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The research on acceleration-level visual servoing of manipulators is crucial yet

insu�cient, which restricts the potential application range of visual servoing.

To address this issue, this paper proposes a quadratic programming-based

acceleration-level image-based visual servoing (AIVS) scheme, which considers

joint constraints. Besides, aiming to address the unknown problems in visual

servoing systems, a data-driven learning algorithm is proposed to facilitate

estimating structural information. Building upon this foundation, a data-driven

acceleration-level image-based visual servoing (DAIVS) scheme is proposed,

integrating learning and control capabilities. Subsequently, a recurrent neural

network (RNN) is developed to tackle the DAIVS scheme, followed by theoretical

analyses substantiating its stability. Afterwards, simulations and experiments on

a Franka Emika Panda manipulator with eye-in-hand structure and comparisons

among the existing methods are provided. The obtained results demonstrate the

feasibility and practicality of the proposed schemes and highlight the superior

learning and control ability of the proposed RNN. Thismethod is particularlywell-

suited for visual servoing applications of manipulators with unknown structure.

KEYWORDS

recurrent neural network (RNN), image-based visual servoing (IBVS), data-driven

technology, acceleration level, learning and control

1 Introduction

Robots can accurately perform complex tasks and have become a vital driving force in

industrial production (Agarwal and Akella, 2024). Among industrial robots, redundant

robots, equipped with multiple degrees of freedom (DOFs), have gained significant

recognition and favor due to their exceptional flexibility and automation capabilities

(Tang and Zhang, 2022; Zheng et al., 2024). Therefore, numerous control schemes are

designed to extend the application range of redundant robots, such as medical services

(Zeng et al., 2024) and visual navigation (Wang et al., 2023). Furthermore, in these

application scenarios, information on the external environment and the robot’s status is

acquired from various sensors, especially for the image capture of visual information (Jin

et al., 2023). Therefore, unknown situations inevitably exist caused by sensor limitations,

environmental variability, and robot modification, which hinder the evolution of robot

applications. To address this issue, intelligent algorithms based on data-driven technology

are exploited to process the acquired information and convert it into knowledge to drive

the regular operation of the robot system (Na et al., 2021; Xie et al., 2022). Yang et al.

(2019) construct a robot learning system by improving the adaptive ability of a robot with

the information interaction between the robot and environment, which enhances the safety

and reliability of robot applications in reality Peng et al. (2023). Li et al. (2019) investigate a
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model-free control method to cope with the unknown Jacobian

problems inside the robot system. On this basis, the dynamic

estimation method of robot parameters is researched in the study

by Xie and Jin (2023). However, the aforementioned methods

primarily operate at the joint velocity level and cannot directly

applicable to robots driven by joint acceleration.

As a crucial robot application, visual servoing simulates the

bionic system of human eyes, which can obtain information about

real objects through optical devices, thus dynamically responding

to a visible object. The fundamental task of visual servoing is to

impose the error between the corresponding image feature and

the desired static reference to approach zero (Zhu et al., 2022).

According to the spatial position or image characteristics of the

robot, the visual servoing system can be categorized into two types:

position-based visual servoing (PBVS) system (Park et al., 2012),

which utilizes 3-D position and orientation information to adjust

the robot’s state, and image-based visual servoing (IBVS) system,

which utilizes 2-D image information for guidance (Van et al.,

2018). Recently, the research on visual servoing has achieved many

unexpected results (Hashimoto et al., 1991; Malis et al., 2010; Zhang

et al., 2017; Liang et al., 2018). For instance, visual servoing is

applied to bioinspired soft robots in the underwater environment

with an adaptive control method, which extends the scope of visual

servoing (Xu et al., 2019). Based on the neural network method, a

resolution scheme for IBVS is developed at the velocity level. This

enables the manipulator to accurately track fixed desired pixels,

resulting in fast convergence (Zhang and Li, 2018). However, the

aforementioned methods are difficult to deal with the emergence of

unknown conditions, such as focal length change, robot abrasion,

or parameter variation. This is because these methods rely on

accurate structural information of the robot vision system. To

tackle this challenge, this study focuses on data-driven control of

visual servoing for robots with an unknown Jacobian matrix.

Neural networks have gained significant recognition as

powerful tools for solving challenging problems, such as automatic

drive (Jin et al., 2024), mechanism control (Xu et al., 2023), and

mathematical calculation (Zeng et al., 2003; Stanimirovic et al.,

2015). In robot redundancy analysis, neural networks have shown

superior performance. In recent decades, numerous control laws

based on neural networks have been developed to harness the

potential of redundant manipulators (Zhang and Li, 2023). One

specific application of the neural network approach addresses the

IBVS problem. In this context, the IBVS problem is formulated as

a quadratic programming scheme and tackled using a recurrent

neural network (RNN). The RNN drives the robot vision system’s

feature to rapidly converge toward the desired point (Zhang et al.,

2017). Additionally, Li et al. (2020) investigate an inverse-free

neural network technique to deal with the IBVS task, ensuring that

the error approaches zero within a finite time while considering the

manipulator’s physical constraints.

