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Human activity recognition (HAR) and brain-machine interface (BMI) are two 
emerging technologies that can enhance human-robot collaboration (HRC) 
in domains such as industry or healthcare. HAR uses sensors or cameras to 
capture and analyze the movements and actions of humans, while BMI uses 
human brain signals to decode action intentions. Both technologies face 
challenges impacting accuracy, reliability, and usability. In this article, we review 
the state-of-the-art techniques and methods for HAR and BMI and highlight 
their strengths and limitations. We then propose a hybrid framework that fuses 
HAR and BMI data, which can integrate the complementary information from 
the brain and body motion signals and improve the performance of human 
state decoding. We  also discuss our hybrid method’s potential benefits and 
implications for HRC.
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1 Introduction

Robots are becoming part of daily human life. From care homes to factories, robots help 
humans in repetitive, strenuous, or otherwise non-ergonomic tasks. They work independently 
or as human-controlled devices. For example, an assistive robotic arm can help a person in a 
wheelchair lift and grab objects that would otherwise be beyond their reach. However, humans 
are a collaborative species: working together is essential for many activities and humans excel 
at it. This is because humans can read the motor intentions of another human and immediately 
react to them (Blakemore and Decety, 2001). This is not possible for robots in this form, and 
human-robot collaboration is nowhere close to collaboration between humans (A positioning 
paper by the International Federation of Robotics, 2020). Unlike the presently available robots, 
the human brain comes equipped with computational machinery specialized for recognizing 
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and predicting the intentions of other people (Blakemore and Decety, 
2001). It can recognize a mistake within less than 100 ms (Spüler and 
Niethammer, 2015), making the brain’s cortical response, by design, a 
much faster signal source than any human motor action typically used 
in the context of correcting machine errors (such as pressing a button). 
In this article, we summarize the current state of the art in the field of 
collaborative robotics in terms of equipping robots with human 
activity recognition (HAR) systems and utilizing human abilities to 
initiate and recognize actions, particularly robot errors, in the brain-
machine interface (BMI) framework.

A BMI is a device or system that enables direct communication 
between the brain and an external device, such as a computer or a 
robotic limb, by measuring and decoding the brain’s neural activity 
(Lebedev, 2014). The use of BMI to seamlessly integrate robotic 
equipment into human activity is, strictly speaking, not new (Ortiz 
et al., 2023). For example, the BMI framework for controlling a robot 
appropriately describes the interaction that occurs in the most recent 
neuroprotheses, where user brain signals are applied to control a 
robotic effector in reaching and grasping tasks (e.g., Aflalo et al., 2015) 
or walking (Quiles et al., 2023). While the fields of BMI and neural 
prosthetics are, by definition, using neural signals to control machine’s 
actions, to our knowledge, these methods have not been up to date 
used in dynamic human-robot collaboration. While modern neural 
prostheses are shared control systems integrating brain signals and 
autonomous control policies of the device there is, however, a 
substantial difference to cobots: neural prostheses are meant to 
be directly controlled by their user and are “embodied” (become part 
of the user’s motor repertoire), while cobots remain autonomous 
agents. Therefore, the difference between BMI in both approaches 
seems to be not in providing direct user control of the cobot (as in the 
case of neural prosthetics), but rather have the still autonomous cobot 
adapt to the user’s neural signals for action observation without the 
need for user cognitive effort or embodiment as in controlling 
neural prosthetics.

Regular industrial robots perform pre-programmed actions in 
specifically prepared, highly structured environments. They have 
therefore little need for perception and no on-the-task interaction 
with human users. By contrast, collaborative robots are expected to 
share an environment with a human operator as can be  seen in 
Figure 1, and therefore must detect the presence of a human operator 
or at least need to sense any form of collision and initiate a stop.

In HRC applications, the workspace is divided into the robot’s 
workspace, the human workspace, and the interaction space, in which 
both the robot and human workspace overlap (Figure 1). The planning 
of robot actions or movement paths strongly depends on the robot’s 
sensory input, as the robot works closely with a human in a dynamic 
environment and unplanned changes can therefore occur in the 
production process. These dynamic changes must always 
be  recognized to eliminate the possibility of collisions with the 
environment or humans in the worst case and can lead to path 
replanning, force limitation, or speed adaption of the robot (Miro 
et al., 2022). The sensors used to secure the operator’s safety, based on 
ISO TS 15066, either detect the intrusion of people into the workspace 
or detect a collision with an operator.

