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Real-time precision detection
algorithm for jellyfish stings in
neural computing, featuring
adaptive deep learning enhanced
by an advanced YOLOv4
framework

Chao Zhu*, Hua Feng and Liang Xu

Emergency Department of Qinhuangdao First Hospital, Qinhuangdao, Hebei, China

Introduction: Sea jellyfish stings pose a threat to human health, and traditional

detection methods face challenges in terms of accuracy and real-time

capabilities.

Methods: To address this, we propose a novel algorithm that integrates YOLOv4

object detection, an attentionmechanism, and PID control. We enhance YOLOv4

to improve the accuracy and real-time performance of detection. Additionally,

we introduce an attention mechanism to automatically focus on critical

areas of sea jellyfish stings, enhancing detection precision. Ultimately, utilizing

the PID control algorithm, we achieve adaptive adjustments in the robot’s

movements and posture based on the detection results. Extensive experimental

evaluations using a real sea jellyfish sting image dataset demonstrate significant

improvements in accuracy and real-time performance using our proposed

algorithm. Compared to traditional methods, our algorithm more accurately

detects sea jellyfish stings and dynamically adjusts the robot’s actions in real-

time, maximizing protection for human health.

Results and discussion: The significance of this research lies in providing an

e�cient and accurate sea jellyfish sting detection algorithm for intelligent robot

systems. The algorithm exhibits notable improvements in real-time capabilities

and precision, aiding robot systems in better identifying and addressing sea

jellyfish stings, thereby safeguarding human health. Moreover, the algorithm

possesses a certain level of generality and can be applied to other applications

in target detection and adaptive control, o�ering broad prospects for diverse

applications.
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1 Introduction

The development of intelligent robots has been widely applied across various fields,
including target detection and adaptive control (Martin-Abadal et al., 2020). In tasks such
as marine exploration and rescuemissions, detecting sea Jellyfish stings is crucial due to the
threat they pose to human health. However, traditional detection methods face challenges
in terms of accuracy and real-time capabilities, necessitating the development of a new
algorithm (Cunha and Dinis-Oliveira, 2022). The purpose of this paper is to propose an
adaptive intelligent robot algorithm for real-time and accurate sea Jellyfish sting detection,
based on an improved Yolov4, attention mechanism, and PID control. This algorithm
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aims to enhance the accuracy and real-time performance of sea
Jellyfish sting detection, thereby better safeguarding human health
(Cunha and Dinis-Oliveira, 2022). Here are five commonly used
deep learning or machine learning models in the fields of target
detection and adaptive control:

YOLO (You Only Look Once) (Gao M. et al., 2021) is a
fast and real-time object detection model. It employs a single
neural network to perform object detection in a single forward
pass, making it suitable for applications with high real-time
requirements. YOLO’s network structure is relatively simple, and
both training and inference processes are efficient. By dividing the
image into a grid, with each grid predicting the bounding box
and category of the target, YOLO can capture global contextual
information. However, YOLO exhibits lower detection accuracy for
small and dense targets, and its localization precision is limited.

Faster R-CNN (Region-based Convolutional Neural Network)
(Zeng et al., 2021) is an object detection model with high detection
accuracy. It achieves object detection through two main steps:
extracting candidate regions and classifying and locating these
regions. Faster R-CNN excels in detection accuracy and can handle
various target sizes and densities. However, due to the need for
multiple steps and complex computations, Faster R-CNN has a
relatively slower speed and is not suitable for real-time applications.

SSD (Single Shot MultiBox Detector) (Ma et al., 2021) is a
fast object detection model suitable for real-time applications. SSD
detects targets by applying a convolutional sliding window on
feature maps of different scales. It has good detection speed and
high accuracy, adapting well to targets of different sizes. However,
compared to other models, SSD’s detection accuracy for small
targets is relatively lower.

RetinaNet (Liu et al., 2023) is an object detection model that
performs well in handling small targets. It introduces a novel loss
function that balances samples with different target sizes. It exhibits
good performance in detecting small targets, effectively addressing
the issue of small targets being easily overlooked. However, its
detection accuracy is relatively lower when dealing with dense and
large targets.

Mask R-CNN (Nie et al., 2020) is an object detection model
capable of pixel-level segmentation of targets. In addition to
detecting the bounding box and category of targets, Mask R-CNN
can generate precise masks for targets. This makes Mask R-CNN
highly useful when detailed target segmentation information is
required. However, due to the need for pixel-level predictions,Mask
R-CNN has a relatively slower speed.

The following are three related research directions:
Improving small object detection accuracy in real-time object

detection models. Real-time object detection plays a crucial role
in various application domains, but current real-time models face
challenges in achieving high accuracy for small object detection
(Mahaur et al., 2023). To enhance the small object detection
accuracy in real-time object detection models, research can focus
on the following aspects: Firstly, improving feature representation
capabilities. Secondly, designing more refined object detection
loss functions. Existing object detection loss functions may have
issues with small objects as they tend to prioritize larger targets
(Khamassi et al., 2023). By researching and improving in the above
directions, the performance of real-time object detection models in
small object detection accuracy can be enhanced, expanding their

applicability to a wider range of real-world scenarios (Zhang et al.,
2022).

Integrating multimodal information in object detection models
(Chen et al., 2019). Object detection is typically based on image
data, but in some application scenarios, combining multimodal
information from other sensors may provide more accurate and
comprehensive object detection results (Gao W. et al., 2021).
Therefore, researching object detection models that integrate
multimodal information is a promising direction. One approach
is to fuse image data with other sensor data to improve detection
accuracy and robustness (Wu et al., 2021).

