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Graph Neural Networks (GNNs) have demonstrated significant potential as 
powerful tools for handling graph data in various fields. However, traditional 
GNNs often encounter limitations in information capture and generalization 
when dealing with complex and high-order graph structures. Concurrently, 
the sparse labeling phenomenon in graph data poses challenges in practical 
applications. To address these issues, we  propose a novel graph contrastive 
learning method, TP-GCL, based on a tensor perspective. The objective is to 
overcome the limitations of traditional GNNs in modeling complex structures 
and addressing the issue of sparse labels. Firstly, we transform ordinary graphs 
into hypergraphs through clique expansion and employ high-order adjacency 
tensors to represent hypergraphs, aiming to comprehensively capture their 
complex structural information. Secondly, we introduce a contrastive learning 
framework, using the original graph as the anchor, to further explore the 
differences and similarities between the anchor graph and the tensorized 
hypergraph. This process effectively extracts crucial structural features from 
graph data. Experimental results demonstrate that TP-GCL achieves significant 
performance improvements compared to baseline methods across multiple 
public datasets, particularly showcasing enhanced generalization capabilities 
and effectiveness in handling complex graph structures and sparse labeled data.
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1 Introduction

In recent years, GNNs have emerged as a powerful tool in deep learning, finding 
widespread applications in the processing and analysis of complex graph-structured data. 
GNNs have demonstrated significant potential in various domains such as social network 
analysis (Min et al., 2021; Kumar et al., 2022; Wei et al., 2023; Xu et al., 2023), recommendation 
systems (Gao et al., 2023; Liu S. et al., 2023; Sheng et al., 2023), and bioinformatics (Wang et al., 
2023; Zhao et al., 2023). In contrast to traditional neural networks, GNNs are characterized 
by their unique message-passing approach, allowing iterative propagation and aggregation of 
information between nodes, thus enriching and enhancing the representation of nodes. Across 
multiple downstream tasks, including node classification (Shi et al., 2021; Lin et al., 2023; Zou 
et al., 2023), link prediction (Liu et al., 2022; Liu X. et al., 2023), and graph classification (Zhou 
et al., 2023), GNNs have exhibited outstanding performance.
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However, despite the impressive performance of GNNs in semi-
supervised learning, their dependence on labels also imposes certain 
limitations on their applicability to unlabeled datasets. In semi-
supervised learning, the challenge of insufficient labeled data becomes 
increasingly prominent, and GNNs typically require a substantial 
amount of label information to guide the model in learning accurate 
node representations (Kipf and Welling, 2016; Hamilton et al., 2017; 
Veličković et al., 2017). This limitation may become more significant 
in practical applications, particularly when dealing with large-scale 
graph data or domain-specific tasks.

To overcome this challenge, researchers have turned their 
attention to self-supervised learning as a potential solution (Wu et al., 
2021; Liu et al., 2022). Self-supervised learning not only addresses the 
issue of sparse labels but also explores the inherent latent structures 
and features within graph data, leading to more generalizable 
representations (Kim et al., 2022). Graph contrastive learning, as a 
strategy within self-supervised learning, revolves around the core idea 
of driving graph representation learning by understanding the 
similarity between different parts of a graph (Zhu et al., 2021; Shuai 
et al., 2022). This method does not rely on external label information 
but instead leverages the internal structure and features of the graph 
to design contrastive tasks, aiming to maximize the exploration of 
latent information within the graph data. By comparing different 
nodes and subgraphs within the graph, graph contrastive learning 
guides the model to learn more abstract and generalizable 
representations. Particularly in the context of semi-supervised 
learning, graph contrastive learning methods provide a more flexible 
and universally applicable learning paradigm for GNNs.