For many interactive working scenarios, the classical human-
computer interfaces, like the keyboard, buttons, or mouse, interfere 
with the user’s own manipulation tasks as they may require the user’s 
hand to leave the assembly workspace to type or control a pointing 

device. The need for a natural and intuitive user interface is thus 
obvious. Such an interface may be based on the robot’s recognition of 
user actions. For instance, the user may specify an object by naming 
it, exploiting object recognition capacities of the system, or by pointing 
at it, using gesture recognition capacities of the system. Due to the 
stringent safety requirements for HRC applications, it is crucial to 
assess whether BMI meet the necessary safety standards for use in 
HRC. In this context, the recognition and interpretability of human 
actions by technical aids are examined in detail. Subsequently, actions 
that have been inadequately detected are explored, along with the 
possibilities for improvement, their current technical status, and the 
challenges involved in implementation.

2 Human action recognition

Currently, various safety systems are employed in HRC, primarily 
detecting human entry into the working space (e.g., laser scanners) or 
collisions with the robot (torque sensors). Although these established 
systems ascertain the safety of the human worker, they do so only after 
the executed movement and do not distinguish between different 
body parts. One of the challenges lies in the fact that movements of 
different body parts are mostly part of complex movements of various 
body parts without the possibility of capturing thoughts or intentions 
(Aggarwal and Ryoo, 2011; Jegham et al., 2020). Basically, according 
to those authors, human body activities are subdivided into four 
categories depending on the involved body parts and their complexity 
(Aggarwal and Ryoo, 2011; Jegham et al., 2020):

 • Gesture: Non-verbal communication involves conveying specific 
messages through visible bodily actions, excluding verbal or 
vocal elements, and can include hand, facial, or other 
body movements.

 • Actions: It constitutes a series of physical movements performed 
by an individual, encompassing activities such as walking 
and running.

 • Interactions: It involves a series of actions performed by a 
maximum of two entities, with at least one participant being a 
person and the other potentially being either a human or 
an object.

Group activities: It encompasses a mixture of gestures, actions, or 
interactions, involving a minimum of two performers and one or 
more interactive objects. For collaborative robotics, however, the focus 
is primarily on the interaction with robots and, above all, actions. For 
the purpose of this review, we will focus on a specific class of actions, 
that is overt bodily movements, Actions and interactions are closely 
related and cannot always be clearly distinguished from each other 
without using a system that enables HAR. In the subsequent step after 
the HAR, a human pose estimation is to be derived based on the 
detected data, with which a relation to the robot and its movement can 
be calculated.

There are various HAR systems, divided into video-based and 
sensor-based systems, see Figure 2. Video-based systems use high 
speed cameras for precise tracking of body parts (such as hands). The 
sensor-based system, in turn, is subdivided into environmental, 
wearable, and smartphone-based (Antar et  al., 2019). All these 
recognition systems are only reactive and capture the action after or 
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during the execution of the movement. This contrasts with the use of 
BMI for EEG measurement, discussed in this context as a means of 
detecting and predicting human movements. In this case neural data 
from specific brain areas signal the movement before its actual 
execution (Planelles et al., 2014). This results in a significant time 
advantage even in the pure detection of a movement, as it enables a 
proactive measure to be taken before the person physically performs 
the movement.

In addition to the disadvantage of purely reactive motion 
detection, established systems such as video-based HAR face further 
challenges in this context. Anthropometric variation is a challenge 
since each person has, i.e., their own body size proportion or flexibility, 
which results in high variability of possible movements and intentions 
to be  detected or predicted. Other optical effects like multi-view 
variation, cluttered and dynamic variation, or occlusion cause 

difficulties in the detection task (Jegham et al., 2020). Contamination, 
such as dust or sensitivity to changing light conditions in the industry, 
also reduces the reliability of such systems, which is particularly 
important in safety-relevant contexts such as HRC (Halme et  al., 
2018). This is why HAR systems may be  insufficient for efficient 
responsive HRC, leading researchers to search for other sources of 
estimating the human state. Nevertheless, it should be mentioned that 
actual challenges are also being addressed in the field of HAR using 
various approaches (including AI-based approaches) and that research 
is also being conducted in the area of human action prediction (Kong 
and Fu, 2022).

In recent decades more attention has been put on the inclusion 
of BMI in robot control loops. The current range of functions and 
reliability of the sensor-based approaches, like wearable or 
smartphone-based, are unsuitable for use in the HRC context alone. 

FIGURE 1

Left: definition of workspaces and the overlap as the collaboration space in HRC. Right: the interaction of human and robot when screwing together a 
switch box for photovoltaic systems. Here, the robot holds the screw while the human screws the nut.