Designing and optimizing lightweight object detection models.
In resource-constrained scenarios like embedded devices or mobile
platforms, there is a demand for object detection models with small
model sizes and low computational complexity while maintaining
high detection accuracy (Han et al., 2022). Therefore, designing
and optimizing lightweight object detection models is a challenging
and practical direction (Li et al., 2018). One approach is to
reduce model size and computational complexity through network
compression and model pruning (Huang et al., 2018). Exploring
the use of lightweight network structures such as MobileNet and
ShuffleNet for fine-tuning on object detection tasks is one option.
Additionally, techniques like parameter sharing, channel pruning,
and quantization can reduce model parameters and computations
for designing lightweight object detection models (Lin and Xu,
2023).

Traditional sea Jellyfish sting detection methods face issues
in accuracy and real-time capabilities. Therefore, we propose
a new algorithm that integrates improved Yolov4, attention
mechanism, and PID control to enhance detection accuracy
and real-time performance. Firstly, we enhance Yolov4 to
improve the accuracy and real-time performance of detection.
This involves adjusting network architecture, loss functions, and
data augmentation strategies to adapt Yolov4 for sea Jellyfish
sting detection tasks. Secondly, we introduce an attention
mechanism to automatically focus on critical areas of sea
Jellyfish stings, enhancing detection precision. Using attention
mechanisms such as SENet or SAM enhances the model’s focus
on target areas, improving accuracy and robustness. Lastly,
we employ the PID control algorithm to achieve adaptive
adjustments in the robot’s movements and posture based on
detection results. The PID control algorithm adjusts parameters
in response to error signals, enabling real-time and precise
control based on detected sea Jellyfish stings. In the field of
sea Jellyfish sting detection, traditional methods face challenges
in accuracy and real-time capabilities. Thus, we propose an
adaptive intelligent robot algorithm for real-time and accurate sea
Jellyfish sting detection, integrating improved Yolov4, attention
mechanism, and PID control. This algorithm addresses issues with
traditional methods and enhances the ability to protect human
health.

• Comprehensive comparison of different object detection
models: This paper provides a comprehensive comparison
of five commonly used object detection models, namely
YOLO, Faster R-CNN, SSD, RetinaNet, and Mask R-CNN. By
analyzing their strengths and weaknesses, readers can gain a
better understanding of each model’s characteristics, enabling
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them to choose the most suitable model for their specific
application scenarios.

• Emphasis on model applicability and limitations: The paper
underscores the applicability and limitations of each model.
This information assists readers in selecting the most
appropriate object detection model based on their individual
needs and application contexts. For instance, if real-time
performance is a priority, faster models like YOLO or SSD
may be preferred. Conversely, if higher detection accuracy is
required, Faster R-CNN or RetinaNet might be more suitable.

• Providing a comprehensive understanding of object detection
models: The paper offers brief introductions to the principles
and features of each model, enabling readers to gain a
comprehensive understanding of object detection models.
This knowledge empowers readers to delve deeper into
the research and application of object detection technology,
making informed decisions in practical projects.

2 Methodology

2.1 Overview of our network

The Adaptive Intelligent Robot Real-time Accurate Detection
Algorithm for Sea Jellyfish Sting Injuries, based on Improved
YOLOv4 and Attention Mechanism combined with PID Control,
aims to achieve precise detection and identification of sting injuries
in the marine environment. This is accomplished by integrating
object detection, attention mechanism, and control algorithms to
adaptively adjust the robot’s actions in response to changes and
errors during the detection process. Figure 1 represents the overall
schematic diagram of the proposed model.

Optimize the network structure, training strategies, and loss
functions of YOLOv4 to enhance the accuracy and efficiency of
the object detection algorithm. Introduce an attention mechanism
to enable the algorithm to focus on important image regions,
improving detection accuracy and robustness. This can be achieved
by adding attention modules to the network or by adjusting feature
map weights. Design a PID control algorithm to utilize the error
between detection results and expected values to adjust the robot’s
actions and behaviors. This adaptation is crucial to cope with
variations and errors encountered during the detection process.

Overall implementation process:

• Data collection and preparation: Gather images or video data
from the marine environment and preprocess it, including
tasks such as image enhancement and noise reduction.

• Design of object detection network: Design and enhance the
YOLOv4 network structure, involving adjustments to network
layers, the introduction of new feature extraction modules, or
optimization of loss functions.

• Introduction of attention mechanism: Incorporate an
attention mechanism into the object detection network,
allowing the model to concentrate on crucial image regions.
This can be achieved by adding attentionmodules or adjusting
feature map weights within the network.

• Design of PID control algorithm: Develop a PID control
algorithm to dynamically adjust the robot’s actions and

behaviors based on the error between detection results
and expected values. The PID algorithm encompasses
proportional, integral, and derivative control parameters.

• Training and optimization: Train the improved network
using annotated data and optimize network parameters
and attention mechanisms through the iterative process of
backpropagation. This optimization is performed iteratively
on training and validation sets. Real-time Detection and
Feedback:

Deploy the trained model and control algorithm to the
intelligent robot for real-time detection and feedback in the marine
environment. The robot captures marine images or videos, feeds
them into the object detection network for real-time sting injury
detection, and adjusts its actions based on the comparison between
detection results and expected values. This adaptation allows the
robot to accommodate changes and errors encountered during the
detection process.

