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Brain-inspired semantic data
augmentation for multi-style
images

Wei Wang, Zhaowei Shang* and Chengxing Li

College of Computer Science, Chongqing University, Chongqing, China

Data augmentation is an e�ective technique for automatically expanding

training data in deep learning. Brain-inspired methods are approaches that

draw inspiration from the functionality and structure of the human brain and

apply these mechanisms and principles to artificial intelligence and computer

science. When there is a large style di�erence between training data and

testing data, common data augmentation methods cannot e�ectively enhance

the generalization performance of the deep model. To solve this problem,

we improve modeling Domain Shifts with Uncertainty (DSU) and propose a

new brain-inspired computer vision image data augmentation method which

consists of two key components, namely, using Robust statistics and controlling

the Coe�cient of variance for DSU (RCDSU) and Feature Data Augmentation

(FeatureDA). RCDSU calculates feature statistics (mean and standard deviation)

with robust statistics to weaken the influence of outliers, making the statistics

close to the real values and improving the robustness of deep learning models.

By controlling the coe�cient of variance, RCDSU makes the feature statistics

shift with semantic preservation and increases shift range. FeatureDA controls

the coe�cient of variance similarly to generate the augmented features with

semantics unchanged and increase the coverage of augmented features. RCDSU

and FeatureDA are proposed to perform style transfer and content transfer

in the feature space, and improve the generalization ability of the model at

the style and content level respectively. On Photo, Art Painting, Cartoon, and

Sketch (PACS) multi-style classification task, RCDSU plus FeatureDA achieves

competitive accuracy. After adding Gaussian noise to PACS dataset, RCDSU

plus FeatureDA shows strong robustness against outliers. FeatureDA achieves

excellent results on CIFAR-100 image classification task. RCDSU plus FeatureDA

can be applied as a novel brain-inspired semantic data augmentation method

with implicit robot automation which is suitable for datasets with large style

di�erences between training and testing data.

KEYWORDS

data augmentation, deep learning, robust statistics, style transfer, uncertaintymodeling,

brain-inspired computer vision

1 Introduction

Data augmentation is a strategy to increase the quantity and diversity of limited data,

aiming to extract more useful information from limited data and generate value equivalent

to more data. It is a technique with implicit robot automation to automatically expand

training data. Aiming at the problem of model overfitting in training deep networks
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(Krizhevsky, 2009; Simonyan and Zisserman, 2014; He et al., 2016;

Krizhevsky et al., 2017; Huang et al., 2019), data augmentation

methods attempt to solve the problem from the root cause, namely,

insufficient training samples (Wang et al., 2019; Liu et al., 2023).

Data augmentation is widely used in text classification (Wei and

Zou, 2019; Fang et al., 2022; Wu et al., 2022; Dai H. et al., 2023),

image denoising (Eckert et al., 2020; Liu et al., 2020; Luo et al.,

2021), video recognition (Cauli and Reforgiato Recupero, 2022;

Gorpincenko andMackiewicz, 2022; Kim et al., 2022), etc. In image

recognition tasks, there are content-preserving transformations on

input samples, such as rotation, horizontal mirroring, cropping

and color jittering. Although these augmentation methods are

effective, they cannot perform semantic transformations such as

changing the background of an object or changing visual angle. The

semantics-preserving transformations which preserve class identity

can make data augmentation more powerful (Antoniou et al., 2017;

Ratner et al., 2017; Bowles et al., 2018). For example, by training a

generative adversarial network (GAN) for each class in training set,

an infinite number of samples can be sampled from the generator.

However, this process is computationally expensive, since both

training generative models and inferring them to obtain augmented

samples are difficult tasks. In addition, the training process may

also be lengthened due to the additional augmented data. Brain-

inspired methods are approaches that draw inspiration from the

functionality and structure of the human brain and apply these

mechanisms and principles to artificial intelligence and computer

science (Zendrikov et al., 2023).

When encountering datasets with large style differences

between training data and testing data, that is, multi-style datasets,

common data augmentation methods cannot effectively enhance

the generalization performance of the deep model (Li et al., 2022).

Therefore, it is very important to study data augmentationmethods

for multi-style datasets. In this paper, we propose a brain-inspired

computer vision image data augmentation method for multi-style

datasets in the feature space with semantic preservation which is

highly efficient.

Our approach is motivated from the following three aspects:

(1) Existing data augmentation methods such as implicit semantic

data augmentation (ISDA) (Wang et al., 2021) and so on mostly

augment data by changing the image content without changing

the image style. They can work well in situations where there are

only content differences but not style differences between training

data and testing data, such as CIFAR-10 and CIFAR-100 datasets.

However, when there are large style differences between the training

data and testing data, such as Photo, Art Painting, Cartoon, and

Sketch (PACS) dataset, the common data augmentation methods

cannot work well. ModelingDomain Shifts withUncertainty (DSU)

(Li et al., 2022) changes the image style, but it does not change

the image content. From the perspective of brain inspiration,

we can explore and utilize the structure and functionality of the

human brain to improve the performance of data augmentation.

For example, when we observe an image, we will pay attention

to its content and style, such as a dog with painting style, a cat

with sketch style, a car with photo style and so on. Therefore, to

improve the diversity of data augmentation results, in the actual

application process, we may need to perform both style transfer

and content transfer when generating augmented images from

original images. Previous studies did not combine style transfer

with content transfer. In this paper, we combine content transfer

and style transfer by performing style transfer on the feature

map, and then performing content transfer on the feature vector

learned by the feature extraction network. (2) Real data is often

mixed with noise. When the training data is mixed with noise,

the model often faces the problem of performance degradation,

mainly because the noise will bring outliers, which deviate from the

overall distribution. Outliers will interfere with the model, making

the model unable to extract key features of the sample, or making

the model learn wrong features. In this paper, we calculate feature

statistics (mean and standard deviation) with robust statistics to

weaken the influence of outliers, making the statistics close to the

real values and improving the robustness of deep learning models.