However, there are significant limitations in current graph 
contrastive learning when dealing with complex graph data, especially 
in capturing high-order relationships and global structures. Despite 
the effectiveness of graph contrastive learning in many scenarios, it 
primarily focuses on learning similarity in low-order or local 
structures, leading to neglect of rich high-order relationships and 
global structural information in graph data. High-order structures 
carry rich information and are crucial for understanding the essence 
of the entire graph. Traditional graph contrastive learning methods 
often struggle to capture such complex high-order relationships by 
learning simple embedding vectors for nodes or edges. Additionally, 
a comprehensive understanding of global structures is indispensable 
for capturing the overall characteristics of a graph. The global structure 
of a graph provides an important perspective for understanding its 
entirety. However, existing methods fall short in capturing and 
utilizing high-order relationships and global structures, which affects 
the depth of model understanding of complex graph structures and 
limits the improvement of model generalization capabilities.

To overcome these limitations, we  propose a novel graph 
contrastive learning method, namely Tensor-Perspective Graph 
Contrastive Learning (TP-GCL). The core idea of TP-GCL is to 
transform the graph into a hypergraph through clique expansion 
and utilize high-order adjacency tensors to represent the 
hypergraph. This representation serves as a contrasting view to 
comprehensively capture its complex structural information. 
We  further explore the differences and similarities between the 
anchor graph and the tensorized hypergraph. By constructing a 
tensorized hypergraph perspective at a higher level, TP-GCL 
enhances the understanding and modeling of relationships between 
nodes in the graph, accurately capturing global information and 

improving the model’s understanding of the overall graph structure. 
In contrast to traditional graph contrastive learning methods, 
TP-GCL avoids the information bias caused by random edge 
dropping and feature masking, ensuring stability and consistency in 
the learned graph representations. Our main contributions are 
as follows:

 1 We introduce a novel tensor perspective-based graph 
contrastive learning method that comprehensively captures the 
complex structural information of graphs and delves into the 
crucial role of high-order relationships and interactions among 
multiple nodes in graph contrastive learning.

 2 Experimental results demonstrate the significant superiority of 
our approach compared to baseline methods, particularly in 
capturing graph node features and relationships.

2 Related work

2.1 Graph neural network

GNNs, as a class of neural network models designed for graph 
data, have demonstrated significant potential in various fields. The 
fundamental idea behind GNNs is to facilitate information 
propagation and aggregation among nodes through their 
connecting relationships, thereby forming node representations. 
Graph Convolutional Network (GCN) (Kipf and Welling, 2016) 
employs convolutional operations to propagate information on the 
graph, updating each node’s representation by aggregating 
information from its neighbors. Graph Attention Network (GAT) 
(Veličković et al., 2017), on the other hand, introduces attention 
mechanisms, assigning different weights to representations of 
nodes with respect to their neighbors, enabling more flexible 
information aggregation. GraphSAGE (Hamilton et  al., 2017) 
samples neighboring nodes and aggregates their representations, 
enabling the model to handle large-scale graph data. GNN-BC 
(Yang et al., 2022) proposes an innovative graph neural network 
architecture that maps node attributes and topological structures to 
distinct representations, introducing exclusivity to reduce 
redundancy between these two representations. RAW-GNN (Jin 
et al., 2022) presents a graph neural network framework based on 
random walk aggregation, utilizing breadth-first and depth-first 
random walks to gather homogeneous and heterogeneous 
information. LGLP (Cai et  al., 2020) transforms the graph link 
prediction problem into a node classification problem in a line 
graph, effectively learning features of the target links. DeepMAP (Ye 
et al., 2020) introduces a scheme to capture complex high-order 
interactions around each node, extending convolutional neural 
networks to arbitrary graphs by generating aligned node sequences 
and constructing perception domains for each node. RTGNN 
(Zhao et  al., 2022) proposes a multi-view graph representation 
learning method by introducing tensors to enhance relationships 
between inter-graph and intra-graph features. DeepGNAS (Feng 
et al., 2023) presents a generative process for graph neural networks, 
utilizing an innovative two-stage search space to automatically 
construct efficient and transferable deep graph neural network 
models in a modular manner.
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2.2 Graph contrastive learning