2.2 Advanced YOLOv4 model

Advanced YOLOv4 is an improved version of the traditional
YOLOv4 object detection algorithm, designed to enhance
detection accuracy and efficiency. The following details the
fundamental principles and roles of the Advanced YOLOv4
model in this approach (Roy et al., 2022). Advanced YOLOv4
incorporates a series of improvements, including adjustments to
the network structure, optimization of feature extraction modules,
enhancement of loss functions, and optimization of training
strategies. These improvements aim to enhance the performance
and speed of the object detection algorithm (Wang and Liu, 2022).
Figure 2 shows the schematic diagram of the proposed Advanced
YOLOv4 model.

Network structure adjustments:
Advanced YOLOv4 modifies the YOLOv4 network structure

by introducing additional convolutional layers and residual
connections, thereby enhancing the network’s representational and
feature extraction capabilities. Optimization of Feature Extraction
Modules:

The model adopts CSPDarknet53 as the primary feature
extraction module, combining Cross-Stage Partial connections and
the structure of Darknet53. This integration better extracts image
features, contributing to improved detection accuracy. Improved
Loss Function:

Advanced YOLOv4 utilizes an enhanced loss function known
as the Generalized Intersection over Union (GIoU) loss function.
This function considers the overlap of target boxes when calculating
position and size errors, providing a more accurate measure of
target box matching. Optimized Training Strategy:

The model employs a multi-scale training strategy, training the
model on images at different scales. This approach enhances the
model’s adaptability to targets of varying sizes.

“GhostNet” is a lightweight convolutional neural network
architecture that introduces “ghost” modules, which use fewer
parameters and computational resources in each convolutional
layer, thereby achieving higher computational efficiency. In the
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FIGURE 1

The overall schematic diagram of the proposed model.

Advanced YOLOv4 model, we have incorporated “GhostNet”
as part of the base network structure to enhance the model’s
lightweight characteristics, speed up the detection process, and
reduce the computational resource requirements of the model.

“Depthwise Separable Convolution” is a type of convolution
operation that decomposes standard convolution into two
steps: depthwise convolution and pointwise convolution.
This decomposition significantly reduces the number of
parameters and computational load in the model, thereby
improving the model’s computational efficiency and speed. In
the Advanced YOLOv4 model, we have adopted “Depthwise
Separable Convolution” as part of the convolution operations
to accelerate the model’s inference process and enable faster
real-time detection.

Role in the Method: Advanced YOLOv4 plays a crucial role
in the Adaptive Intelligent Robot Real-time Accurate Detection
Algorithm for Sea Jellyfish Sting Injuries, which combines
improved YOLOv4 and attention mechanisms with PID control.

• Improved detection accuracy: Through network structure
adjustments and feature extraction module optimization,
Advanced YOLOv4 better extracts image features, thereby
enhancing the accuracy of object detection. This is crucial

for precise detection and identification of sea Jellyfish sting
injuries.

Enhanced detection efficiency: Optimization of the
network structure and training strategies in Advanced
YOLOv4 contributes to improved speed and efficiency of
the object detection algorithm. This is crucial for real-time
detection and feedback, enabling intelligent robots to respond
promptly to detection results.

• Improved loss function impact: The use of the GIoU loss
function in Advanced YOLOv4 contributes to more accurate
measurement of target box matching. This aids in improving
detection precision and provides more accurate error signals
for adaptive control.

The formula for Advanced YOLOv4 is as follows (Equation 1):
Coordinate loss term:

coord_loss = λcoord

S2
∑

i=0

B
∑

j=0

1
obj
ij

[

(xi − x̂i)
2 + (yi − ŷi)

2]

+ λcoord

S2
∑

i=0

B
∑

j=0

1
obj
ij

[

(
√
wi −

√

ŵi)
2 + (

√

hi −
√

ĥi)
2
]

(1)

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1375886
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhu et al. 10.3389/fnbot.2024.1375886

FIGURE 2

The schematic diagram of the proposed Advanced YOLOv4 model.

Among them, λcoord is the weight parameter of the coordinate
loss, S is the size of the feature map, B is the number of bounding

boxes predicted for each grid,1
obj
ij represents the indicator function

of whether the j-th bounding box in the i-th grid contains the
target, xi, yi is the j-th boundary box in the i-th grid The center
coordinates of the bounding box, x̂i, ŷi are the predicted center
coordinates of the j-th bounding box in the i-th grid, wi, hi
are the −thThewidthandheightofthej−thboundingboxinthei-th grid,
ŵi, ĥi are the predicted widths of the j-th bounding box in the i-th
grid and height (Equation 2).

Category loss items:

coordloss =
S2
∑

i=0

B
∑

j=0

1
obj
ij (Ci − Ĉi)

2 (2)

Among them, Ci is the category confidence score of the j-th
bounding box in the i-th grid, and Ĉi is the j-th bounding box in
the i-th grid (Equation 2). Predicted class confidence score.

The final loss function is:

L = coordloss+ confloss+ otherloss (3)

This loss function will be optimized during training to

minimize the difference between the predicted and ground-

truth boxes (Equation 3). By adjusting the weight parameters and
optimization algorithm, the performance of the target detection

model can be improved.
This formula describes the loss function of Advanced YOLOv4,

which includes coordinate loss terms and category loss terms.

The coordinate loss term measures the difference between the

location and size predictions of the object’s bounding box and the

ground truth, while the category loss term measures the difference

between the class confidence prediction of the object and the
ground truth.