(3) From the perspective of brain-inspired computer vision, the

distribution of sample data can be regarded as a “spherical space,”

which can be regarded as a circle in two-dimensional space and

a sphere in three-dimensional space (Jeon et al., 2022). For the

convenience of expression, we use “sphere” to refer to the “spherical

space” of any dimension. The data points are distributed layer

by layer from the center of the sphere outward. Due to different

positions, the data augmentation strategies of the sample points

at the center of the sphere and the data augmentation strategies

of the sample points at the outermost layer of the sphere should

be different. However, the existing augmentation method does not

consider the spherical distribution characteristics of the sample

data, and treats all data equally. In this paper, from the perspective

of brain-inspired computer vision, the data augmentation strategy

of each point is determined according to the distance between each

point and the center point.

According to DSU, it calculates the variance of all feature

statistics in a mini-batch, and then uses the variance to generate

random shifts to add to the original feature statistics. All feature

statistics in a mini-batch share the same variance. However, we

think that for all the feature statistics in a mini-batch, when

considering their data distribution characteristics, the added shifts

of the feature statistics distributed in the center of the group

and at the edge of the group should be different. In order to

keep the semantics unchanged, the shifts added to the feature

statistics distributed at the edge of the group should be slightly

smaller and in order to increase the coverage after shifting, the

shifts added to the feature statistics near the center of the group

should be slightly larger. DSU calculates the mean and variance

by channel for each feature map, that is, calculates the mean and

variance for all pixel values of each channel. However, this direct

calculation of the mean and variance does not take into account

the impact of outliers. The appearance of outliers will lead to great

deviation in statistical results. In order to reduce the influence

of outliers, this paper adopts the method of robust statistics to

improve the stability of the model. In this paper, we improve DSU,

and obtain the improved brain-inspired computer vision method

using Robust statistics and controlling the Coefficient of variance

for DSU (RCDSU), which calculates feature mean and standard

deviation with robust statistics and controls the coefficient of

variance to preserve semantics and increase shift range. According

to ISDA, it enhances the generalization ability of the model through

implicit semantic data augmentation. It works by computing the
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covariance of all features for each class, and then for each feature,

using the covariance of corresponding class to generate a random

shift to add to the original feature. This method needs to use the

online algorithm to iteratively update the covariance matrix of

each class, which is computationally intensive and the obtained

covariance matrix is an estimated value rather than an accurate

value most of the time. Therefore, this paper proposes a new

augmentation method Feature Data Augmentation (FeatureDA),

which calculates the variance of all features in a mini-batch, and

then uses the variance to generate a random shift to add to the

original feature. In order to keep the semantics unchanged, the

shifts added to the features distributed at the edge of the group

should be slightly smaller and in order to increase the coverage

after shifting, the shifts added to the features near the center of the

group should be slightly larger, similar to RCDSU. Our proposed

method is simple and effective, and enhances the generalization

ability and the stability against outliers of the model. Our brain-

inspired computer vision method can be integrated into existing

networks without introducing redundant model parameters or loss

constraints. Experiments have proved that RCDSU and FeatureDA

can improve the generalization ability of the model at the style level

and at the content level respectively.

In summary, there are three major contributions in our work:

(1) In RCDSU, we calculate feature statistics (mean and standard

deviation) with robust statistics to weaken the influence of

outliers, making the statistics close to the real values and

improving the robustness of deep learning models.

(2) In RCDSU and FeatureDA, we control the coefficient of

variance to preserve semantics and increase shift range from

the perspective of brain-inspired computer vision.

(3) We combine style transfer and content transfer (RCDSU

+ FeatureDA) by performing style transfer on the feature

map, and then performing content transfer on the feature

vector learned by the feature extraction network. We

perform both style transfer and content transfer with implicit

robot automation when generating augmented images from

original images.

2 Related work

2.1 Data augmentation

Data augmentation is a method that uses a small amount

of data to generate more similar synthetic data by prior

knowledge to expand the training dataset. It is an effective way to

improve generalization ability and alleviate model overfitting. In

image recognition tasks, to enhance the geometric invariance of

convolutional networks, augmentation methods such as rotation,

mirroring and random flipping are often used (Simonyan and

Zisserman, 2014; Srivastava et al., 2015; He et al., 2016; Huang

et al., 2019). Discarding some information in training images is

also an effective way to enhance training data. Random erasing

(Zhong et al., 2020) and cutout (DeVries and Taylor, 2017) crop

out random rectangular regions of the input image to execute

augmentation. Furthermore, there are some studies on automatic

data augmentation techniques. AutoAugment (Cubuk et al., 2018)

uses reinforcement learning to search for a better augmentation

policy among a large number of candidates. Besides, recent studies

have shown that the transformations which preserve the class

identity can also be seen as effective semantic data augmentation

techniques (Jaderberg et al., 2015; Bousmalis et al., 2016; Antoniou

et al., 2017; Ratner et al., 2017).

2.2 Uncertainty modeling

Some previous work on deep learning with uncertainty (Gal

and Ghahramani, 2015, 2016; Kendall and Gal, 2017) also assumes

that the deep features or predictions of each sample follow

a Gaussian distribution. In face recognition and person re-

identification, probabilistic representations are used to resolve the

problems of ambiguous faces (Shi and Jain, 2020; Amaya and

Von Arnim, 2023) and data outliers/label noise (Yu et al., 2020).

To simultaneously learn feature embeddings and their uncertainty,

data uncertainty is applied where the uncertainty is learned via a

learnable subnetwork to indicate the quality of the image (Chang

et al., 2020; Shi and Jain, 2020).