FIGURE 2

Approaches for HAR systems (Antar et al., 2019).
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However, the three standard wearable sensors, such as accelerometer, 
magnetometer and gyroscope (Minh Dang et al., 2020) can be used 
for HAR and collect relevant information, which can supplement a 
HRC safety system. Wearable sensors for detecting eye movement, 
heart rate, respiratory rate, and body temperature, for example, can 
also provide relevant information and improve the prediction as 
part of an overall system. Nevertheless, the BMI has a higher 
potential for use in HRC applications because, in addition to the 
movement detection before execution, it also has the potential to 
improve human pose estimation with qualitative information. 
Simultaneously the BMI avoids all optical problems because it uses 
a completely different measurement principle. A BMI has the 
potential to predict the movement up to half a second before it is 
executed (Planelles et al., 2014). This enables the robot to stop even 
before a movement is executed, which leads to a collision. As a 
result, the collision forces between humans and robots would 
be  significantly reduced, which would enable higher robot 
operating speeds.

3 Brain-machine interfaces

Brain-machine interfaces can be used for various purposes, such 
as researching, mapping, assisting, augmenting, or restoring human 
cognitive or sensory-motor functions. BMIs can be classified into 
invasive and non-invasive. Invasive systems require the implantation 
of electrodes which are either connected to peripheral efferent and 
afferent nerves (Lebedev, 2014), or placed on top of the brain tissue or 
penetrating it. Depending on the usage, typically, the motor cortex 
(Hochberg et al., 2006) or other motor-related areas like the parietal 
cortex (Aflalo et al., 2015) are targeted. Non-invasive BMIs utilize 
signals that can be  obtained without surgery, for example, 
electroencephalography (EEG) or functional near-infrared 
spectroscopy (fNIRS). As invasive BMIs are usually clinical testing 
devices and are not possible to use with healthy humans, in this paper, 
we  focus on non-invasive EEG-based BMI, which record neural 
activity through electrodes placed on top of the scalp. For BMI 
purposes, a frequent method to train the system is to use known EEG 
signatures of action execution error (Chavarriaga et al., 2014; Fidêncio 
et al., 2022) or sensorimotor rhythms (Yuan and He, 2014).

3.1 Error signatures in EEG

Event-related potentials (ERPs) are changes in the brain’s electrical 
activity that occur in response to specific stimuli or events. ERPs are 
measured by recording the brain signals using EEG and then averaging 
the signals across many trials to isolate the brain response from the 
background noise. Error-related brain activity or error-related 
potential (ErrP’s) is a specific type of event-related potential elicited 
after subjects committed errors in a given task (Spüler and 
Niethammer, 2015; Fidêncio et al., 2022). This brain activity pattern 
is characterized by a potential deflection 50–100 ms after a subject’s 
erroneous response, termed the error-related negativity (ERN), 
appearing over the fronto-central scalp areas as a negative potential 
(Ne), following a subsequent centro-parietal positive potential (Pe) 
(Fidêncio et al., 2022). A similar medial-frontal EEG pattern has been 
reported to appear after the presentation of “feedback,” i.e., the delayed 

result of a choice or action. This feedback-related negativity (FRN) is 
between 200 and 300 ms after feedback onset (Fidêncio et al., 2022).

In the frequency domain of EEG signals, several studies 
demonstrated frequency-specific power modulations in response to 
erroneous action execution in different tasks. Effects were mainly 
found in lower frequency bands, such as delta (1.5–3.5 Hz), theta 
(4–7 Hz) (Kolev et al., 2005; Yordanova et al., 2004; Moreau et al., 
2018), alpha (10–14 Hz) (Carp and Compton, 2009), and beta 
(15–30 Hz) bands (Vidal et al., 2003). Welke et al. (2017) also showed 
error-related modulation in frequency ranges higher than 30 Hz, 
including a high-gamma range (50–150 Hz). Koelewijn et al. (2008) 
and Moreau et al. (2018) demonstrated an effect of the correctness of 
observed actions on beta and theta power modulation. More 
importantly, however, Moreau et al. (2018), showed that theta error 
modulation was visible during joint actions requiring observation and 
monitoring of both own and other agent’s actions. Such suggested 
spatial separation between channels conveying own vs. observed error 
signals can greatly improve the chances of successfully decoding 
signals related to cobot errors in joint actions.

3.2 Sensorimotor EEG activity

EEG signals frequently used for BMI are related to sensorimotor 
functions, such as movement planning or motor imagery, expressed 
in time or frequency domains. The ERP used to predict movement is 
readiness potential (RP), described as a buildup of EEG activity 
preceding movement onset (Schurger et al., 2021). The use cases of RP 
for BMI are limited due to its unspecificity with only few notable 
exceptions like controlling a lower limb exoskeleton (Jeong 
et al., 2017).