Most control schemes accomplish the given task at the velocity

level, especially for visual servoing applications (Hashimoto et al.,

1991; Malis et al., 2010; Zhang et al., 2017; Liang et al., 2018;

Van et al., 2018; Zhang and Li, 2018; Xu et al., 2019; Li et al.,

2020). These velocity-level schemes control redundant robots via

joint velocities. However, when confronted with acceleration or

torque-driven robots, the velocity-level schemes exhibit limitations

and cannot provide precise control. Furthermore, the velocity-level

scheme may yield abrupt joint velocities that are impractical in

real-world applications. Consequently, research on acceleration-

level visual servoing for robot manipulators has become crucial

(Keshmiri et al., 2014; Anwar et al., 2019). Motivated by the issues

above, this study investigates the application of visual servoing in

robots at the acceleration level. The technical route of this study is

shown in Figure 1. As illustrated, the contributions of this study are

shown as follows:

• An acceleration-level image-based visual servoing (AIVS)

scheme is designed, taking into account multiple joint

constraints.

• Considering potential unknown factors in the visual

servoing system, a data-driven acceleration-level image-based

visual servoing (DAIVS) scheme is developed, enabling

simultaneous learning and control.

• RNNs are proposed to solve the AIVS scheme and DAIVS

scheme, enabling visual servoing control of the manipulator.

Theoretical analyses guarantee the stability of the RNNs.

In addition, the feasibility of the proposed schemes is

demonstrated through simulative and experimental results

conducted on a Franka Emika Panda manipulator with an

eye-in-hand structure.

Before concluding this section, the remaining sections of

the study are shown as follows. Section 2 presents the robot

kinematics of visual servoing and introduces the data-driven

learning algorithm, formulating the problem at the acceleration

level. Section 3 constructs an AIVS scheme with the relevant

RNN. Subsequently, considering the unknown factors, a DAIVS

scheme and corresponding RNN are proposed, and theoretical

analyses proved the learning and control ability of the RNN,

as shown in Section 4. Section 5 provides abundant simulations

and performance comparisons, embodying the proposed method’s

validity and superiority. Section 6 displays physical experiments on

a real manipulator. Finally, Section 7 briefly concludes this study.

2 Preliminaries

In this section, the robot visual servoing kinematics and data-

driven learning algorithm are introduced as the preliminaries. Note

that this study specifically tackles the problem at the acceleration

level.

2.1 Robot visual servoing kinematics

The forward kinematics, which contains the transformation

between the joint angle φ(t) ∈ R
m of a robot and the end-effector

position and posture s(t) ∈ R
6, can be expressed as follows:

f (φ(t)) = s(t), (1)

where f (·) is the non-linear mapping related to the structure of the

robot. In view of strongly non-linear and redundant characteristics
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FIGURE 1

Technical route of this study.

of f (·), it is difficult to obtain the desired angle information directly

from the desired end-effector information sd(t), i.e., s(t) = sd(t).

By taking the time derivative of both sides of Equation (1), one can

deduce

Jroφ̇(t) = ṡ(t), (2)

where φ̇(t) denotes the joint velocity; ṡ(t) covers the joint

velocity and translational velocity of the end-effector; Jro =
∂f (φ(t))/∂φ(t) ∈ R

6×m stands for the robot Jacobian matrix.

Owing to the physical properties of manipulators, output control

signals based on design formulas and intelligent calculations may

not be suitable for the normal operation of real robots. Therefore, to

ensure the protection of the robot, it is crucial to take into account

the following joint restrictions:

φ− ≤ φ ≤ φ+

φ̇− ≤ φ̇ ≤ φ̇+

φ̈− ≤ φ̈ ≤ φ̈+,

where φ−, φ̇−, and φ̈− signify the lower bounds of joint angle,

joint velocity, and joint acceleration, respectively; φ+, φ̇+ and

φ̈+ denote the upper bounds of joint angle, joint velocity, and

joint acceleration, respectively. Utilizing the special conversion

techniques (Zhang and Zhang, 2012; Xie et al., 2022), the joint

restrictions would be integrated into the acceleration level as φ̈ ∈ γ ,

where γ = {g ∈ R
m, γ− ≤ g ≤ γ+} is the safe range of joints

with γ− and γ+ denoting the lower bound and upper bound of γ ,

respectively. In detail, the i-th elements of γ− and γ+ are designed

as

γ−
i = max{µ(φ−

i + θi − φi), ν(φ̇
−
i − φ̇i), φ̈

−
i }

γ+
i = min{µ(φ+

i − θi − φi), ν(φ̇
+
i − φ̇i), φ̈

+
i },

where i = 1, 2, 3, · · · ,m;µ > 0 and ν > 0 are designed to select the

feasible region for different levels; θi is the margin to ensure that the

acceleration has a sufficiently large feasible region (Xie et al., 2022).

Then, a brief introduction to the visual servoing system is presented

as follows. Regarding visual servoing tasks, the number of features

determines the complexity of a visual servoing system. Simply

considering a visual servoing system with one feature, a miniature

camera is mounted on the end-effector of the manipulator and

moves with the end-effector. Figure 2 illustrates the geometric

transformation in different coordinate systems. Three-dimensional

space withOca as the original point and [X, Y , Z] as the coordinate

axis is called the camera system with the internal coordinate point

q = [x, y, z]T. Relatively, with Oim as the center point, the image

system is the two-dimensional space with the projection pixel point

of q being [px, py]
T and the pixel coordinate being p = [pu, pv]

T ∈
R
2. According to the similar triangle, it can be readily obtained in

the study by Zhang et al. (2017) and Zhang and Li (2018):
[

px
py

]

=
l

z

[

x

y

]

(3)

and

pu = u0 + axpx (4)

pv = v0 + aypy,

with l standing for the focal length of the camera; u0 and v0
denoting the pixel coordinate of principle point; and [ax, ay]

T

standing for the conversion scale. Based on Equations (3, 4), the

image Jacobian matrix Jim(p, z) ∈ R
2×6 is defined using the

following relationship (Liang et al., 2018):

Jim(p, z)ṡ = ṗ, (5)

where ṗ stands for the movement velocity of the pixel coordinate

and

Jim(p, z) = H

[

− l
z 0

lpx
z

pxpy
l

− p2x+l2

l
py

0 − l
z

py
z − p2y+l2

l
− pxpy

l
−px

]

,

with

px =
pu − u0

ax
, py =

pv − v0

ay
, H =

[

ax 0

0 ay

]

.
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FIGURE 2

Geometric schematic of the camera system.