Contrastive learning, notable for its ability to obtain 
discriminative graph representations without the need for external 
label supervision, has garnered significant attention, especially in 
fields like computer vision. As a self-supervised learning paradigm, 
its objective is to identify subtle similarities and differences between 
samples, imparting semantically rich representations to node 
features. Recently, in the field of graph neural networks, contrastive 
learning has undergone substantial evolution. DGI (Veličković 
et  al., 2018) stands out by maximizing node-level mutual 
information in the graph, thereby elevating the effectiveness of 
graph representation learning. GMI (Peng et al., 2020) introduces 
the concept of graph mutual information, strengthening graph 
representations by maximizing mutual information between node 
pairs. MVGRL (Hassani and Khasahmadi, 2020), taking a multi-
view perspective, enhances graph representation learning by 
introducing multiple graph views. GraphCL (You et  al., 2020) 
focuses on a universal graph contrastive learning method and 
further extends its contributions by introducing four innovative 
graph enhancement techniques. GraphMAE (Hou et  al., 2022) 
concentrates on improving graph generation through self-
supervised pretraining, employing mask strategies and scaled 
cosine loss. H-GCL (Zhu et  al., 2023), by constructing the 
hypergraph view of a graph, enables more comprehensive 
incorporation of high-order graph information into graph 
representations, providing richer information for graph 
embedding generation.

However, current GNNs and graph contrastive learning methods 
face a series of limitations when dealing with complex graph 
structures, higher-order relations, and node interactions in the real 
world. They often struggle to thoroughly explore the global 
dependencies within graph data, and their representations fall short 
in capturing the diversity. To address these challenges, we propose a 
tensor-perspective graph contrastive learning method, TP-GCL. This 
method aims to comprehend the inherent structure of the graph and 
the intricate associations between nodes more accurately and 
comprehensively, utilizing a tensor perspective. TP-GCL emphasizes 
higher-level graph representation learning by introducing higher-
order relations and adjacency tensor representations. It captures the 
complexity of the graph more comprehensively and deeply, enhancing 
the model’s understanding of node relationships and improving its 
perception of the overall graph structure.

3 Definition of the problem

3.1 Definition 1 (tensorized hypergraph)

In tensorized hypergraphs, we contemplate tensorization of the 
hypergraph to more comprehensively represent its connectivity. For a 
given hypergraph G = V H,� �, where V  is the set of nodes and H is the 
set of hyperedges, we describe the connectivity in the hypergraph 
through tensorization. Let T Rn×n× ×n� �  be the adjacency tensor of 
the hypergraph, where n is the number of nodes in the hypergraph, 
and the tensor elements T i i ik1 2, , ,�� � signify the presence or absence 
of an edge connecting nodes v ,v , ..,vi i ik1 2

 in the hypergraph.

3.2 Definition 2 (Graph contrastive 
learning)

Graph contrastive learning aims to achieve an effective 
measurement of the similarity and dissimilarity between graphs G1 
and G2  by learning a mapping function ( )⋅f . For a given pair of 
graphs G = V E1 1 1,� � and G = V E2 2 2,� �, this function ensures that the 
feature vectors f vi� � and f ui� �  for any nodes v Vi∈ 1 and u Vi∈ 2 
are well-represented in a low-dimensional space. Graph contrastive 
learning methods are predominantly based on mutual information 
(MI), with the objective of evaluating the degree of correlation 
between different variables and maximizing mutual information. To 
accomplish this goal, graph contrastive learning necessitates defining 
a contrastive loss function L to quantify the similarity between the 
two graphs. The key symbols used in this paper are detailed in Table 1.