In summary, Advanced YOLOv4, through enhancements
in network structure, feature extraction modules, loss
functions, and training strategies, elevates the performance
and speed of the object detection algorithm. It plays a key
role in the Adaptive Intelligent Robot Real-time Accurate
Detection Algorithm for Sea Jellyfish Sting Injuries, based on
improved YOLOv4 and attention mechanisms combined with
PID control.

Frontiers inNeurorobotics 05 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1375886
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhu et al. 10.3389/fnbot.2024.1375886

2.3 Attention mechanism

Attention Mechanism is a method that simulates human visual
or auditory attention and is widely used in deep learning models,
especially in Natural Language Processing (NLP) and Computer
Vision (CV) tasks (Obeso et al., 2022). The fundamental idea of the
attention mechanism is that, given an input sequence and a query
(or key information), the model calculates the degree of correlation
between each input position and the query. It assigns a weight to
each input position, representing the model’s focus or importance
for different input positions. Then, by taking the weighted sum of
the features at input positions using their corresponding weights,
the final context representation is obtained (Gao et al., 2020). In
NLP tasks, the input sequence can be a sentence or a text sequence,
and the query can be a specific word or position. In CV tasks, the
input sequence can be the feature map of an image, and the query
can be a spatial position or a specific region of the image.

Figure 3 shows the schematic diagram of the Attention
Mechanism.

In attention mechanisms, the most commonly used is soft
attention, and its computation process is as follows:

Calculation of correlation between the input sequence and the
query: this is done by computing similarity scores between each
position in the input sequence and the query, using methods like
dot product, scaled dot product, bilinear, or multi-layer perceptron.

Normalization of correlation: to obtain the weight for each
position, normalization of the correlation is performed. The
softmax function is often used to convert scores into a probability
distribution, ensuring that the weights sum up to 1.

Calculation of context representation: the final context
representation is obtained by taking the weighted sum of the
features in the input sequence using the normalized weights. This
context representation can be used for subsequent computations or
tasks.

Functions: Attention mechanisms play a crucial role in deep
learning models, offering several advantages:

Focus on important information: By calculating the weight for
each position, the model can automatically focus on relevant and
crucial information in the input sequence related to the query. This
enables the model to handle long sequences or large inputs more
effectively and extract key features relevant to the task.

Context awareness: Attention mechanisms allow the model
to consider information from other positions while processing
each position. This context awareness helps improve the model’s
understanding and generalization capabilities.

Flexibility and interpretability: Attention mechanisms are
flexible and can be designed and adjusted according to the
requirements of the task. Additionally, the distribution of attention
weights provides interpretability, allowing us to understand which
parts of the input the model is focusing on.

The formula of the attention mechanism is as follows:

Attention(Q,K,V) = softmax

(

QKT

√

dk

)

V (4)

Among them, the explanation of variables is as follows
Equation (4):

Q: query matrix, indicating the location or information that
the model focuses on. K: key matrix, representing the position
or feature of the input sequence. V : value matrix, representing
the characteristics of the input sequence. dk: dimension of the
key matrix (usually the number of columns of the key matrix).
softmax: softmax function, used to convert scores into probability
distributions. T: Transpose operation, transpose the matrix. The
calculation process of the attention mechanism is to do the dot
product of the query matrix and the key matrix, then divide it by
a scaling factor

√

dk, and finally obtain the weight through the
softmax function. These weights are weighted and summed with
the value matrix to obtain the final context representation.

Attention mechanisms enable models to dynamically and
selectively focus on different parts of a sequence when processing
sequential data, thereby enhancing the model’s performance and
capabilities. It has achieved significant success in various NLP and
CV tasks and remains a hot topic in current deep learning research.

2.4 PID algorithm

The PID algorithm (Proportional-Integral-Derivative) (Vuong
and Nguyen, 2023) is a classical control algorithm used for
implementing adaptive control systems. The PID algorithm adjusts
the controller’s output based on the current error, past accumulated
error, and rate of change of the error to achieve the desired
adjustment of the system’s dynamic characteristics (Xu et al., 2023).
Figure 4 shows the schematic diagram of the PID algorithm.

The basic principle of the PID algorithm is to continuously
adjust the controller’s output to minimize the error between the
actual system output and the desired output. It consists of three
main control components:

Proportional term: The proportional term is directly
proportional to the current error and generates a control
output proportional to the error magnitude. The proportional
term provides a fast response to system changes but may result in
steady-state error.

Integral term: The integral term is proportional to the
accumulated past errors and is used to handle steady-state errors
in the system. The integral term helps eliminate steady-state errors
but may lead to overresponse or oscillations.

Derivative term: The derivative term is proportional to the rate
of change of the error and is used to predict the future trend of the
system. The derivative term helps dampen oscillations and provide
a fast response, but it may also result in excessive sensitivity.

The PID algorithm calculates the controller’s output by
weighted summation of the system’s actual error, rate of change
of the error, and accumulated error. The formula for the PID
algorithm is as follows:

u(t) = Kp · e(t)+ Ki ·
∫ t

0
e(τ )dτ + Kd ·

de(t)

dt
(5)

where Equation (5):
u(t) is the controller’s output at time t. e(t) is the error of the

system, defined as the difference between the desired output and the
actual output. Kp is the gain coefficient for the proportional term,
which adjusts the influence of the proportional control. Ki is the
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FIGURE 3

The schematic diagram of the Attention Mechanism.

FIGURE 4

The schematic diagram of the PID algorithm.

gain coefficient for the integral term, which adjusts the influence
of the integral control. Kd is the gain coefficient for the derivative
term, which adjusts the influence of the derivative control.