For the sake of convenience, Equations (2, 5) can be combined

as follows:

Jφ̇ = ṗ, (6)

with J = Jim(p, z)Jro ∈ R
2×m defined as the visual Jacobian

matrix. The relationship between joint space and image space is

established directly by Equation (6) at the velocity level. Taking the

time derivatives of both sides of Equation (6) generates

J̇φ̇ + Jφ̈ = p̈, (7)

where J̇ is the time derivative ofJ; φ̈ denotes the joint acceleration;

and p̈ stands for the movement acceleration of the pixel coordinate.

When it comes to a complicated situation with more features, the

above analyses still hold under the requirements of appropriate

dimensions. It is worth noting that a single feature is analyzed as

an example for simple illustration. When the number of features

increases, the principle of coordinate transformation remains

unchanged along with the increase in dimension.

2.2 Data-driven learning algorithm

However, unknown conditions may exist in the robot

visual servoing system, such as focal length changes or robot

modifications. In this regard, it could not control the robot

accurately to execute the IBVS task based on J̇. Hence, motivated

by this issue, a data-driven learning algorithm is designed as

follows. To begin with, a virtual IBVS system is established,

incorporating the virtual visual Jacobian matrix J̄ ∈ R
2×m and the

following relationship:

J̄φ̇ = ¯̇p,

where ¯̇p ∈ R
2 is the virtual pixel velocity determined by the

virtual robot and φ̇ is the joint velocity measured in real time from

the robot. Beyond dispute, the goal of the data-driven learning

algorithm is to guarantee that ¯̇p can rapidly converge to the real

pixel velocity ṗ. Thereout, an error function is devised as ℓ =
|| ¯̇p− ṗ||22/2, where || · ||2 is the Euclidean norm of a vector. On the

basis of the gradient descent method (Stanimirovic et al., 2015) to

minimize the error function along the negative gradient direction,

one can get

˙̄
J = −δ

∂ℓ

∂ J̄
= −δ(J̄φ̇ − ṗ)φ̇T, (8)

where ˙̄
J is the time derivation of J̄; δ > 0 denotes the coefficient

that controls the convergence rate. Hereinafter, ˙̄J and J̄ are used to

replace the calibrated parameter J̇ andJ to deal with the unknown

situations. This method directly explores the relationship between

joint space and image space without the utilization of J̇ and J.

It is worth highlighting that Equation (8) does not involve real

structural information and estimates structural information from

the joint velocity φ̇ and velocity of the pixel coordinate ṗmeasured

by sensors, which belongs to the core idea of the data-driven

learning algorithm.

3 Acceleration-level IBVS solution

In this section, an AIVS scheme is proposed with joint

constraints considered. Subsequently, we propose a corresponding

RNN and provide theoretical analyses. Note that the presented

method requires an accurate visual Jacobian matrix.

3.1 AIVS scheme

It is worth pointing out that there are few acceleration-level

robot control schemes for dealing with IBVS problems. None

of the existing acceleration-level solutions take joint constraints

into account (Keshmiri et al., 2014; Anwar et al., 2019). In this

regard, considering joint constraints, acceleration control, and

visual servoing kinematics, the AIVS scheme is constructed as a

quadratic programming problem, taking the following form:

minimize
1

2
φ̈Tφ̈ (9a)

subject to p̈ = Jφ̈ + J̇φ̇ (9b)

p = pd (9c)

φ̈ ∈ γ , (9d)

where pd denotes the desired pixel coordinate. As a result, the

goal of AIVS scheme (9) is to make the end-effector track the

desired pixel point. In addition, according to robot Jacobian matrix

Jro and the image Jacobian matrix Jim, the visual Jacobian matrix

J and its time derivative J̇ are determined by the structure and

parameters of the robot and the parameter settings inside the

camera. Hence, if there are any changes in the internal parameters

or structures, leading to an unknown state, the accuracy of J

and J̇ may be compromised, potentially leading to a decline in

performance. In contrast to velocity-level visual servoing schemes

(Hashimoto et al., 1991; Malis et al., 2010; Zhang et al., 2017;

Liang et al., 2018; Van et al., 2018; Zhang and Li, 2018; Xu et al.,
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2019; Li et al., 2020), the proposed AIVS scheme (9) offers two

advantages. First, it utilizes joint acceleration as the control signal,

resulting in continuous joint velocities. This helps mitigate the

issues associated with excessive and discontinuous joint velocities.

Second, AIVS scheme (9) takes into account the equality and

inequality constraints at the acceleration level. This allows for a

more comprehensive consideration of constraints, expanding the

range of applications.