4 Definition of the problem

This section introduces a graph contrastive learning method 
based on a tensor perspective. As illustrated in Figure 1, TP-GCL 
consists of two main parts. The first part involves the construction of 
the tensorized hypergraph view module. In this process, we first utilize 
a clique expansion method to transform a regular graph into a 
hypergraph, aggregating nodes from the regular graph into high-order 
nodes in the hypergraph while considering the connectivity between 
nodes. Subsequently, we use high-order adjacency tensors to represent 
the tensorized hypergraph, providing a more comprehensive 
description of its complex structural features in tensor form. The 
second part is the graph contrastive learning module. The original 
graph serves as the anchor graph, and the tensorized hypergraph is 
used for comparison with the anchor graph. To evaluate the 
dissimilarity and similarity between the two views, positive and 
negative samples are designated, ensuring that similar nodes are closer 
in the representation space, while dissimilar nodes are farther apart.

4.1 Construction of tensorized views of 
graphs

Given the original graph G = V E X, ,� �, where V  is the node set, E  
is the edge set, X RN×d∈  is the node feature matrix, N  is the number 
of nodes, and d  is the feature dimension. Through the clique expansion 
method, we transform the graph G  into a hypergraph � �� �G = V E X, ,  
to capture higher-order relational information. Specifically, considering 

TABLE 1 Main Symbols.

Symbols Definition

G V H� � �, Hypergraph obtained through clique expansion.

T Adjacency tensor.

( )⋅f
Mapping function in graph contrastive learning.

L Contrastive loss function.

C Clusters obtained after graph clustering.

k Order of the clique.
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a node set V  in graph G , we seek a subset C  of highly connected nodes. 
A k  order clique C  is defined as a subset with k  nodes, where k  is a 
positive integer, formally represented as Eq. (1):

 C = v v .. v ,i i ik1 2
, , ,� �  (1)

where v Vi j ∈ , we progressively expand the k  order clique C  by 
adding nodes highly connected to the nodes in C  until no new nodes 
can be  added. This process results in a set of k  order cliques 
C C .. Cm1 2, , ,� �, where each k order clique Ci    represents a hypernode, 

i.e., a set of hyperedges ′E .
Through the above-mentioned method, we obtained a hypergraph 

′G  based on the original graph. Furthermore, we construct a tensorized 
hypergraph to represent the higher-order structural information of ′G .  
′G  is different from ordinary graphs. Hypergraphs are described using 

an incidence matrix ( ∈ n× EH R | |), while ordinary graphs are 
described using an adjacency matrix (A Rn×n∈ ). We  define the 
adjacency tensor T Rn n n� � ���  for the hypergraph, where the order 
of T  is represented by m, indicating the cardinality of the hyperedge 
� ��e E . The adjacency tensor T  is formulated as Eq. (2).
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where β represents the weight of edge i i iq1 2, , ,�� �, obtained by 
computing the weight for each permutation combination (adjacency 
tensor coefficients), formally represented as Eq. (3) and Eq. (4),
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where α  represents the number of corresponding permutations, 
and α  is a polynomial coefficient with additional constraints 
r ,r , ,r, c1 2 0� � . This tensor construction method maximally 
preserves the original hyperedge structure, further reflecting the 
associative patterns between different nodes in the hypergraph. To 
better understand this process, we provide an illustrative example:

Example 4.1. For a given hyperedge e = v v v1 1 2 3
� � �, , , to construct a 

2-order adjacency tensor, we need to consider all permutations of length 
2 for the node v ,v ,v1 2 3. This means that hyperedge e1

′  needs to choose 
3 nodes from 2 positions for permutation, which will result in one of the 
3 nodes being discarded, yielding v v , v v , v v1 2 1 3 2 3, , ,� � � � � � . Then, 
calculate the adjacency tensor coefficient as 23, where the numerator is 
the cardinality of hyperedge e1

′ , and the denominator is the number of 
permutations in this case.