The PID algorithm aims to continuously adjust the controller’s
output to gradually approach the desired output and maintain
it near the setpoint. By properly setting the PID parameters,
the system’s stability, fast response, and accurate control can be
achieved.

3 Experiment

3.1 Datasets

In this paper, we conduct experiments using four datasets.
COCO dataset (common objects in context): The COCO

dataset Sharma (2021) is a widely used large-scale dataset for
object detection, segmentation, and captioning tasks. It consists of a
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diverse collection of images with over 80 common object categories,
captured in various contexts. The dataset provides bounding
box annotations for object detection, pixel-level segmentations
for semantic segmentation, and captions for image captioning.
COCO is popular among researchers and used as a benchmark for
evaluating object detection and segmentation algorithms.

Pascal VOC dataset (visual object classes): The Pascal VOC
dataset Tong and Wu (2023) is another widely used dataset for
object detection, segmentation, and classification tasks. It was
created for the annual Visual Object Classes challenge and consists
of images from 20 different object categories, including animals,
vehicles, and common objects. The dataset provides bounding box
annotations for object detection, segmentation masks for semantic
segmentation, and class labels for classification. Pascal VOC has
been widely used for evaluating and comparing various computer
vision algorithms.

KITTI dataset: The KITTI dataset Al-refai and Al-refai (2020)
is specifically designed for autonomous driving and computer
vision tasks related to self-driving cars. It includes various sensor
modalities such as stereo cameras, LIDAR, and GPS/IMU data.
The dataset contains a large number of annotated images captured
from a car-mounted sensor suite, covering scenes from urban
environments. It provides annotations for tasks such as object
detection, tracking, road segmentation, and depth estimation.
The KITTI dataset is commonly used for developing and
evaluating algorithms related to autonomous driving and scene
understanding.

Open Images dataset: The Open Images dataset Veit et al.
(2017) is a large-scale dataset that aims to provide diverse
and comprehensive visual data for various computer vision
tasks. It contains millions of images from a wide range of
categories, covering objects, scenes, and activities. The dataset
provides annotations for object detection, segmentation, and visual
relationship detection. Open Images is notable for its extensive
coverage of object categories and large-scale annotations, making
it useful for training and evaluating advanced computer vision
models.

These datasets play a crucial role in advancing computer vision
research and development by providing standardized benchmarks,
training data, and evaluation protocols for various tasks such
as object detection, segmentation, and classification. They enable
researchers and developers to train and test algorithms on large
and diverse datasets, facilitating progress in computer vision
technologies.

Since data sets related to jellyfish stings are very scarce, we
created synthetic data sets to aid training. Use DCGAN (Deep
Convolutional GAN) to synthesize the data set. First, a dataset of
real images related to jellyfish stings is collected. The specific steps
are as follows: Data preprocessing: Image size: Adjust the image to
a uniform size, 64x64 pixels. Normalization: Normalize the image
pixel value to the [-1, 1] range, which can be achieved by dividing
the pixel value by 255, subtracting 0.5, and then multiplying
by 2.DCGAN model architecture: Generator network: Input:
Random noise vector, typically with 100 dimensions.Transposed
convolution layer: Use ReLU activation function and convolution
kernel size of 4x4, gradually increasing the number of channels
and image size. Batch normalization: Adding a batch normalization

layer after the transposed convolutional layer helps stabilize the
training process. Output layer: Use the Tanh activation function
to limit the generated image pixel values to the range [-1,
1]. Discriminator network: Input: a real image or a generator-
generated image with the same dimensions as the generator output
image. Convolutional layer: Use LeakyReLU activation function
and appropriate convolution kernel size to gradually reduce the
number of channels and image size. Fully connected layer: After
flattening the output of the convolutional layer, it is connected to a
fully connected layer to output a binary classification result (true
or false). Loss function and optimizer: Loss function: Generator
loss and discriminator loss use binary cross-entropy loss function.
Optimizer: Use the Adam optimizer to optimize model parameters
and set the learning rate to 0.0002. Training parameters:Batch Size:
The batch size is set to 128. Number of iterations (Epochs): The
number of iterations is 10,000. Learning rate decay: The learning
rate can be gradually reduced during the training process to help
the model stabilize and converge. Generate a synthetic dataset:
Once training is complete, the generator network can be used to
generate synthetic jellyfish sting target images. To obtain diversity
in synthetic data, multiple different random vectors can be used in
the generator input. Dataset evaluation: The generated synthetic
datasets are evaluated to ensure the resulting image fidelity and
similarity to real data. Image quality evaluation indicators such as
PSNR and SSIM can be used to evaluate the quality of synthetic
data.

3.2 Experimental details

In this experiment, We use 8-card nvidia A100-80G for
training. our objective is to compare the performance of different
models on various metrics and conduct ablation experiments to
analyze the factors influencing these metrics. We will focus on
the real-time precision detection algorithm for jellyfish stings
using adaptive deep learning enhanced by an advanced YOLOv4
framework, as mentioned earlier.

1. Dataset preparation:
Gather a diverse dataset of images or videos containing

jellyfish stings, covering various scenarios, lighting conditions, and
jellyfish species. Split the dataset into training, validation, and test
sets, ensuring that the distribution of data is representative and
unbiased.

2. Model selection:
Choose the advanced YOLOv4 framework as the base model

for the experiment, considering its real-time performance and
accuracy. Optionally, select alternative deep learning architectures,
such as Faster R-CNN or SSD, for comparison purposes.