2.3 Robust statistics

The motivation of using robust statistics is to relieve the

impact of outliers, which refer to values that are far from the true

data. The appearance of outliers will lead to great deviation in

statistical results. Robust statistics seek to provide methods that

emulate popular statistical methods, but are not excessively affected

by outliers or other small departures from model assumptions

(Maronna et al., 2019). Robust statistics can be utilized to detect

the outliers by searching for the model fitted by the majority of the

data (Rousseeuw and Hubert, 2011; Feldotto et al., 2022). There

are efficient robust estimators for a series of complex problems,

including covariance estimation (Cheng et al., 2019; Diakonikolas

et al., 2019a), sparse estimation tasks (Balakrishnan et al., 2017;

Diakonikolas et al., 2019c; Cheng et al., 2022), learning graphical

models (Cheng et al., 2018; Diakonikolas et al., 2021), linear

regression (Klivans et al., 2018; Diakonikolas et al., 2019d; Pensia

et al., 2020), stochastic optimization (Diakonikolas et al., 2019b;

DeWolf et al., 2020; Prasad et al., 2020), etc. In RCDSU, we use the

property that the median is highly resistant to outliers to enhance

the robustness of the model.

2.4 Brain-inspired computer vision

Brain-inspired methods are approaches that draw inspiration

from the functionality and structure of the human brain and

apply these mechanisms and principles to artificial intelligence and

computer science (Zendrikov et al., 2023). Data augmentation is an

important task in the field of computer vision, aiming to generate

more similar synthetic data by prior knowledge to expand the

training dataset. When applying brain-inspired methods to data

augmentation tasks, we can explore and utilize the structure and

functionality of the human brain from multiple perspectives to

improve the performance of data augmentation. Designing neural
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network architectures inspired by brain is an important aspect. We

can gain valuable insights from the visual processing mechanisms

in the human brain and build neural network models with similar

structures and connectivity patterns to mimic the processing and

transmission of visual information (Qiu et al., 2023).We can design

hierarchical neural networks where each module corresponds to

different visual processing phases in the human brain (Cheng

et al., 2023). For example, when we observe an image, we will pay

attention to its content and style, such as a dog with painting style, a

cat with sketch style, a car with photo style and so on. Therefore, we

can perform style transfer and content transfer sequentially in data

augmentation tasks. From the perspective of brain inspiration, the

distribution of sample data can be regarded as a “spherical space”,

which can be regarded as a circle in two-dimensional space and a

sphere in three-dimensional space (Jeon et al., 2022). Therefore, the

data augmentation strategy of each point can be determined by its

position in the data distribution. Brain-inspired methods can draw

inspiration from the collaborative work of multiple brain regions

in the human brain, combining and analyzing data from different

vision aspects (such as style and content) to improve the diversity

and performance of data augmentation.

3 Method

3.1 Preliminaries

In the field of data augmentation, we have the following

general formula:

x̃ = f (x), (1)

where f denotes any transformation in the image space or in the

feature space, x denotes the original image in the image space or the

original feature in the feature space, and x̃ denotes the augmented

image or feature in the corresponding space.

In this paper, f represents DSU, RCDSU or FeatureDA

transformation. In DSU and RCDSU transformations, x denotes

the encoded features in the intermediate layers of the network,

that is, the feature maps. In the FeatureDA transformation, x

denotes the deep features learned by a special network, that is, the

feature vectors.

DSU calculates the feature mean and standard deviation by

channel for each feature map, that is, calculates the feature mean

and standard deviation for all pixel values of each channel. Then it

calculates the variance of all feature statistics in a mini-batch, and

uses the variance to generate random shifts to add to the original

feature statistics. All feature statistics in amini-batch share the same

variance. More details about DSU can refer to Li et al. (2022).

3.2 Robust statistics for DSU

There are outliers in some channels of a feature map. We select

three channels which have outliers from a feature map, and then

make box plots for all pixel values of each channel. The results are

shown in Figure 1. For outliers, if not dealt with, they will affect the

final mean and variance.

Therefore, when calculating the mean and variance by channel,

in order to alleviate the impact of outliers on themean and variance,

amethod of robust statistics is used. First arrange all the pixel values

of each channel from small to large. Then divide all pixel values in

a channel equally into S segments, and the number of pixels in each

segment is HW/S. Find the median m of all pixel values in each

segment. Then calculate the average of all medians in a channel as

the mean of all pixel values and calculate the variance of all medians

in a channel as the variance of all pixel values.

Given x ∈ R
B×C×H×W to be the features which are encoded

in the intermediate layers of the network, we divide all pixels in a

channel into S segments and denotem ∈ R
B×C×S as the median of

each segment. The feature mean µ ∈ R
B×C and standard deviation

σ ∈ R
B×C using robust statistics can be formulated as:

µ(x) =
1

S

S
∑

s=1

mb,c,s, (2)

σ 2(x) =
1

S

S
∑

s=1

(

mb,c,s − µ(x)
)2
, (3)

where b represents the bth instance in a mini-batch, c represents

the cth channel in a feature map, s represents the sth segment

in a channel.

The illustration of robust statistics is shown in Figure 2. We

calculate the average of all medians in a channel as the mean of all

pixel values and calculate the variance of all medians in a channel

as the variance of all pixel values.

Following DSU, we can calculate the variance of the feature

statistics as follows:

62
µ(x) =

1

B

B
∑

b=1

(

µ(x)− Eb[µ(x)]
)2
, (4)

62
σ (x) =

1

B

B
∑

b=1

(

σ (x)− Eb[σ (x)]
)2
, (5)

where 6µ ∈ R
C and 6σ ∈ R

C represent the shift range of the

feature mean µ and feature standard deviation σ , respectively.