FIGURE 1

Framework diagram in this paper. [(A) represents the construction of the hypergraph view and (B) represents the model architecture diagram].
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4.2 Graph contrastive learning

Graph contrastive learning aims to extract effective node features 
by comparing the feature differences between the original graph and 
the tensorized hypergraph. To comprehensively understand the data 
from different perspectives, we employ GCN for encoding learning 
on the original graph G . This process maps node features from a 
high-dimensional space to a low-dimensional feature space denoted 
as RN×k , resulting in the node feature vector Z1 under the original 
graph, formulated as Eq. (5),

 

Z D A D X W1
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2

1
2
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(5)

where A = A+ I  denotes the adjacency matrix with self-
loops, D Ai ij jj=

 �� 0  represents the diagonal matrix, �� �� �  
signifies the non-linear transformation function, and W  
corresponds to the learnable weight matrix. Additionally, 
alignment between node features and adjacency tensor is achieved 
through a learnable weight matrix. The outer product pooling 
technique is then employed on the adjacency tensor to perform 
tensor convolution on ′G , facilitating information aggregation, 
formulated as Eq. (6),

 
Z T X2 � � �

�

�
�

�

�
���



�� ,
 

(6)

where �� �� �  represents the non-linear transformation function, 
T


 signifies the insertion of a self-loop matrix into the adjacency tensor, 
Enhancing the model’s focus on node-specific information helps in 

learning more comprehensive node representations,
 
T = T +

j, j i

i

ij


�
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ξ  is defined as 1 when i = j , otherwise it is 0, and Z2 denotes the 
tensor perspective of node representation information. To minimize 
the similarity between positive samples and maximize the similarity 
between negative samples, a contrastive loss function is employed to 
enhance the discriminative power of node embeddings. For 
embeddings of the same node in two different views, we treat the same 
node from different views as positive samples and consider all other 
nodes as negative samples. Furthermore, we optimize the positive 
sample pairs z z,i ,i1 2,� � in a pairwise manner, formulated as Eq. (7),
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where Ä is a temperature parameter used to measure and adjust 
the distribution of similarities between samples in L z z,i ,i1 2,� � . 
1 0 1k i� �� � � �,  is an indicator function, taking the value 1 only when 
k = i . Considering the symmetry between views, we  employ a 
symmetry loss function to reflect the symmetric features of node 
embeddings between the two views. Ultimately, our loss function 
L z z,i ,i1 2,� � is formulated as Eq. (8),

 
L
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L z z L z z
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�
�1
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1
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(8)

5 Experiments

In this section, we  first introduce the datasets utilized in our 
experiments. Subsequently, we compare our method with baseline 
approaches and conduct relevant ablation experiments. Finally, 
we perform additional experiments to further validate the superiority 
of the proposed method presented in this paper.

5.1 Datasets

To validate the effectiveness of TP-GCL, we designed two sets of 
experiments, namely node classification tasks and graph classification 
tasks. The details of the datasets are provided in Table 2.

Our aim is to comprehensively evaluate the performance of the 
TP-GCL model in node classification. Node classification tasks focus 
on categorizing nodes with different features and labels. The datasets 
Cora, Citeseer, and PubMed belong to the academic network domain, 
where nodes represent papers, and edges represent citation 
relationships between papers. By utilizing these datasets, we validate 
the effectiveness and generalization capability of the TP-GCL method 
on graph data of various sizes and scales.

5.2 Baselines

The baseline models for node classification tasks can 
be  categorized into two groups. The first group includes semi-
supervised learning methods such as ChebNet (Tang et al., 2019), 
GCN (Kipf and Welling, 2016), GAT (Veličković et  al., 2017), 
GraphSAGE (Hamilton et al., 2017), which utilize node labels during 
the learning process. The second group comprises self-supervised 
methods, including DGI (Veličković et al., 2018), GMI (Peng et al., 
2020), MVGRL (Hassani and Khasahmadi, 2020), GraphCL (You 
et al., 2020), GraphMAE (Hou et al., 2022), H-GCL (Zhu et al., 2023), 
United States-GCL (Zhao et al., 2023) which do not rely on node 
labels. The proposed TP-GCL in this paper also falls into the category 
of self-supervised graph contrastive learning methods.