3.2 RNN solution and theoretical analysis

For the AIVS scheme (9), the pseudoinverse method is applied

to generate the relevant RNN solution (Cigliano et al., 2015; Li et al.,

2020). Primarily, as reported in the study by Zhang and Zhang

(2012) and Xie et al. (2022), one can readily extend pixel coordinate

error p− pd into the acceleration level by neural dynamics method

(Liufu et al., 2024) as

p̈− p̈d = −α(ṗ− ṗd)− β(p− pd), (10)

where the design parameter α > 0 and β > 0; ṗd and p̈d
are the desired velocity and the desired acceleration of the pixel

coordinates, respectively. It is worth pointing out that the desired

pixel coordinates pd is a constant, thus ṗd = p̈d = 0. As a result,

Equation (10) can be rearranged as

p̈ = −αṗ− β(p− pd). (11)

Substituting Equation (11) into Equation (9b), it could be obtained:

J̇φ̇ + Jφ̈ = −αṗ− β(p− pd).

In light of the pseudoinverse method, the joint acceleration can

be minimized with the following formula:

φ̈ = J
†(−αṗ− β(p− pd)− J̇φ̇), (12)

where superscript † denotes the pseudoinverse operation of

a matrix with J† = JT(JJT)−1. It is deserved to note that

Equation (12) is employed in the study by Keshmiri et al. (2014)

and Anwar et al. (2019) to generate the acceleration command for

a manipulator. However, the research in the study by Keshmiri

et al. (2014) and Anwar et al. (2019) does not consider joint

constraints of the manipulator. To address this problem, the RNN

corresponding to the AIVS scheme (9) is derived as

φ̈ = Pγ (J
†(−αṗ− β(p− pd)− J̇φ̇)), (13)

where projection function Pγ (c) = argminb∈γ ||b − c||2.
Furthermore, theoretical analyses regarding the convergence of

RNN (13) are presented as follows.

Theorem 1: The pixel error ξ = p− pd driven by AIVS scheme

(9) assisted with RNN (13) globally converges to a zero vector.

Proof: According to Equations (7, 13), one has

p̈ = Jφ̈ + J̇φ̇ = JPγ (J
†(−αṗ− β(p− pd)− J̇φ̇))+ J̇φ̇.

Due to the fact that pd is a fixed feature, error function ξ̈ can be

readily derived as

ξ̈ = JPγ (J
†(−αξ̇ − βξ − J̇φ̇))+ J̇φ̇.

By considering the projection function, a substitution matrixH

is designed to replace Pγ (·), leading to

ξ̈ = JHJ
†(−αξ̇ − βξ − J̇φ̇)+ J̇φ̇, (14)

of which

H =













h1 0 · · · 0

0 h2 · · · 0
...

...
. . .

...

0 0 · · · hm













∈ R
m×m

and

hi =
(

Pγ (J
†(−αṗ− β(p− pd)− J̇φ̇))

)

i
(

J†(−αṗ− β(p− pd)− J̇φ̇)
)

i

∈ (0, 1].

By matrix decomposition, structural analyses of matrix

JHJ† = [a11, a12; a21, a22 ∈ R
2×2 are given as follows:

JHJ
† = JLLTJT(JJT)−1,

where L =
√
H. In this regard, matrix JHJ† can be viewed as

the product of two positive definite matrices. It is evident that the

eigenvalues of JHJ† are greater than zero and det(JHJ†) =
det(JLLTJT)det((JJT)−1) > 0 with det(·), denoting the

determinant of amatrix. According to the properties of the diagonal

elements of the matrix, it can be concluded that the diagonal

elements of JHJ† are greater than zero (a11 > 0, a22 > 0).

Furthermore, Equation (12) can be rewritten as

[

ξ̈1

ξ̈2

]

=
[

a11 a12
a21 a22

] [

−αξ̇1 − βδξ1 − (J̇φ̇)1
−αξ̇2 − βξ2 − (J̇φ̇)2

]

+
[

(J̇φ̇)1
(J̇φ̇)2

]

,

and further we get

ξ̈1 + a11αξ̇1 + a11βξ1 =− a12(αξ̇2 + βξ2 + (J̇φ̇)2)

+ (1− a11)(J̇φ̇)1

and

ξ̈2 + a22αξ̇2 + a22βξ2 =− a21(αξ̇1 + βξ1 + (J̇φ̇)1)

+ (1− a22)(J̇φ̇)2,

which can be regarded as a perturbed second-order constant

coefficient differential equation with respect to ξ . In conclusion,

pixel error ξ is able to converge exponentially. To illustrate

the steady state of the system (Equation 14), further derivations

continue to be given. As the pixel error decreases, all joint

properties return to the interior of joint constraints. In this sense,

joint properties, i.e., φ̈, φ̇ and φ, are all inside the joint limits with

hi = 1. Therefore, Equation (14) can be reorganized as

ξ̈ (t)+ αξ̇ (t)+ βξ (t) = 0. (15)
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It is worth mentioning that Equation (15) can be regarded as a

second-order constant coefficient differential equation with regard

to ξ . Moreover, the solutions of Equation (15) can be segmented

into three subcases on account of different settings of α and β , given

the original state ξ (0) = p− pd.

Subcase I: As for α2 − 4β > 0, the characteristic roots could

be obtained simply as R1 = (−α +
√

α2 − 4β)/2 and R2 =
(−α −

√

α2 − 4β)/2 with real number R1 6= R2. Therefore, one

can readily deduce

ξ (t) = ξ (0)(D1exp(R1t)+ D2exp(R2t)),

withD1 = α/(2
√

α2 − 4β)+ 1/2 andD2 = 1/2−α/(2
√

α2 − 4β)

Subcase II: As to α2 − 4β = 0, calculating characteristic roots

generatesR1 = R2 = −α/2. Hence, it can be readily obtained:

ξ (t) = ξ (0)exp(−α/2t)(1+ α/2t).

