 16:036008.
doi: 10.1088/1748-3190/abedce

Zahra, O., Tolu, S., Zhou, P., Duan, A., and Navarro-Alarcon, D. (2022b). A bio-
inspired mechanism for learning robot motion frommirrored human demonstrations.
Front. Neurorobot. 16:826410. doi: 10.3389/fnbot.2022.826410

Zhang, J., Chen, J., Wu, W., and Qiao, H. (2023). A cerebellum-inspired prediction
and correction model for motion control of a musculoskeletal robot. IEEE Trans. Cogn.
Dev. Syst. 15, 1209–1223. doi: 10.1109/TCDS.2022.3200839

Zhang, T., and Mo, H. (2021). Reinforcement learning for robot research:
a comprehensive review and open issues. Int. J. Adv. Robot. Syst. 18.
doi: 10.1177/17298814211007305

Frontiers inNeurorobotics 13 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1395617
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1142/S012906571950028X
https://doi.org/10.1088/2634-4386/acc2e1
https://doi.org/10.1142/S012906571350010X
https://doi.org/10.1007/s00422-012-0515-5
https://doi.org/10.1212/WNL.34.6.845-c
https://doi.org/10.1007/s10928-020-09723-y
https://doi.org/10.1162/089976605774320557
https://doi.org/10.3390/act9010003
https://doi.org/10.1073/pnas.1315541111
https://doi.org/10.3389/frobt.2021.730330
https://doi.org/10.1016/j.jprocont.2009.09.006
https://doi.org/10.1162/neco_a_01617
https://doi.org/10.1098/rsif.2016.0547
https://doi.org/10.1098/rsif.2020.0750
https://doi.org/10.1016/S0893-6080(98)00066-5
https://doi.org/10.1016/S1364-6613(98)01221-2
https://doi.org/10.1038/nn.2348
https://doi.org/10.3390/brainsci12070863
https://doi.org/10.1109/TNNLS.2023.3329525
https://doi.org/10.1109/TSMC.2023.3300318
https://doi.org/10.1016/j.neucom.2023.126240
https://doi.org/10.1109/TCDS.2023.3329532
https://doi.org/10.1109/TBCAS.2023.3316968
https://doi.org/10.1109/TSMC.2023.3327142
https://doi.org/10.1109/TNNLS.2021.3084250
https://doi.org/10.1109/TNNLS.2020.3045492
https://doi.org/10.1109/TNNLS.2021.3057070
https://doi.org/10.1109/TPAMI.2023.3241201
https://doi.org/10.1109/ACCESS.2019.2941772
https://doi.org/10.1109/ICRA48506.2021.9561127
https://doi.org/10.1142/S0129065721500283
https://doi.org/10.1088/1748-3190/abedce
https://doi.org/10.3389/fnbot.2022.826410
https://doi.org/10.1109/TCDS.2022.3200839
https://doi.org/10.1177/17298814211007305
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

	Brain-inspired biomimetic robot control: a review
	1 Introduction
	2 Overview of robot control methods
	2.1 Model-based control
	2.2 Model-free and data-driven control
	2.3 Hybrid control

	3 Brain-inspired control paradigms
	4 Biomimetic control models
	4.1 High-level BC
	4.2 Low-level BC
	4.3 Side-loop BC
	4.3.1 Basal ganglia-based controllers
	4.3.2 Cerebellum-based controllers


	5 Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