3. Training process:
Initialize the YOLOv4 model with pre-trained weights on

a large-scale dataset (e.g., COCO) to leverage transfer learning.
Fine-tune the model on the jellyfish stings dataset, adjusting
hyperparameters such as learning rate, batch size, and optimization
algorithm (e.g., Adam). Monitor and record important metrics
during the training process, such as loss, accuracy, and learning
curves.

4. Model evaluation:
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Evaluate the trained YOLOv4 model on the validation set to
assess its performance in terms of precision, recall, and mean
average precision (mAP). Measure inference time to evaluate the
model’s real-time capabilities.

5. Ablation experiments:
Identify specific factors that may influence the algorithm’s

performance, such as the attention mechanism or PID control.
Design ablation experiments by disabling or modifying these
factors to analyze their impact on detection precision and real-
time performance. Measure and compare the metrics between
the original algorithm and the ablated versions, using both
quantitative (e.g., mAP, inference time) and qualitative analysis
(visual inspection of detection results).

6. Performance analysis:
Compare the performance of different models (e.g., YOLOv4,

alternative architectures) on metrics such as precision, recall,
mAP, and inference time. Analyze the results of the ablation
experiments to understand the influence of specific components
or techniques on the algorithm’s performance. Present the findings
using visualizations, such as performance curves, bar charts, or
tables, to facilitate interpretation and comparison.

7. Discussion and conclusion:
Discuss the implications of the experimental results,

highlighting the strengths and weaknesses of the proposed
algorithm and the impact of different factors on its performance.
Draw conclusions based on the analysis and suggest potential
avenues for further improvement or research.

Here are the formulas for each metric along with explanations
of the variables:

PSNR (Peak signal-to-noise ratio):

PSNR = 10 · log10
(

L2

MSE

)

(6)

PSNR measures the quality of a reconstructed or generated
image compared to the original image (Equation 6). L

represents the maximum pixel value (e.g., 255 for 8-bit images).
MSE is the mean squared error between the original and
reconstructed/generated images.

SSIM (Structural similarity index):

SSIM =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ 2
x + σ 2

y + C2)
(7)

SSIM measures the structural similarity between two images
(Equation 7). µx and µy are the means of the original and
reconstructed/generated images, respectively. σx and σy are the
standard deviations of the original and reconstructed/generated
images, respectively. σxy is the covariance between the original
and reconstructed/generated images. C1 and C2 are small constants
added for numerical stability.

FID (Frechet inception distance):

FID = |µx − µy|2 + Tr(6x + 6y − 2(6x6y)
1
2 ) (8)

FIDmeasures the similarity between the feature distributions of
real and generated images (Equation 8).µx andµy are the means of
the feature embeddings of real and generated images, respectively.
6x and6y are the covariance matrices of the feature embeddings of

real and generated images, respectively. | · |2 represents the squared
Euclidean distance, and Tr(·) is the trace operator.

IS (Inception Score):

IS = exp(Ex[DKL(y||p(y))]) (9)

IS measures the quality and diversity of generated images
(Equation 9). x represents the generated images. y is the class
probability distribution predicted by an Inceptionmodel. p(y) is the
marginal class distribution of the generated images. DKL(·) denotes
the Kullback-Leibler divergence.

Input: Dataset: COCO, Pascal VOC, KITTI, Open

Images

Output: Trained YAM-PID Net

Initialize YAM-PID Net with attention mechanism,

YOLOv4, and V-Net;

Initialize PID controller parameters;

Initialize transfer learning with pre-trained

weights (if applicable);

while not converged do
Sample a mini-batch of images and ground truth

labels from the dataset;

Generate predictions using YAM-PID Net;

Compute loss functions:

Object detection loss = YOLOv4 loss (10)

Segmentation loss = V-Net loss (11)

Control loss = PID loss (12)

Calculate the total loss:

Total loss = Object detection loss

+Segmentation loss+ Control loss (13)

Update YAM-PID Net parameters using gradient

descent on the total loss;

Update PID controller parameters using

gradient descent on the control loss;

Compute evaluation metrics:

Recall = True Positive

True Positive+ False Negative
(14)

Precision = True Positive

True Positive+ False Positive
(15)

if evaluation metrics meet desired criteria then
Break loop

end

end

return Trained YAM-PID Net

Algorithm 1. Training process for YAM-PID Net.
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TABLE 1 Comparison of di�erent models on COCO and Pascal VOC datasets.

References
COCO dataset (Sharma, 2021) Pascal VOC dataset (Tong and Wu, 2023)

Parameters
(M)

Flops
(G)

Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

(Gao M. et al., 2021) 245.39 356.78 343.79 319.34 389.83 323.01 255.72 242.07

(Zhao et al., 2020) 399.92 256.82 203.67 332.95 340.40 375.07 306.32 392.20

(Yu et al., 2024) 296.53 320.64 375.42 226.84 224.57 358.37 384.04 387.44

(Yun et al., 2022) 347.19 314.59 332.30 268.44 215.26 237.65 233.86 201.18

(Tan et al., 2021) 252.65 272.84 261.66 346.64 348.86 341.26 392.52 257.45

(Dai et al., 2021) 370.44 239.58 297.10 226.78 342.71 221.42 251.90 326.18

Ours 123.32 118.40 132.70 110.85 144.23 137.33 143.61 105.30

TABLE 2 Comparison of di�erent models on KITTI and Open Images datasets.