Subcase III: As to α2 − 4β < 0, we get two complex number

roots as R1 = ζ + iη and R2 = ζ − iη. Accordingly, it is evident

that

ξ (t) = ξ (0)exp(−ζ t)(cos(ηt)− ζ sin(ηt)/η).

The above three subcases indicate that the pixel error ξ = p − pd
converges to zero over time globally. The proof is complete.

4 DAIVS solution

The existing IBVS schemes, including the AIVS scheme (9),

often require a detailed knowledge of the robot visual servoing

system. However, in a non-ideal state, many unknown cases

often exist, which can disturb the precise control of the robot,

thus resulting in large errors. Recalling the data-driven learning

algorithm (Equation 8), virtual visual Jacobianmatrix J̄ is exploited

to solve this issue.

4.1 DAIVS scheme and RNN solution

Based on the virtual visual Jacobian matrix, a DAIVS scheme

(8) would be designed as

minimize
1

2
φ̈Tφ̈

subject to p̈ = J̄φ̈ + ˙̄
Jφ̇

p = pd

φ̈ ∈ γ .

It is a remarkable fact that the DAIVS scheme does not

involve the visual structure of the real robot. Instead, the virtual

visual Jacobian matrix J̄ conveys the transformation relationship

between the joint space and image space to deal with possible

unknowns in the structure of the robot system. Compared with

acceleration-level visual servoing schemes (Keshmiri et al., 2014;

Anwar et al., 2019), the proposed DAIVS scheme offers two distinct

advantages. First, it prioritizes the safety aspect by considering

joint limits. Second, the DAIVS scheme takes into account the

uncertainty of the robot vision system and employs the virtual

visual Jacobian matrix for robot control, enhancing the fault

tolerance ability. The existing acceleration-level visual servoing

schemes (Keshmiri et al., 2014; Anwar et al., 2019) cannot

accurately implement visual servoing tasks when the Jacobian

matrix lacks precision. Furthermore, combining Equations (8, 13)

generates

φ̈ = Pγ (J̄
†
(−αṗ− β(p− pd)− ˙̄

Jφ̇)) (16a)

˙̄
J = −δ(J̄φ̇ − ṗ)φ̇T. (16b)

It is worth pointing out that the RNN (16) is divided into

the inner cycle and outer cycle, i.e., the learning cycle and

control cycle. Subsystem (Equation 16a), which can be viewed

as the outer cycle, mainly generates the control signal to adjust

the joint properties via virtual visual Jacobian matrix J̄. In

return, inner cycle (Equation 16b) with learning ability can

explore the relationship between end-effector motion and joint

motion, thus producing virtual visual Jacobian matrix J̄ to

simulate the movement process of real robots. From a control

point of view, the inner cycle (Equation 16b) must converge

faster than the outer cycle (Equation 16a). In this sense, δ ≫
α is a necessary condition for the normal operation of the

system.

Note that both RNN (13) and RNN (16) involve the use of

pseudo-inverse operations. As a result, various existing methods

can be employed to mitigate singularity issues, such as the damped

least squares method. Specifically, J† can be calculated via J† =
JT(JJT + hI)−1 with h being a tiny constant and I being an

identity matrix. The additional item hI ensures that all eigenvalues

of JJT + hI are never zero during the inversion process, thereby

preventing singular issues. In addition, RNN (16) relies on the

virtual visual Jacobianmatrix and estimates the real Jacobianmatrix

using Equation (16b). This enables a robust handling of the visual

system’s uncertainty. However, RNN (13) relies on the real visual

Jacobian matrix, leading to potential inaccuracies in the robot

control process.

4.2 Stability analyses of RNN

The learning and control performance of the proposed DAIVS

scheme aided with RNN (16) are proved by the following

theorem.

Theorem 2: The Jacobian matrix error E = J̄ − J and pixel

error ξ = p− pd produced by RNN (16) converges to zero, given a

large enough δ.

Proof: The proof is segmented into two parts: (1) proving

learning convergence; (2) proving control convergence.

Part 1: Proving learning convergence. Design the i-th system

of Jacobian matrix error as Ei = J̄i − Ji (i = 1, 2) where J̄i and

Ji denote the i-th row of J̄ and J and set the Lyapunov candidate

Vi = (J̄i−Ji)(J̄i−Ji)
T. Calculating the time derivative of Vi leads
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to

V̇i = ( ˙̄Ji − J̇i)(J̄i − Ji)
T

= −δ(J̄iφ̇ − ṗi)φ̇
T(J̄i − Ji)

T − J̇i(J̄i − Ji)
T

= −δ(J̄iφ̇ − Jiφ̇)φ̇
T(J̄i − Ji)

T − J̇i(J̄i − Ji)
T

≤ −δ5(φ̇φ̇T)(J̄i − Ji)(J̄i − Ji)
T − J̇i(J̄i − Ji)

T,

where ṗi represents the i-th element of ṗ, and 5(φ̇φ̇T) denotes the

least eigenvalue of matrix φ̇φ̇T. When the manipulator is tracking

the feature, the value of 5(φ̇φ̇T) is always greater than zero. In this

case, we substitute Ei = J̄i − Ji into the above equation, resulting

in the following expression:

V̇i ≤ −δ5(φ̇φ̇T)EiE
T
i − J̇iE

T
i

≤ −δ5(φ̇φ̇T)||Ei||22 + ||J̇i||2||Ei||2
= ||Ei||2(||J̇i||2 − δ5(φ̇φ̇T)||Ei||2).