Another class of EEG signals used in BMI are sensorimotor 
oscillations/rhythms (Yuan and He, 2014). One of the basic rhythms 
are mu waves (7–15 Hz) which indicate a switch between resting and 
active states of the cortical motor areas (Pineda, 2005). A common 
application is to use mu rhythm desynchronization to detect 
movement intention which, like in the case of RP, can be achieved 
before the movement starts (Yuan and He, 2014; Lazarou et al., 2018). 
This way, movement can be predictively decoded from sensorimotor 
EEG activity, as opposed to ErrP’s which respond to the effects of an 
already executed movement.

4 Use of brain signals for controlling 
robots

Brain signals have been used to control collaborative robots in 
several use cases mainly focusing on robot action observation. The 
selected papers we refer to below demonstrate different approaches 
to the inclusion of non-invasive BMI in controlling robots, from 
passive observation to predictive monitoring of collaborative 
action performance.

As an example of using BMI for controlling observed actions, 
Welke et al. (2017) designed a task in which participants watched a 
robot arm pour liquid into a cup. The robot performed the action 
either erroneously or correctly, which means it either spilled the liquid 
or not. In another task, their participants observed two different types 
of robots, humanoid and non-humanoid, grabbing a ball. The robots 
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either managed to grab the ball or it would make an error. The number 
of trials per condition was 360 in Exp 1 and 200 in Exp 2. In both 
experiments, the authors used a real-time pipeline for decoding the 
multivariate EEG signal (128 channels Waveguard gel cap (ANT 
Neuro)) and successfully attempted to decode errors and robot type 
using the frequency spectrum of brain oscillations from 1 Hz to 
144 Hz. The authors show that decoding accuracies for decoding both 
error detection and robot anthropomorphism were higher at lower (< 
20 Hz) frequency bands. These results indicate that the brain responses 
not only encode the robotic partner’s errors but are also additionally 
modulated by the robot’s anthropomorphism, further indicating that 
the brain differentiates in action observation of humanoid vs. 
non-humanoid agents.

Salazar-Gomez et  al. (2017) EEG-measured error-related 
potentials to specifically design a closed-loop BMI for robotic control. 
ErrP signals were decoded from a human operator in real-time to 
control a robot during a discrete object selection task. Each of the 5 
closed-loop BMI blocks contained 50 trials and lasted 9 min. The EEG 
system was 48-channel g.USBAMP (g.Tec). The observers watched the 
robot perform object-grasping tasks while their EEG signals were 
recorded to capture ErrP. In the case of ErrP detection, the robot 
action was corrected to choose the correct target. In some trials, the 
controller randomly decided not to inform the robot of an error to 
induce a secondary ErrP in the subjects. The use of ErrP was successful 
in online correction of robot errors. Moreover, in offline analyses, the 
authors also discovered the existence of a secondary ErrP when the 
human observes that the robot has incorrectly interpreted its feedback. 
This signal was described as easier to classify than the original error, 
and the authors suggest its usefulness in improving the performance 
accuracy in a closed-loop BMI scenario.

To better study the cognitive state of users in joint actions, Singh 
et al., 2020 described a somewhat different class of ErrP, arising due to 
a conflict in predictions and action outcomes. They call this signal 
prediction error negativity (PEN). Unlike in most other studies, the 
authors used an active HRC paradigm in which the user and 
collaborative robot could encounter an obstacle. Their results show 
higher PEN for cognitive conflict conditions compared to normal 
conditions and a statistically significant difference between different 
levels of PEN. These results indicate that cognitive conflict can 
be detected in dynamic HRC settings and be read as another type of 
signal, thus improving the detection of ErrPs and user 
state classification.

The major weakness of ErrPs is that they are evoked after the 
robot has committed an error, which might be costly or dangerous 
in dynamic contexts, such as assembly lines or autonomous driving. 
To address these limitations, Wang et al., 2022 proposed a novel 
BMI system where robot intentions were communicated before 
actions and the operator continuously evaluated these robot’s 
intentions. This way ErrP were detected before the robot would 
commit an error (that is, predicting the possible error). They tested 
their BMI framework via an experiment where a robot performed 
a target-reaching task. The high classification accuracy (77.57%) for 
predictive ErrP’s demonstrated that the predictive ErrP-based BMI 
was feasible for human–robot intention and has the potential to 
broaden the range of applications for ErrP-based BMIs. These 
above results show that the utility of neural signals for controlling 
robotic actions has been demonstrated mainly for passive 
observation. The use of BMI for responsive cobot adaptation would 

need to take one step further: towards the use of BMI for improving 
cooperation in situations where both humans and robots are 
simultaneously in motion. This, however, would require facing 
several technical challenges related to physiological data acquisition 
and processing.