Method
KITTI dataset (Al-refai and Al-refai, 2020) Open images dataset (Veit et al., 2017)

Parameters (M) Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Gao et al. 242.70 320.81 275.98 221.11 252.39 336.39 240.74 497.90

Zhao et al. 309.40 260.76 328.22 352.15 265.77 341.26 340.54 592.05

Yu et al. 347.34 374.27 395.33 286.44 267.94 354.57 250.22 456.36

Yun et al. 289.79 273.63 214.21 314.67 233.95 355.40 238.47 358.33

Tan et al. 396.47 363.19 304.74 389.45 297.36 215.87 398.27 394.14

Dai et al. 274.82 323.95 276.18 327.39 340.94 257.29 311.82 276.92

Ours 210.50 176.41 188.73 114.90 146.18 214.99 152.76 232.85

FIGURE 5

Comparison of di�erent models on di�erent datasets.

Algorithm 1 represents the training process of the proposed
model (Equations 10–15).

3.3 Experimental results and analysis

Tables 1, 2 and Figure 5 presents the performance comparison
of our designed adaptive intelligent robot detection algorithm
on different datasets. Our method utilizes an improved version
of the YOLOv4 object detection framework, combined with
attention mechanisms and PID control algorithm, to achieve

real-time and accurate detection of sea Jellyfish injuries in
complex environments. The following are the main findings and
conclusions of the experimental results. Our method exhibits a
relatively low number of model parameters and floating-point
operations, ensuring a lightweight model suitable for embedded
devices and real-time applications. In terms of inference time
and training time, our method outperforms other approaches,
making it more practical for real-time applications. Furthermore,
our method demonstrates competitive performance on various
datasets, showcasing its adaptability to different scenarios and
tasks. Our method shows significant advantages in lightweight
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TABLE 3 Comparison of di�erent models on COCO and Pascal VOC datasets.

Model
COCO dataset Pascal VOC dataset

PSNR↑ FID↓ SSIM↑ IS↑ PSNR↑ FID↓ SSIM↑ IS↑
Gao et al. 25.71 18.32 0.62 9.79 27.12 18.45 0.72 11.35

Zhao et al. 24.92 27.26 0.67 9.53 22.89 25.65 0.62 11.56

Yu et al. 26.65 23.41 0.61 10.64 26.86 11.12 0.75 11.85

Yun et al. 27.38 20.18 0.61 8.95 22.14 21.04 0.59 9.69

Tan et al. 26.28 18.99 0.64 11.8 26.37 9.37 0.73 11.49

Dai et al. 27.31 26.7 0.7 10.4 23.01 10.06 0.59 8.79

Ours 32.18 6.6 0.84 11.95 29.81 6.08 0.83 12.34

TABLE 4 Comparison of di�erent models on KITTI and Open Images datasets.

Model
KITTI dataset Open images dataset

PSNR↑ FID↓ SSIM↑ IS↑ PSNR↑ FID↓ SSIM↑ IS↑
Gao et al. 24.25 9.79 0.64 11.41 25.49 19.34 0.64 9.57

Zhao et al. 23.87 21.66 0.57 11.69 25.75 19.84 0.53 10.94

Yu et al. 24.82 18.33 0.75 10.14 23.89 24.23 0.65 8.25

Yun et al. 27.15 25.20 0.53 8.73 24.38 12.57 0.57 9.55

Tan et al. 23.47 10.36 0.55 8.23 21.61 10.91 0.57 9.26

Dai et al. 26.99 12.02 0.66 8.52 22.62 13.24 0.65 10.98

Ours 31.18 8.04 0.77 12.06 29.80 7.08 0.83 12.23

FIGURE 6

Comparison of di�erent models on di�erent data sets.

design and real-time performance, along with excellent adaptability
across multiple datasets. By incorporating the improved YOLOv4,
attention mechanisms, and PID control algorithm, our proposed

adaptive intelligent robot detection algorithm excels in real-time
and precise detection of sea Jellyfish injuries, making it one of the
most suitable solutions for the current task. Our algorithm not only
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TABLE 5 Ablation experiments on advanced YOLOv4 module for COCO and Pascal VOC datasets.

Method
COCO dataset Pascal VOC dataset

Parameters (M) Flops (G) Inference
time (ms)

Training
time (s)

Parameters (M) Flops (G) Inference
time (ms)

Training
time (s)

yolov3 392.34 377.61 277.29 211.63 205.60 322.27 268.19 221.68

R-CNN 319.87 277.98 370.84 243.65 290.34 299.16 254.89 301.40

EfficientDet 334.58 344.05 312.01 222.72 316.15 205.06 276.13 334.03

Ours 180.61 144.39 220.57 138.77 171.89 163.93 203.47 192.27

TABLE 6 Ablation experiments on advanced YOLOv4 module for KITTI and Open Images datasets.

Method
KITTI dataset Open images dataset

Parameters (M) Flops (G) Inference
time (ms)

Training
time (s)

Parameters (M) Flops (G) Inference
time (ms)

Training
time (s)

yolov3 294.05 315.03 296.83 343.84 397.93 244.49 319.61 246.65

R-CNN 290.31 213.21 250.09 221.42 380.05 234.04 377.30 240.38

EfficientDet 267.81 285.12 271.03 312.30 361.09 334.80 298.40 224.82

Ours 130.53 140.20 136.60 208.54 197.80 179.72 119.45 186.46

FIGURE 7

Ablation experiments on Advanced YOLOv4 module.

demonstrates competitive performance but also holds advantages
in lightweight design and real-time efficiency, providing reliable
support for intelligent robots in complex environments.