5.3 Experiment implementation details

During the experimental process, we utilized the NVIDIA A40 
GPU, equipped with 48GB of VRAM and 80GB of CPU memory. 

TABLE 2 Statistics of datasets used in experiments.

Dataset Nodes Edges Features Classes

Cora 2,708 5,278 1,433 7

Citeseer 3,327 4,552 3,703 6

PubMed 19,717 44,324 500 3
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TABLE 4 The performance of accuracy on node classification tasks.

Model Use 
data

Cora Citeseer PubMed

ChebNet X, A, Y 81.2 ± 0.6 69.8 ± 0.5 74.4 ± 0.4

GCN X, A, Y 81.5 ± 0.7 70.3 ± 0.7 79.0 ± 0.3

GAT X, A, Y 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3

GraphSAGE X, A, Y 77.2 ± 0.3 67.8 ± 0.3 77.3 ± 0.5

DGI X, A 81.7 ± 0.6 71.5 ± 0.7 77.3 ± 0.6

GMI X, A 82.7 ± 0.2 73.0 ± 0.3 80.1 ± 0.2

MVGRL X, A 82.9 ± 0.7 72.6 ± 0.7 79.4 ± 0.3

GraphCL X, A 82.5 ± 0.2 72.8 ± 0.3 77.5 ± 0.2

GraphMAE X, A 84.2 ± 0.4 73.4 ± 0.4 81.1 ± 0.4

H-GCL X, A 84.8 ± 0.5 74.2 ± 0.3 83.2 ± 0.6

USA-GCL X, A 85.9 ± 0.4 75.9 ± 0.6 82.3 ± 0.6

TP-GCL X, A 85.4 ± 0.6 74.5 ± 1.8 83.8 ± 0.3

Here, X represents node features, Y represents labels, and A represents the adjacency matrix.

The deployment of TP-GCL was supported by PyTorch 1.12.1, 
PyTorch Geometric, and the PyGCL library. The code for our 
experiments will be made publicly available in upcoming work. For 
specific optimal parameter settings, please refer to Table  3. As 
shown in the table, Training epochs indicates the total number of 
epochs required for training, Learning rate controls the step size of 
model parameter updates, Weight decay is a regularization 
coefficient used to prevent overfitting, τ  is the temperature 
coefficient used to set the focus on hard negative samples during 
contrastive learning, and Hidden dimension determines the size of 
the hidden layer, affecting the complexity and expressive power of 
feature learning.

5.4 Experimental results

We validated the effectiveness of TP-GCL on node classification 
tasks, and Table 4 presents the performance comparison on the Cora, 
Citeseer, and Pubmed datasets.

The results in Table  4 clearly demonstrate the superior 
performance of TP-GCL in node classification tasks. TP-GCL exhibits 
high accuracy on three different datasets, Cora, Citeseer, and PubMed, 
surpassing other baseline models. This can be  attributed to 
several advantages:

 1 TP-GCL comprehensively captures the structural features of 
graphs in complex spaces using high-order adjacency tensors. 
Compared to traditional methods, high-order tensor 
representations provide richer information, facilitating a better 
understanding of both local and global structures in the graph. 
This allows TP-GCL to more accurately learn abstract 
representations of nodes.

 2 Through the contrastive learning mechanism of anchor graph-
tensorized hypergraphs, TP-GCL sensitively learns subtle 
differences and similarities between nodes. This learning 
approach makes TP-GCL more discriminative, enabling 
accurate differentiation of nodes from different categories.