3.3 Control the coe�cient of variance for
DSU

In the above, we calculate feature statistics with robust statistics

for DSU to weaken the influence of outliers. Next we will control

the coefficient of variance for DSU to make the feature statistics

shift with semantic preservation and increase shift range.

According to the sphere distribution of the feature statistics, the

closer to the outer layer of the sphere distribution the data point is,

we hope that its shift will be smaller to avoid the semantic change

of the feature statistic caused by the shift out of the boundary. And

the closer to the center of the sphere distribution the data point is,

we hope that its shift can be slightly larger to improve the coverage

of the augmented feature statistics, increase the diversity of the

augmented feature statistics and further enhance the generalization
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FIGURE 1

Box plots of all the pixel values of the selected channels in a feature map. There are outliers in some channels of a feature map. We select three

channels which have outliers from a feature map, and then make box plots for all pixel values of each channel. For outliers, if not dealt with, they will

a�ect the final mean and variance.

ability of themodel. In order to achieve this goal, the size of the shift

is controlled by multiplying a coefficient in front of the variance.

We assign the coefficient of variance to each feature statistic by its

Euclidean distance from the center vector. The larger the distance

from the center vector is, the smaller the coefficient of variance

corresponding to the feature statistic is, that is, the smaller the shift

of the data point is. The smaller the distance from the center vector

is, the larger the coefficient of variance corresponding to the feature

statistic is, that is, the larger the shift of the data point is.

Given µi ∈ R
C and σi ∈ R

C to be the feature mean and

standard deviation of the ith instance in a mini-batch, respectively,

we denote ctµ ∈ R
C and ctσ ∈ R

C as the center of the feature

statistics, which can be formulated as:

ctµ =
1

B

B
∑

i=1

µi, (6)

ctσ =
1

B

B
∑

i=1

σi. (7)

We denote dµi as the Euclidean distance between µi and ctµ,

and denote dσi as the Euclidean distance between σi and ctσ , which

can be formulated as:

dµi = ‖µi − ctµ‖2, (8)

dσi = ‖σi − ctσ ‖2. (9)

Then sort all the distances of dµ ∈ R
B and dσ ∈ R

B in

descending order respectively, and we can get the sorted distance

lists, sorted_distanceµ and sorted_distanceσ .

We utilize nµi to indicate the corresponding position index of

dµi in sorted_distanceµ and utilize nσi to indicate the corresponding

position index of dσi in sorted_distanceσ , where the position index

ranges from 1 to B.

Then the coefficients of variance are given by:

λµi = start +
(

nµi − 1
)

(end − start)/(B− 1), (10)

λσi = start +
(

nσi − 1
)

(end − start)/(B− 1), (11)

where start and end are the values set manually, and B represents

the size of a mini-batch. start is the minimum value among all

variance coefficients, while end is the maximum value.

We set λµi and λσi as the coefficient of variance to control the

degree of shift. Then we obtain the augmented feature statistics:

µ̃i = µi + X, X ∼ N
(

0, λµi6
2
µ

)

, (12)

σ̃i = σi + Y , Y ∼ N
(

0, λσi6
2
σ

)

, (13)

where X and Y is a zero-mean multi-variate normal

distribution, respectively.

The augmented feature statistics, mean µ̃(x) ∼ N
(

µ, λµ62
µ

)

and standard deviation σ̃ (x) ∼ N
(

σ , λσ 62
σ

)

, can be randomly

drawn from the corresponding distributions as:

µ̃(x) = µ(x)+ ǫµ

√

λµ6µ(x), ǫµ ∼ N (0, 1), (14)

σ̃ (x) = σ (x)+ ǫσ

√

λσ 6σ (x), ǫσ ∼ N (0, 1). (15)

The final formula of RCDSU is as follows:

RCDSU(x) =
(

σ (x)+ ǫσ

√

λσ 6σ (x)
)

︸ ︷︷ ︸

σ̃ (x)

(
x− µ(x)

σ (x)

)

+

(

µ(x)+ ǫµ

√

λµ6µ(x)
)

︸ ︷︷ ︸

µ̃(x)

,

(16)
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FIGURE 2

Illustration of robust statistics. We calculate the average of all medians in a channel as the mean of all pixel values and calculate the variance of all

medians in a channel as the variance of all pixel values.

where µ(x) and σ (x) are feature statistics calculated using the

robust statistics formulas (Equations 2, 3).

The illustration of the sphere data distribution is shown in

Figure 3. The data points close to the center of the sphere are

not easy to break through the class boundary when shifting. For

example, the shift marked as number 1 or number 3 in the figure

transforms without changing the class identity and it means that

the semantics are preserved. The data points close to the outermost

layer of the sphere are easy to break through the class boundary

when shifting, resulting in semantic changes. For example, the shift

marked as number 4 or number 5 in the figure transforms from

dogs to wolves and it means that the shift is too large, resulting in a

change in semantics, which is the wrong shift.

3.4 Content transfer with FeatureDA

In the above, we introduce using Robust statistics and

controlling the Coefficient of variance for DSU (RCDSU), which

is utilized for style transfer. Next we will introduce Feature Data

Augmentation (FeatureDA), which is utilized for content transfer.

FeatureDA controls the coefficient of variance similarly to generate

the augmented features with semantics unchanged and increase the

coverage of augmented features.

According to the sphere distribution of the features, the closer

to the outer layer of the sphere distribution the data point is, we

hope that its shift will be smaller to avoid the semantic change of

the feature caused by the shift out of the boundary. The closer to

the center of the sphere distribution the data point is, we hope

that its shift can be slightly larger to improve the coverage of

the augmented features, increase the diversity of the augmented

features and further improve the generalization ability of themodel.