5 Challenges for the use of BMI in 
HRC

Although BMI can be  investigated and used not only in the 
context of the safety of robot applications and HRC, their use as a 
complementary safety system still faces substantial challenges. In 
addition to HRC-specific challenges, there are also cross-technology 
and cross-context challenges when using BMI. These include, for 
example, challenges in the acceptance of wearing an (Rashid et al., 
2020) EEG cap, the need for intensive individual training, different 
physical head geometries and challenges in the transferability of 
results and evaluation algorithms due to the high individuality of 
brain currents with simultaneous high demands on accuracy and 
reliability. There are also risk factors associated with the use of BMI 
and HRC, particularly in terms of safety, which preclude their direct 
use for accurately detecting current and future human movements. 
BMI alone may identify movements with a high degree of uncertainty, 
posing a risk of resulting in different actual movements. Incorrect 
recognition of the arm’s direction of movement, inaccurate estimation 
of movement speed, or registering a movement of the wrong body part 
can significantly endanger the safety of individuals. To assess safety 
risks, it is essential to closely examine current challenges and evaluate 
their effects and interactions within the overall process.

5.1 Extending current regulation standards

The ISO TS 15066 safety standard is a cornerstone in ensuring the 
safety of collaborative robots. This standard delineates technical safety 
requirements and specifications for the working environment, 
providing clear guidelines for HRC. These guidelines encompass 
crucial factors like maximum robot movement speeds and acceptable 
limits for collision forces on various body regions. ISO TS 15066 
extends the existing ISO 10218, which lays down comprehensive 
safety requirements for industrial robot systems. Specifically, ISO TS 
15066 outlines protocols for managing hazards, evaluating associated 
risks, and implementing measures to eliminate them. This standard is 
a pivotal framework for ensuring collaborative robot’s safe integration 
and operation within diverse working environments. When using 
BMIs as a part of a HRC safety system, these requirements must also 
be met in connection with HRC, and potential sources of errors such 
as motion artifacts, signal unspecificities, and decoding latencies must 
be recognized or avoided with sufficient reliability.

For the use of BMIs in HRC scenarios, there are no specific 
regulations or guidelines regarding the minimum latencies for 
signal decoding, additional risks, and minimum safe spaces. The 
compilation of initial guidelines for secure implementation in 
accordance with regulations must, therefore, be  consistently 
considered and treated separately as a socio-technical component 
during the development of the interaction option. In this context, 
also the consideration of acceptance by operators is always a crucial 
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factor for a successful implementation and adaptation of new 
technologies (Linsinger et al., 2018). That must be considered when 
introducing BMIs in HRC. However, addressing and understanding 
operator acceptance is likely to be  an interesting next step in 
future development.

5.2 Determination of the collision areas 
and the robot’s trajectory

Certainly, besides safety considerations, productivity is the main 
aspect that needs to be taken into account for any robotic application 
in a production context. Productivity, here defined as a measure of the 
most time-efficient path of executing movements in robot-based 
applications, represents the underlying optimization problem. The 
goal is to minimize the time it takes for the robot to complete its task, 
allowing for the shortest possible path executed at the highest feasible 
movement speed, all while not disrupting the employee’s workflow. 
Balancing safety and productivity are key to an effective and 
efficient HRC.

Solving the general problem of determining the resulting 
movement of the robot in terms of maximum forces, movement 
speed, and planned path based on measured uncertainties for a 
human action is essential. The maximum speed and forces depend on 
the human body regions potentially affected in the event of a collision 
with the robot. Moreover, the mass carried by the robot is relevant for 
determining the collision force, as a higher carried load additionally 
lowers the robot’s movement speed. Adapting the robot’s actions 
involves determining possible human movements and coupling them 
to the robot’s movement commands. For a deterministic collaboration 
scenario, where the human actions are known and certain, this has 
been done and can be found in Glogowski et al. (2021). In this regard, 
it is crucial to investigate the relationship between the probability of 
an action occurring, its impact on the size of assumed collision spaces 
between body limbs and the robot shell, and the resulting trajectory 
of the robot. The complexity of this task depends on various factors, 
including the available sensors, the precision of measurements, the 
dynamics of the robotic system, and the desired accuracy of trajectory 
adjustment or recalculation. In essence, it can be considered relatively 
straightforward when clear sensor information is available and the 
robot is well-modeled, or complex when uncertainties or intricate 
dynamics need to be taken into account.