5.5 Hyperparametric sensitivity

Our research focuses on an in-depth analysis of key 
hyperparameters such as hidden layer dimension, Tau value, and 
learning rate. Firstly, the hidden layer dimension plays a crucial role 
in the performance of TP-GCL. By adjusting the dimension of the 
hidden layer, we explored the impact of different dimensions on the 
model’s performance on the Cora and Citeseer datasets. As shown in 
Figure 2, the results indicate that increasing the dimension of the 

hidden layer within the range of [32 ~ 512] enhances the fitting 
capability of TP-GCL, with the optimal performance reached when 
the dimension equals 512. This is because a higher-dimensional 
hidden layer helps capture more complex data patterns. However, 
excessively high dimensions, such as 1,024, can lead to overfitting.

Next, we focused on the hyperparameters Tau and learning rate. 
Tau is typically used to control the smoothness of the distribution of 
similarities in contrastive learning, while the learning rate is used to 
regulate the speed of model parameter updates during training. 
We  plotted the parameter space with the x-axis representing the 
learning rate in the range [0.001 ~ 0.009], the y-axis representing Tau 
in the range [0.1 ~ 0.9], and the z-axis representing the accuracy of 
node classification, as shown in Figure 3.

From Figure 3, it can be observed that the variation in accuracy 
is influenced by changes in the learning rate under different Tau 
values. When Tau values are low (0.1–0.3), combinations within the 
learning rate range of 0.001–0.004 generally result in lower accuracy. 
This might be attributed to the slower parameter update speed caused 
by the lower learning rates in this range, preventing the model from 
fully utilizing information in the dataset and thereby hindering 
accurate node differentiation. Additionally, lower Tau values imply 
more sensitivity in similarity calculations, potentially causing 
similarity to concentrate too much between nodes, making effective 
node discrimination challenging and consequently reducing 
accuracy. On the other hand, when Tau values are high (0.6–0.9), 
combinations within the learning rate range of 0.008–0.009 exhibit 
relatively higher accuracy. This is possibly due to the higher learning 
rates in this range accelerating the model’s parameter update speed, 

TABLE 3 Detailed parameter setting.

Dataset Training 
epochs

Learning rate Weight 
decay

𝜏 GCN layers TGCN 
layers

Hidden 
dimension

Cora 200 0.005 0 0.7 2 1 512

Citeseer 200 0.01 0 0.7 2 2 512

PubMed 400 0.005 5e-4 0.6 2 2 256

https://doi.org/10.3389/fnbot.2024.1381084
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Li et al. 10.3389/fnbot.2024.1381084

Frontiers in Neurorobotics 07 frontiersin.org

aiding the model in better learning the dataset’s features. Furthermore, 
higher Tau values smooth out the similarity distribution, reducing the 
model’s sensitivity to noise and subtle differences in the data, allowing 
the model to better discriminate between nodes and thereby 
improving accuracy.

6 Conclusion

In response to the challenges posed by existing graph neural 
network methods in capturing global dependencies and diverse 

representations, as well as the difficulty in fully revealing the inherent 
complexity of graph data, this paper proposes a novel tensor-
perspective graph contrastive learning method, TP-GCL. The aim is 
to comprehensively and deeply understand the structure of graphs and 
the relationships between nodes. Firstly, TP-GCL transforms graphs 
into tensorized hypergraphs, introducing higher-order information 
representation while preserving the original topological structure of 
the graph. This addresses the limitations of existing methods in 
capturing the complex structure of graphs and relationships between 
nodes. Subsequently, in TP-GCL, we delve into the differences and 
similarities between anchor graphs and tensorized hypergraphs to 

FIGURE 2

Performance of hidden layer dimension on Cora and Citeseer.

FIGURE 3

Performance of different learning rates and tau values on the Cora and Citeseer datasets.
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enhance the model’s sensitivity to global information in the graph. 
Experimental results on public datasets demonstrate a comprehensive 
evaluation of TP-GCL’s performance, validating its outstanding 
performance in the analysis of complex graph structures.
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