In order to achieve this goal, the size of the shift is controlled by

multiplying a coefficient in front of the variance. We assign the

coefficient of variance to each feature by its Euclidean distance from

the center vector. The larger the distance from the center vector is,

the smaller the coefficient of variance corresponding to the feature

is, that is, the smaller the shift of the data point is. The smaller

the distance from the center vector is, the larger the coefficient of

variance corresponding to the feature is, that is, the larger the shift

of the data point is.
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FIGURE 3

Illustration of the sphere data distribution. The data points close to the center of the sphere are not easy to break through the class boundary when

shifting. For example, the shift marked as number 1 or number 3 in the figure transforms without changing the class identity and it means that the

semantics are preserved. The data points close to the outermost layer of the sphere are easy to break through the class boundary when shifting,

resulting in semantic changes. For example, the shift marked as number 4 or number 5 in the figure transforms from dogs to wolves and it means

that the shift is too large, resulting in a change in semantics, which is the wrong shift.

Given a ∈ R
B×A to be the deep features and ai ∈ R

A to be

the deep feature of the ith instance in a mini-batch learned by a

deep network, we denote 62
a as the variance of all features in a

mini-batch, which can be formulated as:

62
a =

1

B

B
∑

b=1

(a− Eb[a])
2 . (17)

We denote cta ∈ R
A as the center of the features, which can be

formulated as:

cta =
1

B

B
∑

i=1

ai. (18)

We set dai as the Euclidean distance between ai and cta, which

can be formulated as:

dai = ‖ai − cta‖2. (19)

Then sort all the distances of da ∈ R
B in descending order, and

we can get the sorted distance list, sorted_distancea.

We utilize nai to indicate the corresponding position index

of dai in sorted_distancea, where the position index ranges

from 1 to B.

Then the coefficient of variance is given by:

λai = start +
(

nai − 1
)

(end − start)/(B− 1), (20)

where start and end are the values set manually, and B represents

the size of a mini-batch. start is the minimum value among all

variance coefficients, while end is the maximum value.

We set λai as the coefficient of variance to control the degree of

shift. Then we obtain the augmented feature:

ãi = FeatureDA(ai) (21)

= ai + Z, Z ∼ N
(

0, λai6
2
a

)

, (22)

where Z denotes a zero-mean multi-variate normal distribution.

Finally, we can obtain the augmented

feature ãi ∼ N
(

ai, λai6
2
a

)

.

3.5 Network architecture

The network architecture of our method (RCDSU +

FeatureDA) is shown in Figure 4. We use ResNet18 as the

backbone. RCDSU and FeatureDA can be plug-and-play modules

to be readily inserted into the network. In ResNet18, we insert

RCDSU after first Conv, Max Pooling layer, 1, 2, 3, 4-th ConvBlock.

After the feature extraction network, we can get the deep feature ai.

And we can get the augmented feature ãi by using FeatureDA. The

predicted value p̃i of the augmented feature is obtained through a

fully connected layer classifier. Then calculate the cross-entropy

loss between the predicted value and the real value. With the

stochastic gradient descent (SGD) algorithm, we can update the

parameters of the feature extraction network, and update the
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FIGURE 4

The network architecture of our method (RCDSU + FeatureDA). Note these images are for visualization only, rather than feeding into the network for

training.

weight matrix W and biases b of the fully connected layer. We

present the pseudo code of the proposed method (RCDSU +

FeatureDA) in Algorithm 1.

Input: Intermediate feature x ∈ R
B×C×H×W

1 Compute the feature statistics µ, σ with robust

statistics.

2 Compute 62
µ, 62

σ.

3 Compute the coefficient of variance λµ and λσ.

4 Style transfer with RCDSU: x̃ = RCDSU(x).

5 Get the features a ∈ R
B×A after the deep network.

6 Compute 62
a.

7 Compute the coefficient of variance λai.

8 Content transfer with FeatureDA: ãi = FeatureDA(ai).

Output: The augmented features ã ∈ R
B×A

Algorithm 1. The algorithm of the proposed method.

4 Experiments

In this section, we empirically validate the proposed method on

several tasks. First, PACSmulti-style classification task is performed

using our method (RCDSU + FeatureDA). We compare our

method with the previously proposed methods such as pAdaIN

(Nuriel et al., 2021) and MixStyle (Zhou et al., 2021). Second,

FeatureDA is used alone to performCIFAR-100 image classification

task. We report the accuracy of several modern deep networks with

and without FeatureDA. Third, we add Gaussian noise to PACS

training data, and compare our method (RCDSU + FeatureDA)

withDSU (Li et al., 2022), ISDA (Wang et al., 2021),MixStyle (Zhou

et al., 2021), pAdaIN (Nuriel et al., 2021), PCL (Yao et al., 2022),

SWAD (Cha et al., 2021), and MODE (Dai R. et al., 2023) to verify

the robustness of our method. Fourth, we perform ablation studies

of the proposed method on PACS and CIFAR-100 with models

trained on ResNet.

4.1 Multi-style image classification

4.1.1 Setup and implementation details
We choose the PACS dataset, a commonly used benchmark

for multi-style image classification. PACS consists of four styles,

i.e., Art Painting, Cartoon, Photo, and Sketch, with totally 9,991

images of seven classes. For evaluation, a model is trained on three

styles and tested on the remaining one. Following prior work,

we use ResNet18 and ResNet50 as the backbones. We compare

our method (RCDSU + FeatureDA) with the previously proposed

Frontiers inNeurorobotics 08 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1382406
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wang et al. 10.3389/fnbot.2024.1382406

FIGURE 5

Illustration of the experiments in Sketch. We train on Art Painting, Cartoon and Photo, and test on Sketch. We can see that the style di�erence

between training data and testing data is very large and this makes our method work well.