5.3 Motion artifacts

Any mobile setup in the experiment is always known to introduce 
a high number of artifacts in EEG data due to movement. While 
gel-based electrode systems in EEG are more resistant to such motion 
artifacts, popular BMI solutions base on dry electrodes because of 
their easiness of use, such as that they do not require long setup times 
(McFarland and Wolpaw, 2017; Kam et al., 2019). Motion-related 
artifacts can be  also dealt with on data processing stage by using 
established artifact-removal approaches in EEG data processing (such 
as channel-based template regression procedure and spatial filtering, 
independent component analysis, etc.) (Jamil et  al., 2021). 
Alternatively, machine learning can be used to mark EEG segments 
affected by motion-related artifacts (Salehzadeh et al., 2020). Newer 

methods for recording brain data in moving humans, such as MOBI 
(Gramann et al., 2011), can be adopted to get a higher signal-to-noise 
ratio. In any case, an array of methods can help ensure that motion-
related artifacts do not influence the resultant EEG signals.

5.4 Combining EEG with other 
physiological signals

While here we  consider HAR only in relation to overt body 
movements, several methods for measuring and using real-time 
human activity have been proposed for using in different HRI 
frameworks. EEG signals for error might not just be difficult to detect 
because of signal noise but also because of cognitive interference. The 
dissociating of signal sources (i.e., error vs. cognitive inferences 
oculomotor/hand programming etc.) is a standard issue in BMI 
research (e.g., Hajcak et  al., 2005) and there are several ways of 
disentangling the key signals (such as ErrP) through experimental 
designs (see, e.g., Chavarriaga et  al., 2014). In addition, one may 
consider further potential mitigation measures such as validating 
error detection in EEG by combining with other signal sources (e.g., 
pupil metrics and biomarkers). For example, pupil responses have 
been demonstrated to reflect error perception reliably (Maier et al., 
2019). Similarly, pupil diameter changes signify, e.g., cognitive focus 
and as such can be used for adaptive control of robots as proposed, 
e.g., by St-Onge et al. (2019). Other eye movements can be utilized to 
indicate the user’s current locus of visual attention (Krol et al., 2017). 
Other wearable sensors such as pulse or galvanic skin response meters 
were successfully utilized to measure users’ stress and trust level and 
provide real-time information about user state (Leeb et al., 2011; Hald 
et  al., 2020). As all these signals alone might lack specificity in 
detecting user state (such as boredom, stress, etc.), hybrid methods 
have been proposed fusing between different signal types. These 
methods have been demonstrated, e.g., for combining eyetracking and 
EEG (Krol et  al., 2017; Vourvopoulos et  al., 2019). Moreover, 
integration of electromyographic (EMG) activity has been shown to 
result in a better and more stable BMI performance in motor tasks 
(Leeb et al., 2011). Using further sensors in fusion with EEG data can 
increase error detection substantially, especially when combined with 
double-step decoding as an additional validation method. Such fusion 
has been successfully tested showing improved detection of EEG 
events when measured together with eye signals (Vourvopoulos et al., 
2019). When combined with machine learning, this sensor fusion will 
also be faster, allowing the detection of faster physiological signals and 
the prediction of possible errors that are anticipated to occur based on 
prior decisions during the HRC. In addition, fusion allows a cross-
modal reconstruction module to learn dependencies between 
simultaneously recorded data streams and based on that reconstruct 
signal data in case one modality is missing. Compared to uni-modal 
classification, this has been demonstrated to provide a more robust 
output by the decoder (Vourvopoulos et al., 2019; Rahate et al., 2022).

To warrant more decoding accuracy analysis, BMI models can 
be trained to decode well-described error-related signals such as ERN, 
ErrP, or error modulation of frequency bands. Since the ERN is a fast 
and robust brain signal, its detection can be improved using methods 
effective at filtering out the noise such as a double ErrP checking 
algorithm (Cruz et  al., 2018). A similar approach was tested 
successfully in the context of passive observation of cobot actions, 
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increasing ErrP decode performance to about 90% (Salazar-Gomez 
et  al., 2017). Although this method is slower than single-step 
decoding, it helps improve decoding accuracy. Additionally, the use of 
machine learning methods (operating over spectrograms or time 
series of the EEG signals) can help detect novel neural markers of 
cobot error and their related EEG channels that have not been 
described in the previous literature.