For further analysis, we consider three cases based on the above

equation:

• If ||Ei||2 > ||J̇i||2/δ5(φ̇φ̇T), we observe V̇i < 0 and Vi > 0.

This indicates that in this case, Ei converges until ||Ei||2 =
||J̇i||2/δ5(φ̇φ̇T).

• If ||Ei||2 = ||J̇i||2/δ5(φ̇φ̇T), we find V̇i ≤ 0 and Vi > 0. This

implies that Ei will continue to converge or remain at the state

with ||Ei||2 = ||J̇i||2/δ5(φ̇φ̇T).

• If ||Ei||2 < ||J̇i||2/δ5(φ̇φ̇T), we have two possibilities:

either V̇i > 0 and Vi > 0, or V̇i ≤ 0 and Vi >

0. In the former possibility, the error will increase until

||Ei||2= ||J̇i||2/δ5(φ̇φ̇T). In the latter possibility, the error will

continue to converge or remain constant.

Combining the above three cases, it can be summarized that

limt→+∞ ||Ei||2 ≤ ||J̇i||2/δ5(φ̇φ̇T). Furthermore, it can be

deduced that the Jacobian matrix error E = J̄ − J produced by

RNN (16a) globally approach zero, given a sufficiently large value

of δ.

Part 2: Proving control convergence.

According to the proof in Part 1, we take advantage of the

LaSalle’s invariant principle (Khalil, 2001) again to conduct the

convergence proof on Equation (16b). In other words, the following

formula is provided by replacing J̄ and ˙̄
J with J and J̇:

φ̈ = Pγ (J
†(−αṗ− β(p− pd)− J̇φ̇)), (17)

which is equivalent to Equation (13). In consequence, the proof

on the convergence of the pixel error p − pd in Equation (17) has

been discussed in Theorem 1 and thus omitted here. The proof is

complete.

5 Simulation verifications

In this section, simulations are conducted on a Franka Emika

Panda manipulator with 7 DOFs for completing a visual servoing

task, which are synthesized by the proposed AIVS scheme (9) and

the proposed DAIVS scheme. Note that the AIVS scheme (9) is able

to drive the redundant manipulator to perform the visual servoing

task with a given visual Jacobian matrix, and that, the DAIVS

scheme can deal with the unknown situation in the robot system

dynamically in the absence of the visual Jacobian matrix. For the

simulations, this study utilizes a computer with an Intel Core i7-

12700 processor and 32 GB RAM. The simulations are performed

using MATLAB/Simulink software version R2022a.

First, some necessary information and parameter settings about

the manipulator and camera structure are given below. The Franka

Emika Panda manipulator is a 7-DOF redundant manipulator

(Gaz et al., 2019), with a camera mounted on its end-effector. In

addition, we set l = 8 × 10−3 m, u0 = v0 = 256 pixel, ax =
ay = 8 × 104 pixel/m, and design µ = ν = 20 with z = 2,

task execution time T = 20 s and pd = [256, 256]T pixel. In

addition, the joint limits are set as φ̈+ = −φ̈− = [2]7×1 rad/s2,

φ̇+ = −φ̇− = [0.6]7×1 rad/s, φ+ = −φ− = [2.5]7×1 rad and

θ = [0.076]7×1 rad. It is noteworthy that the parameters can be

divided into two categories: structural parameters and convergence

parameters. Structural parameters, such as l, u0, v0, ax, and ay, are

dependent on the configuration of the visual servo system. On the

other hand, the convergence parameters, namely, µ, ν, α, β , and δ,

play a vital role in adjusting the convergence behavior of RNN (16).

These convergence parameters are set to values greater than zero,

and their specific values can be determined through the trial and

error method.

5.1 Simulation of AIVS scheme

In this subsection, in order to prove the feasibility of the AIVS

scheme (9), four simulations with different initial position states

of the Franka Emika Panda manipulator are conducted to trace

one desired feature with results shown in Figure 3. Simply design

α = 10 and β = 10. It would be readily discovered from

Figure 3A that four test examples from four different directions are

straightforward to successfully pursue the desired pixel. With test

4 as an example, detailed joint data and pixel errors are shown in

Figure 3B through Figure 3F, which illustrate that the joint angle,

joint velocity, and joint acceleration are all kept inside the joint limit

and that the pixel error can converge to zero within 5 s. The above

descriptions well verify the validity of the proposed AIVS scheme

(9) in the case of the known visual servoing Jacobianmatrix to solve

the visual servoing problem at the acceleration level.

5.2 Simulation of DAIVS scheme

This subsection indicates the feasibility and capability of the

pixel error convergence of the DAIVS scheme aided with the

RNN (16) by providing simulation results, as shown in Figure 4.

Furthermore, we choose δ = 2× 104, α = 10 and β = 40. Notably,

the virtual visual Jacobian matrix is exploited with random initial

values, instead of the real visual Jacobian matrix to facilitate system

operation. The end-effector of the robotic arm is oriented toward

the object, as shown in Figure 4A. In addition, the joint acceleration

is shown in Figure 4B, which is confined to the joint limit and

maintain the normal operation. As shown in Figure 4C, the Franka
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A B C

D E F

FIGURE 3

Simulations on a Franka Emika Panda manipulator carrying out IBVS task synthesized by the AIVS scheme (9) assisted by RNN (13) with four test

examples. (A) Profiles of feature trajectories and desired pixel point in four tests. (B) Profiles of joint acceleration in test 4. (C) Profiles of joint velocity

in test 4. (D) Profiles of joint angle in test 4. (E) Profiles of pixel error in test 4. (F) Profiles of Euclidean norm of pixel error in test 4.