FIGURE 6

Experiment results of adding Gaussian noise to PACS training data with di�erent methods.

methods such as pAdaIN (Nuriel et al., 2021) and MixStyle (Zhou

et al., 2021).

4.1.2 Results
The experiment results, shown in Table 1, demonstrate our

improvement over the baseline method on both ResNet18 and

ResNet50, which shows our superiority to the conventional

approach. We use Ours to denote our method (RCDSU +

FeatureDA). In the last column of the table, our method improves

the accuracy by an average of 1.24% compared to the previous

methods, and the classification performance in Sketch is higher

than other methods by over 3%. This is because our method

works better when the style difference between training data
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TABLE 1 Experiment results of PACS multi-style classification task.

Method Art Cartoon Photo Sketch Average (%)

Baseline 74.30 76.70 96.40 68.70 79.02

L2A-OT (Zhou et al., 2020) 83.30 78.20 96.20 73.60 82.82

pAdaIN (Nuriel et al., 2021) 81.74 76.91 96.29 75.13 82.51

MixStyle (Zhou et al., 2021) 82.30 79.00 96.30 73.80 82.85

Ours 82.72 79.14 94.58 78.28 83.68

Baseline 86.20 78.70 97.66 70.63 83.29

pAdaIN (Nuriel et al., 2021) 85.82 81.06 97.17 77.37 85.36

MixStyle (Zhou et al., 2021) 86.80 79.00 96.60 78.50 85.22

RSC (Huang et al., 2020) 85.40 79.70 97.60 78.20 85.22

Ours 86.68 81.28 97.15 82.12 86.80

Lines 1 to 5 represent the experimental results of ResNet18, and lines 6 to 10 represent the experimental results of ResNet50. The best results are bold-faced.

and testing data is larger and the experiments in Sketch fit

this very well, as shown in Figure 5. In Cartoon, our method

also shows slightly better performance than previous methods.

The performance in Photo is not very good because the style

differences between Art Painting, Cartoon, and Photo are not

very large.

Our method keeps the performance of the model at a relatively

high level although the accuracy of our method is not as good

as that of DSU and the latest methods. RCDSU plus FeatureDA

improves the robustness of the model, which can be seen in

Section 4.3. We provide a novel idea for multi-style image data

augmentation, that is, to improve the generalization performance

of the model at the style and content level respectively.

4.2 FeatureDA for CIFAR-100 image
classification

4.2.1 Setup and implementation details
The CIFAR-100 dataset consists of 32 × 32 colored natural

images in 100 classes, with 50,000 images for training and 10,000

images for testing. Since CIFAR-100 belongs to a single-style

dataset, that is, there are not great style differences between training

data and testing data. Therefore, style transfer is not required

for data augmentation and only content transfer is required.

We use FeatureDA alone to perform the CIFAR-100 image

classification task.

4.2.2 Results
We report the accuracy of several modern deep networks with

and without FeatureDA on CIFAR-100 in Table 2. On the single-

style dataset CIFAR-100, FeatureDA can improve the classification

accuracy of the model by an average of 0.92%, and is applicable

to a variety of networks. It proves that FeatureDA can indeed be

used as an efficient data augmentation method based on content

transfer to improve the generalization ability of the model at the

content level.

TABLE 2 Evaluation (%) of FeatureDA on CIFAR-100 with di�erent models.

Networks
CIFAR-100

Basic FeatureDA Improvement

ResNet-32 68.80 70.04 1.24

ResNet-110 71.33 74.19 2.86

SE-ResNet-110 72.70 74.04 1.34

Wide-ResNet-16-8 79.76 79.98 0.22

Wide-ResNet-28-10 81.47 81.91 0.44

ResNeXt-29, 8x64d 81.84 82.44 0.60

DenseNet-BC-100-12 77.39 77.81 0.42

Shake-Shake (26, 2x32d) 79.88 80.46 0.58

Shake-Shake (26, 2x112d) 82.58 83.13 0.55

Average – – 0.92

4.3 Robustness to noise

4.3.1 Setup and implementation details
We add Gaussian noise that follows N

(

0, noise_std2
)

to

the feature map of each sample in PACS training data, and

then perform the PACS multi-style classification task. noise_std

is selected from {0.25, 0.5, 1, 1.5, 2}. We compare our method

(RCDSU + FeatureDA) with DSU (Li et al., 2022), ISDA (Wang

et al., 2021), MixStyle (Zhou et al., 2021), pAdaIN (Nuriel et al.,

2021), PCL (Yao et al., 2022), SWAD (Cha et al., 2021), and MODE

(Dai R. et al., 2023) to verify the robustness of our method.

4.3.2 Results
The results are shown in Figure 6. It can be seen that

when we add Gaussian noise that follows N
(

0, noise_std2
)

to

the feature map of each sample in PACS training data, the

classification accuracy of our method is better than that of DSU

and other methods. When noise_std is set to 2, our method

outperforms other methods by over 15%. This is because our
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TABLE 3 Setting different starting and ending points when FeatureDA

controls the variance coe�cient on CIFAR-100 image classification task.

Networks Start, end CIFAR-100

ResNet-32

FeatureDA (no coefficient) 68.71

FeatureDA (start = 0.5, end = 2) 67.84

FeatureDA (start = 0.8, end = 1.5) 68.45

FeatureDA (start = 0.8, end = 1.2) 68.57

FeatureDA (start = 0.8, end = 1.0) 68.59

FeatureDA ( start = 0.5, end = 1.0) 69.50

FeatureDA (start = 0.5, end = 0.8) 68.99

FeatureDA (start = 0.4, end = 0.9) 70.04

FeatureDA (start = 0.3, end = 0.9) 69.17

FeatureDA (start = 0.3, end = 0.8) 69.51

Bold values indicate the best result.

method considers outliers and uses robust statistics to weaken the

influence of outliers.