5.5 Decoding latencies

Giving the operator’s brain the responsibility of discovering errors 
faces an additional risk regarding the potential impact (in a critical 
system) of the combined latency of (a) signal production by the 
worker, (b) signal detection by the device, (c) validation of the signal 
(is the operator really producing an error signal), and (d) acting on the 
error signal. Previous experiments show that the accuracy of single 
trial detection can range between 65 and 95% (depending on the task 
and the participant). For this reason, reliable ErrP detection can 
be achieved using methods that have an increased correct detection 
rate such as double filtering (see, e.g., Cruz et al., 2018). However, 
more importantly, error monitoring in a more holistic way, i.e., 
considering the information from other biosignals (e.g., 
electromyography) and behavior (e.g., hand velocities, pupil reaction) 
can improve detection accuracy and speed. The detection of ‘complete’ 
ErrPs can be achieved in a time window of around 500 ms after error. 
Pupil reactions, for example, can be detected faster (Bergamin and 
Kardon, 2003) allowing the system to make classification decisions in 
a timely manner. Furthermore, one can focus on reliably capturing the 
fast ERN by validating it by ‘whole’ ErrP detection to speed up the 
system, compensating at least for issues (b) and (c) as listed above. 
Furthermore, one can be not only interested in an immediate reaction 
of the robot based on error recognition but also in accumulating error 
information (that can be associated with error likelihood) to make the 
cobot learn/adapt its behavior through reinforcement learning, which 
will increase the evidence of error in certain repetitive wrong cobot’s 
actions. This will further compensate for (a) and (d).

An interesting alternative seems to be provided by error prediction 
models in which robot intentions are communicated before actions 
and evaluated predictively and, therefore, can be detected and errors 
communicated back to the robot earlier than in feedback-based ErrP 
approaches (Wang et al., 2022).

6 Extending the BMI functionality with 
HAR for use in HRC

BMI and HAR are two techniques that can be used to measure and 
analyze the brain and body signals of a human. The multiple limitations 
of either of these methods alone make them a limited source of control 
in a critical system due to the risk to human operators. A promising 
way to address this challenge is to use hybrid approaches that combine 
EEG and HAR systems (Hussain et al., 2023). While sensor fusion is 
not novel, as described above, the addition of HAR can provide 
substantially more precise classification of the human state. This is a 
substantially novel concept and has seen limited practical 
demonstrations and theoretical descriptions of the framework to date, 

with a few notable exceptions such as Hussain et  al. (2023). One 
possible way is to use a model that integrates the data from both 
modalities and applies machine learning algorithms to decode the 
human state, such as attention, emotion, intention, etc. as HAR 
algorithms are capable of Gupta et al. (2022). Such a hybrid system can 
leverage the complementary information from both modalities and 
achieve a more accurate and robust decoding of the human state in 
HRC. For example, human motion intention can be detected from 
BMI before the motion starts, thereby improving HAR. On the other 
hand, HAR can help provide contextual cues, reduce artifacts, and 
enhance feature detection in BMI. There are several conceivable use 
cases where BMI performance can be improved thanks to HAR:

 • Using HAR to recognize the gestures and actions of humans and 
using them as labels or priors for the EEG classification or 
reconstruction (Salehzadeh et al., 2020). In HRC this can be, for 
example, detection of user performing a corrective movement or 
adapting their own movement in response to robot action. These 
detected corrections can serve to improve detection of ErrPs in data.

 • Using HAR to extract features of human motion and fusing them 
with the EEG features to improve the representation and 
discrimination of the human state such as tiredness, boredom, 
etc. (Hussain et al., 2023).

 • Using HAR to model the social and emotional aspects of the 
human state, such as gaze, facial expression, and speech, and 
incorporating them into the EEG decoding.

 • As predictive communication of robot intentions has been 
presented to improve ErrP detection, the same can 
be implemented using HAR and predictive decoding of human 
actions, such as predictively intercepting human hand target 
based on motion kinematics and trajectory.

6.1 Concept of a hybrid approach in HRC

A fusion model using BMI and HAR as input sources can be used in 
the context of HRC-based assembly processes and, thanks to the hybrid 
approach, serves as an optimized sensor system for HRC. The proposed 
model is not limited to using wearable sensor or video-based motion 
tracking but assumed to include several sensors providing comprehensive 
estimate of human activity, fusing motion kinematics, eye tracking, and 
other sensors as permitted and feasible for a given use case. This allows 
setup versatility and context-oriented signal classification, improving 
HAR. The BMI and the sensors for the HAR independently record 
measured values of the human operator in the assembly situation, which 
are processed and calculated into a risk score in the next step. Based on 
the risk score, a case differentiation is made for a theoretical collision 
between humans and robots. Depending on the clarity of the measured 
values and the safety risk for the human in the specific situation based 
on the applicable and described guidelines, the robot controller is 
instructed to either calculate and approach an avoidance trajectory, 
reduce the speed to a safe value in accordance with the HRC guidelines 
or initiate an immediate robot stop. This concept is illustrated in Figure 3. 
Based on Glogowski et al. (2021), these possible scenarios and robot 
reactions can be categorized and described as follows:

 1 Risk score low: In the scenario of a high probability of human 
movement occurrence and low movement speed, the location 
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of a human limb can be  anticipated with confidence. 
Consequently, the robot’s path can be  replanned, and a 
collision-free trajectory is ensured.