A B

C D

FIGURE 4

Simulation results on a Franka Emika Panda manipulator with unknown structure carrying out the IBVS task synthesized by the DAIVS scheme

assisted with RNN (16). (A) Profiles of the movement process. (B) Profiles of the joint acceleration. (C) Profiles of the pixel error. (D) Profiles of the

Euclidean norm of learning error.
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FIGURE 5

Simulation results on a Franka Emika Panda manipulator with accurate structure information carrying out IBVS task. (A) Profiles of motion process

assisted with RNN (13). (B) Profiles of joint acceleration assisted with RNN (13). (C) Profiles of joint velocity assisted with RNN (13). (D) Profiles of pixel

error assisted with RNN (13). (E) Profiles of motion process assisted with RNN (18). (F) Profiles of joint acceleration assisted with RNN (18). (G) Profiles

of joint velocity assisted with RNN (18). (H) Profiles of pixel error assisted with RNN (18).

Emika Panda manipulator successfully traces the desired feature

with pixel error converging to zero and maintaining the order of

10−2 pixel. As for the learning ability, Figure 4D illustrates that the

virtual robot manipulator can learn the movement of the real robot

manipulator with the learning error approaching to zero in 0.05 s

and maintaining the order of 10−4 pixel/s. In short, the simulation

results in Figure 4 highlight the simultaneous learning and control

ability of RNN (16).

5.3 Comparisons of proposed schemes

This subsection offers simulation comparison results between

the proposed schemes aided with the corresponding RNNs and the

IBVS method presented in the study by Zhang and Li (2018). In

this regard, the RNN provided in the study by Zhang and Li (2018)

is shown as

φ̇ = Pγ (−κ1J
T(p− pd)− κ2J

T

∫ t

0
(p− pd)dt), (18)

where parameters κ1 > 0 and κ2 > 0 determine the rate of

error convergence. It is worth pointing out that the IBVS method

in the study by Zhang and Li (2018) assisted with RNN (18) is

constructed from the viewpoint of the velocity level, and that,

RNN (18) requires exact structural information J to maintain the

normal operation.

In the first place, simulations are conducted on the Franka

Emika Panda manipulator for IBVS task with Figures 5A–D

synthesized by RNN (13) and Figures 5E–H synthesized by RNN

(18). Notably, the results in Figure 5 are carried out on the premise

of known structural information J with parameters κ1 = κ2 = 2,

α = 10, and β = 10. As shown in Figures 5A, E, the manipulator’s

end-effector is controlled to point toward the object. In Figure 5B,

the joint acceleration generated by RNN (13) is safely confined

within the joint limits, while the joint acceleration generated by

RNN (18) exists a sudden change of ∼38 rad/s2 in Figure 5F,

which may cause damage to the robot. Furthermore, in contrast

to Figure 5G, the joint velocity shown in Figure 5C is smaller and

exhibits smoother changes, making it more suitable for real-world

scenarios. Figures 5D,H demonstrate that both RNN (13) and RNN
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A B

C D

FIGURE 6

Simulation results on a Franka Emika Panda manipulator carrying out IBVS task with unknown structure. (A) Profiles of joint velocity assisted with RNN

(16). (B) Profiles of pixel error assisted with RNN (16). (C) Profiles of joint velocity assisted with RNN (18). (D) Profiles of pixel error assisted with RNN

(18).

TABLE 1 Comparisons among di�erent approaches for visual servoing of robot manipulators.

Visual Scheme Velocity Acceleration Structure Jacobian matrix

servoing level constraints constraints information learning

RNN (13) Yes Acceleration Yes Yes Unnecessary Yes

RNN (16) Yes Acceleration Yes Yes Necessary No

Van et al. (2018) Yes Velocity No No Necessary No

Hashimoto et al. (1991) Yes Velocity No No Necessary No

Zhang et al. (2017) Yes Velocity Yes No Necessary No

Zhang and Li (2018) Yes Velocity Yes No Necessary No

Li et al. (2020) Yes Velocity Yes No Necessary No

Keshmiri et al. (2014) Yes Acceleration No No Necessary No

Anwar et al. (2019) Yes Acceleration No No Necessary No

Zhu et al. (2022) Yes Torque No No Necessary No

(18) are able to quickly propel pixel errors to zero. Therefore, it is

concluded from the above results that AIVS scheme (9) aided by

RNN (13) is able to guarantee a better safety performance when

controlling the manipulator.

Beyond that, in the case of the unknown visual system,

corresponding comparison simulations are driven by the DAIVS

scheme aided with the RNN (16) and the IBVS method in the

study by Zhang and Li (2018) assisted with RNN (18). The results

are shown in Figure 6 with parameters κ1 = κ2 = 2, α = 10,

β = 40, and δ = 2 × 104. To simulate the unknown visual

system, J̄ in Equation (16) and J in Equation (18) are random

matrices of constants with the absolute value of each element <

100. Figures 6A, B well embody that, when encountering unknown

structural information, the DAIVS scheme assisted with RNN

(16) controls the Franka Emika Panda manipulator to preferably

complete IBVS task with the pixel error converging to zero.