MODE performs distribution exploration in an uncertainty

subset that shares the same semantic factors with the training

domains. However, it does not consider the outliers. So its

performance degrades dramatically in the case of high noise.

Besides, the mean and standard deviation in DSU, MixStyle and

pAdaIN, and the covariance matrix in ISDA are affected by outliers.

Outliers are not handled in these methods. Therefore, they don’t

perform well in high noise.

When the training data is mixed with noise, the model trained

by our method can still maintain good generalization ability. It

shows that our method can indeed improve the robustness and the

ability to resist outlier disturbances of the model after using robust

statistics. That is to say, our method is more robust than DSU

and other methods. In other words, after adding a small amount

of Gaussian noise to each training sample, our method can still

learn the key features of each sample. However, DSU and other

methods cannot learn the key features of each sample well under

the disturbance of a small amount of Gaussian noise. That is to say,

when the training data is mixed with noise, our method can make

the deep network perform feature extraction better, compared to

DSU and other methods.

4.4 Ablation study

Next we will perform ablation studies of the proposed method

on PACS and CIFAR-100 with models trained on ResNet. We will

conduct the following ablation studies respectively: (1) Set different

starting and ending points when FeatureDA controls the variance

coefficient. (2) Set different starting and ending points when

RCDSU controls the variance coefficient. (3) Set the number of

segments when RCDSU uses robust statistics. (4) Conduct a series

of experiments on the combinations of RCDSU and FeatureDA.

We use FeatureDA(no coefficient) to represent FeatureDA

without controlling the coefficient of variance, and use RCDSU(no

modules) to represent RCDSU that neither uses robust statistics nor

controls the coefficient of variance.

TABLE 4 Setting di�erent starting and ending points when FeatureDA

controls the variance coe�cient on PACS multi-style classification task.

Start, end Accuracy (%)

FeatureDA (no coefficient) 80.5350

FeatureDA (start = 0.5, end = 2) 80.7000

FeatureDA (start = 0.8, end = 1.5) 80.7000

FeatureDA (start = 0.5, end = 1.0) 80.3225

FeatureDA (start = 0.4, end = 0.9) 80.2925

FeatureDA (start = 1, end = 2) 80.7400

FeatureDA (start = 1, end = 1.5) 80.6175

FeatureDA (start = 1.5, end = 2) 80.8025

FeatureDA (start = 1.5, end = 2.5) 80.9300

FeatureDA (start = 2, end = 2.5) 81.1475

FeatureDA (start = 2, end = 3) 81.0350

FeatureDA (start = 2.5, end = 3) 80.9200

Bold values indicate the best result.

TABLE 5 Setting di�erent starting and ending points when RCDSU

controls variance coe�cient on PACS multi-style classification task.

Start, end Accuracy (%)

RCDSU (no modules) 83.1125

RCDSU (start = 0.5, end = 2) 83.4600

RCDSU (start = 0.8, end = 1.5) 82.9900

RCDSU (start = 0.5, end = 1) 82.8675

RCDSU (start = 1, end = 2) 82.8000

RCDSU (start = 0.8, end = 2) 83.1350

RCDSU (start = 0.5, end = 1.5) 82.9650

RCDSU (start = 0.4, end = 2) 83.2775

RCDSU (start = 0.3, end = 2) 83.1050

RCDSU (start = 0.6, end =2) 83.4175

RCDSU (start = 0.7, end = 2) 83.5250

Bold values indicate the best result.

4.4.1 Controlling the variance coe�cient in
FeatureDA

We set different starting and ending points, start and end, when

FeatureDA controls the variance coefficient.

4.4.1.1 CIFAR-100 image classification task

As shown in Table 3, when we use FeatureDA to perform the

CIFAR-100 image classification task with Resnet-32, setting start

and end to 0.4 and 0.9 works best.

In the CIFAR-100 dataset, the difference between all features

in a mini-batch is too large, that is, the variance is too large. This

means that the shift will be large and the semantics will change. So

the coefficient multiplied in front of the variance should be <1 to

make the variance smaller. We can see that setting start and end

to 0.4 and 0.9 works better than setting start and end to 0.5 and 2

because the coefficients of the former are smaller. We reduce the

shift by making the coefficient small to avoid semantic changes.
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FIGURE 7

Setting the number of segments S for RCDSU with robust statistics.

However, the coefficient cannot be infinitely small. As the shift

gets smaller, the diversity of augmented features will decrease. We

can see that setting start and end to 0.4 and 0.9 works better than

setting start and end to 0.3 and 0.8 because the diversity of the latter

are smaller. The coefficients can be neither too large nor too small.

We need to find a balance between not changing the semantics and

keeping the diversity of augmented features not too small.

Both ISDA and FeatureDA essentially add a random vector

following a zero-mean multi-variate normal distribution to the

original feature vector, and each value of the random vector is a

random quantity that fluctuates around 0. Because the random

vectors of FeatureDA and ISDA both fluctuate around 0, the

difference between using the variance of all features in a mini-batch

and using the covariance of all features in a class is actually not

that big.

4.4.1.2 PACS multi-style classification task

As shown in Table 4, when we use FeatureDA to perform the

PACSmulti-style classification task with ResNet18, setting start and

end to 2 and 2.5 works best.

In the PACS dataset, the difference between all features in a

mini-batch is too small, that is, the variance is too small. This means

that the shift range will be small and the diversity of augmented

features will decrease. So the coefficient multiplied in front of the

variance should be> 1 to make the variance larger. We can see that

setting start and end to 2 and 2.5 works better than setting start and

end to 0.5 and 2 because the coefficients of the former are larger.