 2 Risk score middle: In cases of high probability of occurrence 
and high movement speed, the robot trajectory is still planned 
to be  evasive, but the speed is initially reduced. As the 
movement speed of the human exceeds that of the robot, the 
collision volumes must be increased so that sufficient braking 
time is available in the case of a collision. Ensuring the safety 
of the human is crucial in these scenarios, especially when 
there is an overlap in the movement speeds of the human and 
the robot.

 3 Risk score high: In instances of high or low probability of 
human movement occurrence, and ambiguity of the measured 
value evaluation, thus an inability to detect the human 
movement speed and path occurs, a safety stop of the robot 
must be initiated.

The most important factor influencing the calculation of the 
risk score and the safety of the human is the behavior of the human 

itself. The outcomes in detail depend on both the probability of 
human movement occurrence and the speed at which it happens. 
This results in so-called collision volumes. They are calculated as 
buffer zones for the theoretical case of a collision to ensure the 
safety of human, their size depends on the human’s and the robot’s 
movement velocity (Corrales et al., 2011). As mentioned earlier, 
numerous factors, such as artifacts, influence the probability of 
occurrence, essentially representing the measurement uncertainty 
of the BMI. The robot’s reaction is also contingent on the speed of 
human movement. For example, adaptive evasion becomes 
infeasible if the movement speed surpasses the robot’s movement 
speed, necessitating a safety stop. Conversely, if the human’s 
movement speed is lower than that of the robot, the robot can 
devise and execute an evasive trajectory. Both the probability of 
occurrence and the speed of movement impact the assumed 
collision volumes positioned along the human skeleton for collision 
calculations. As the probability of occurrence decreases and human 
movement speed increases, the collision volumes expand to 
accommodate the larger potential area of the human’s 
actual position.

FIGURE 3

Concept of an optimized HRC system with the combination of BMI and HAR integration for a theoretical collision between the human and the robot.
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6.2 Potential of a hybrid approach in 
practical HRC applications

Regarding maximum movement speeds, the standard for HRC 
imposes relatively low limits compared to standalone industrial 
robots, which move at several meters per second. In most cases, a 
maximum moving speed of 250 mm/s is specified, which may only 
be exceeded under the condition that the working areas of the robot 
and human do not overlap to avoid human injury, as described by 
Vysocky and Novak (2016). Adherence to this specification is crucial 
to maintaining a safe working environment during interactive robot 
operations. This remains a significant drawback of HRC since a low 
movement speed inevitably results in reduced productivity (Bauer 
et  al., 2016). The diminished productivity, in turn, often renders 
HRC-capable applications like collaborative screwing, illustrated in 
Figure 1, unattractive in industrial settings due to the combination of 
high investment costs and lower production efficiency.

However, precise prediction of human movements could 
contribute to anticipating safety requirements in HRC even before the 
actual movement occurs. This allows for adjustments to the robot’s 
movement speed, consequently enhancing production efficiency. To 
avoid such limitations like constant (slow) robot velocity, hybrid 
approaches like extending BMI with HAR can be used where the robot 
adapts to its human operator’s state. For maximal efficiency valuation 
of such approaches should be done in suitable research environments 
with HRC-capable and industry-oriented production system setups 
such as COssembly described by Christ et al. (2023). This procedure 
will be aimed as the next step for this hybrid approach.

7 Conclusion

In this article, we  have reviewed the recent techniques and 
applications of BMI and HAR systems for decoding the human state 
in HRC. Each of these methods has its own strengths but also 
weaknesses limiting its use in a real industrial environment with real 
humans. The available data shows that by integrating the 
complementary information from BMI and HAR signals, a hybrid 
system can possibly achieve a more accurate and robust decoding of 
the human state especially when used for predictive adaptation of 

robot behavior. We have also discussed the potential benefits and 
challenges of using such a hybrid system as opposed to HAR and BMI 
alone, as well as the future directions and open questions in this field. 
We conclude that the fusion of BMI and HAR is a promising idea that 
can enhance the effectiveness and naturalness of HRC.
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