Nevertheless, the generated joint velocity in Figure 6C changes

dramatically within the joint limit in a mess. Even worse, the
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FIGURE 7

Physical experiments on a Franka Emika Panda manipulator assisted with RNN (16) for carrying out IBVS task with a fixed target. (A) Initial states of the

manipulator and camera. (B) Final states of the manipulator and camera. (C) Profiles of joint acceleration. (D) Profiles of tracking error.

pixel error driven by RNN (18) does not converge and maintain

a diffused state, which indicates the failure of the IBVS task. In

conclusion, the proposed DAIVS scheme is able to deal with the

unknown structural information in the robot system and fulfill

the visual servo control with simultaneous learning and control

performance.

Furthermore, comparison results among different existing

approaches (Hashimoto et al., 1991; Keshmiri et al., 2014; Zhang

et al., 2017; Van et al., 2018; Zhang and Li, 2018; Anwar et al.,

2019; Li et al., 2020; Zhu et al., 2022) for visual servoing of robot

manipulators are presented in Table 1. It is worth emphasizing

that, compared with the prior art, the proposed RNN (13) and

RNN (16) are the first acceleration-level work, considering the

multiple levels of joint constraints, and RNN (16) is the first

study to dispose the unknown situations in the robot visual

system with simultaneous learning and control ability. As a

result, the above two points are the innovative contributions of

this study.

6 Experiments on real manipulators

To verify the effectiveness and practicability of the proposed

DAIVS scheme, physical experiments on a real manipulator are

conducted in this section, which are driven by the DAIVS scheme

aided with RNN (16). Specifically, the experiments essentially rely

on C++ and the visual servoing platform (ViSP) for embedding

algorithms and control (Marchand et al., 2005), which are built on

ubuntu 16.04 LTS operating system. In addition, the experiment

platform consists of a Franka Emika Panda manipulator, an Intel

RealSense Camera D435i, a personal computer, and an AprilTag

(target). It is worth mentioning that the acceleration control
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FIGURE 8

Physical experiments on a Franka Emika Panda manipulator assisted with RNN (16) for carrying out IBVS task with a moving target.

commands generated by the proposed RNN (16) are transmitted

in a discrete form with a frequency of 1,000 Hz, and parameter

settings of RNN (16) are designed as follows. We choose α =
10, β = 10, δ = 106, µ = ν = 20, φ̈+ = −φ̈− =
[15, 7.5, 10, 12.5, 15, 20, 20]T rad/s2, φ̇+ = −φ̇− =
[2.1, 2.1, 2.1, 2.1, 2.6, 2.6, 2.6]T rad/s, φ+ = [2.8, 1.7, 2.8, −
0.1, 2.9, 3.7, 2.8]T rad, φ− = [−2.8, − 1.7, − 2.8, − 3.0, −
2.8, − 0, − 2.8]T rad, and J̄(0) = J(0). As for the parameter

settings of the camera and pixel coordinates, they can be directly

referenced to ViSP (Marchand et al., 2005). Different from the

previous simulations, the physics experiments set the target as

an AprilTag containing four features. As a result, the physical

parameters associated with the features are expanded to 8 instead

of 2.

Experiment results on the Franka Emika Panda manipulator

tracking the fixed target are shown in Figures 7, 8 with pd =
[−0.06, − 0.06, 0.06, − 0.06, 0.06, 0.06, − 0.06, 0.06]T m

for the given task in the camera system. It is worth mentioning

that the robot manipulator adjusts the joint state to recognize and

approach the target, and when the pixel error reaches the order of

10−5 pixel, the task automatically completes. It is important that

the whole process of learning and control does not involve the real

Jacobian matrix to simulate the situation of the unknown structure.

In Figures 7A, B, the initial and final states of the manipulator and

camera indicate that the visual servoing task is successfully realized

by the DAIVS scheme with execution time of 1.25 s. Specifically,

the joint acceleration in Figure 7C varies normally within the

joint constraints. In the meantime, the tracking errors ξ of four

features are presented in Figure 7D, which illustrate the precise

control ability of the DAIVS scheme with global convergence

to zero.

Beyond that, experiments on the Franka Emika Panda

manipulator tracking the moving target are conducted to

demonstrate the feasibility of the DAIVS scheme. In Figure 8, the

AprilTag is moved artificially by the hand toward the left and right

and simultaneously the manipulator constantly adjusts joint states

to achieve the characteristics of real-time visual tracking. More

vividly, the experiment videos corresponding to Figures 7, 8 are

available at https://youtu.be/6uw35bidVcw.

7 Conclusion

This study has proposed an AIVS scheme for robot

manipulators, taking into account joint limits at multiple

levels. On this basis, incorporating data-driven techniques, a

DAIVS scheme has been proposed to handle potential unknown

situations in the robot visual system. Furthermore, RNNs have

been exploited to generate the online solution corresponding to

the proposed schemes with theoretical analyses, demonstrating the

simultaneous learning and control ability of the proposed DAIVS

scheme. Then, numerous simulations and experiments have

been carried out on a Franka Emika Panda manipulator to track

the desired feature. The results validate the theoretical analyses,

demonstrate the feasibility of the AIVS scheme, and showcase the

fast convergence and robustness of the DAIVS scheme. Compared

with the method in the study by Zhang and Li (2018), the DAIVS

scheme exhibits superior learning capability and achieves visual

servoing control with the unknown Jacobian matrix.

In summary, this study provides a data-driven approach for the

precise manipulation of robots in IBVS tasks, addressing unknown

situations that could affect the robot’s Jacobianmatrix. In the future,

we aim to expand our research to incorporate dynamic factors,

utilizing joint torque as control signals and considering dynamic

uncertainties.
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