We increase the shift range by enlarging the coefficient.

However, the coefficient cannot be infinitely large. As the shift

gets larger, the semantics will change. We can see that setting start

and end to 2 and 2.5 works better than setting start and end to 2.5

and 3 because the semantics of the latter change. The coefficients

can be neither too large nor too small. We need to find a balance

between not changing the semantics and keeping the diversity of

augmented features not too small.

4.4.2 Controlling the variance coe�cient in
RCDSU

We set different starting and ending points, start and end, when

RCDSU controls variance coefficient. As shown in Table 5, when we

use RCDSU to perform the PACSmulti-style classification task with

ResNet18, setting start and end to 0.7 and 2 works best.

In order to avoid the semantic change, we set start to 0.7 to

reduce the shift of the data point which is close to the outer layer

of the sphere distribution. In order to increase the diversity of the

augmented feature statistics, we set end to 2 to increase the shift of

the data point which is close to the center of the sphere distribution.

We can see that setting start and end to 0.7 and 2 works better

than setting start and end to 0.5 and 1 because the coefficients of

the former are larger and the diversity of the former is greater. We

can also see that setting start and end to 0.7 and 2 works better than

setting start and end to 1 and 2 because the coefficients of the latter

are larger and the semantics of the latter change. The coefficients

can be neither too large nor too small. We need to find a balance

between not changing the semantics and keeping the diversity of

augmented features not too small.

4.4.3 Using robust statistics in RCDSU
We set the number of segments S to different values

when RCDSU uses robust statistics. S is selected from

{32, 64, 128, 196, 256, 512, 1, 024}. As shown in Figure 7, when

we use RCDSU to perform the PACS multi-style classification task

with ResNet18, setting the number of segments S to 512 works best.
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TABLE 6 Di�erent combinations of RCDSU and FeatureDA on PACS

multi-style classification task.

Di�erent combinations Accuracy (%)

RCDSU (start = 0.7, end = 2) 83.5250

RCDSU (S = 512) 83.3075

FeatureDA (start = 2, end = 2.5) 81.1475

RCDSU (start = 0.7, end = 2) + FeatureDA (start = 2,

end = 2.5)

83.6100

RCDSU (S = 512) + FeatureDA (start = 2, end = 2.5) 83.4100

RCDSU (start = 0.7, end = 2, S = 512) 83.5900

RCDSU (start = 0.7, end = 2, S = 512) + FeatureDA

(start = 2, end = 2.5)

83.6800

Bold values indicate the best result.

TABLE 7 Experiment results of combining RCDSU and FeatureDA on

CIFAR-100 image classification task.

Networks Di�erent combinations CIFAR-100

ResNet-32

RCDSU (no modules) 59.98

FeatureDA (start = 0.4, end = 0.9) 70.04

RCDSU (no modules) + FeatureDA

(start = 0.4, end = 0.9)

51.65

The number of segments can be neither too large nor too

small. When the number of segments is set to 32, the number of

segments is too small, so that the mean and variance of all medians

cannot approach the true mean and variance. When the number

of segments is set to 1,024, the number of segments is too large,

resulting in increased calculation costs, and at the same time, it

cannot well avoid the influence of outliers. So we need to find

a balance between approaching the true mean and variance and

avoiding the influence of outliers.

4.4.4 Combinations of RCDSU and FeatureDA
4.4.4.1 PACS multi-style classification task

As shown in Table 6, when we combine RCDSU and FeatureDA

to perform the PACS multi-style classification task with ResNet18,

setting the number of segments S to 512 for RCDSU, start and

end to 0.7 and 2 for RCDSU, and start and end to 2 and 2.5 for

FeatureDA works best.

For the three modules, controlling the variance coefficient

in FeatureDA, controlling the variance coefficient in RCDSU,

and using robust statistics in RCDSU, we can see that pairwise

combinations of the three modules work better than single

modules. The combination of three modules works better than all

combinations of two. This proves that each module in our method

is effective.

4.4.4.2 CIFAR-100 image classification task

As shown in Table 7, when we use RCDSU alone or use

RCDSU plus FeatureDA to perform the CIFAR-100 image

classification task with ResNet-32, the results are not excellent.

This shows that as a style transfer module, RCDSU can not

be used to perform the CIFAR-100 image classification task

because CIFAR-100 is a single-style dataset and there are not

large style differences between training data and testing data in

CIFAR-100. RCDSU can only be used in the multi-style dataset

classification task. As a content transfer module, FeatureDA

improves the generalization ability of the model at the content

level, which works on any dataset, so FeatureDA can be regarded

as a data augmentation method that can be used in any

classification task.

5 Conclusion

In this paper, we proposed a brain-inspired semantic data

augmentation method consisting of RCDSU and FeatureDA

to perform style transfer and content transfer in the feature

space. RCDSU used robust statistics to calculate feature statistics,

improving the robustness of deep models. Based on the idea of

spherical data distribution, we controlled the coefficient of variance

for RCDSU and FeatureDA to preserve semantics and increase

shift range. On PACS multi-style classification task, RCDSU plus

FeatureDA achieved competitive accuracy. After adding Gaussian

noise to PACS dataset, RCDSU plus FeatureDA showed strong

robustness against outliers. FeatureDA achieved excellent results

on CIFAR-100 image classification task. RCDSU plus FeatureDA

can be applied as a novel semantic data augmentation method with

implicit robot automation which is suitable for multi-style datasets.

Experiment results demonstrated the effectiveness of the proposed

method in improving the generalization ability of the model at

the style and content level. Our augmentation method is based on

the feature level. Thus, for future work, we will design a decoder

to restore features to images, and generate some interesting and

unexpected images. In addition, our method can be applied to

situations where there are great differences between actual scenes

and training scenes.
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