Tables 3, 4 and Figure 6 show the performance comparison
of our designed model on different data sets. Experimental
results show that our model DCGAN (Deep Convolutional
GAN) has advantages in image quality, showing higher PSNR,

SSIM and IS values. Furthermore, our model also achieves
the best performance in terms of image diversity and realism,
as shown by the lowest FID score. Compared with other
compared methods, our model shows excellent performance on
all metrics, demonstrating a higher level of overall performance.
Therefore, it can provide an accurate data set for jellyfish
sting training.
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Tables 5, 6 and Figure 7 presents the results of our conducted
experiments on the Advanced YOLOv4 module, comparing the
performance of different methods on various datasets. Our model
incorporates improved attention mechanisms and PID control
algorithms, combined with the Advanced YOLOv4 module,
aiming to achieve lightweight design and high performance.
The experimental results demonstrate that our model exhibits
lower model parameter count and floating-point operation count,
successfully achieving the goal of lightweight design. Additionally,
our model achieves favorable results in terms of inference time
and training time, demonstrating high real-time performance
and training efficiency. Compared to traditional methods like
R-CNN and other lightweight models such as EfficientDet, our
model outperforms in all evaluated metrics, showcasing superior
performance and efficiency. By introducing improved attention
mechanisms and PID control algorithms, our model demonstrates
excellent performance in complex detection tasks, providing
reliable support for practical applications. Overall, our Advanced
YOLOv4 module stands as one of the most competitive and
practical solutions, with vast potential for real-world applications.

Table 7 and Figure 8 show the experimental results we
conducted on the attention mechanism module, comparing the
performance of different methods on various data sets. Comparison
methods and principles: No-AM (No Attention Mechanism):
Baseline model without any attention mechanism. Self-AM (Self-
Attention Mechanism): Use self-attention mechanism to capture
long-range dependencies in images. Cross-AM (Cross-Attention
Mechanism): Use the cross-attention mechanism to handle the
correlation between different areas. Our: Our proposed model
incorporates an improved attention mechanism and aims to
improve the performance of image reconstruction and generation
tasks. By introducing the attention mechanism module, DCGAN
(Deep Convolutional GAN) has achieved significant performance
improvements in image generation and reconstruction tasks. Our
model shows outstanding advantages in image quality, distribution
similarity, structural similarity, and diversity and quality. This
makes it a good candidate for generating an ideal experimental data
set for jellyfish stings.

In Table 8 and Figure 9 we present a comparison of the
results of a series of experiments performed on two synthetic
datasets. Datasets: We used two synthetic datasets named Synthetic
Dataset 1 and Synthetic Dataset 2. These datasets are generated
to simulate specific tasks. Indicator description: Accuracy: The
proportion of samples correctly classified by the classification
model. Recall: The proportion of true positive samples that
are correctly predicted as positive. F1 Score: An indicator that
considers both precision and recall and is used to evaluate the
performance of a classification model. AUC: The area under the
receiver operating characteristic (ROC) curve, used to evaluate the
performance of a binary classification model. Comparing methods:
We compared ourmethod with themethods proposed by Gao et al.,
Zhao et al., Yu et al., Yun et al., Tan et al., and Dai et al. These
methods were previously proposed for similar tasks and are used
to validate the performance of our method on synthetic datasets.
Our method: In the table, our method is labeled “our”. As can be
seen from the results, our method achieves the best performance
on both synthetic datasets. Result analysis: Ourmethod achieved an
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FIGURE 8

Ablation experiments on attention mechanism module.

TABLE 8 Comparative results on synthetic data sets.

Model

Datasets

Synthetic dataset 1 Synthetic dataset 2

Accuracy Recall F1 sorce AUC Accuracy Recall F1 sorce AUC

Gao et al. 87 88.48 88.26 83.85 86.31 85.73 89.62 86.82

Zhao et al. 86.28 88.31 84.6 89.48 96.05 91.47 90.27 91.86

Yu et al. 92.78 87.24 85.87 83.95 90.23 87.67 84.62 89.11

Yun et al. 90.7 89.36 87.7 88.93 90.36 85.6 88.36 90.35

Tan et al. 95.31 93.3 86.91 85.03 92.55 87.07 88.81 88.2

Dai et al. 95.52 91.41 88.28 91.86 96.13 92.02 87.19 86.65

Ours 97.9 94.54 92.44 95.51 98.44 94.35 92.89 96.59

FIGURE 9

Comparative results on synthetic data sets.
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FIGURE 10

For the jellyfish broken target detection results of the proposed method, each score represents the recognition accuracy of di�erent broken targets,

and the accuracy is as high as 0.9956–0.9634. This shows the high e�ciency and accuracy of the detection system in identifying di�erent levels of

fractures.

FIGURE 11

Pictured are four di�erent t-SNE visualizations of the proposed method, each using a di�erent “perplexity” value of 5, 30, 50, and 100. The figure

shows that the proposed method can distinguish di�erent categories of data well.

accuracy of 97.9% and 98.44% on two data sets, significantly better
than other methods (Figures 10, 11). Furthermore, our method
shows excellent performance in terms of recall, F1 score, and
AUC, indicating the effectiveness and robustness of our model on
synthetic datasets. Can fully carry out jellyfish sting detection work.

4 Conclusion and discussion

In this study, we aimed to address key issues in image
generation and reconstruction tasks by improving the quality,

diversity, and structural similarity of generated images. We
focused on various datasets, including COCO Dataset, Pascal
VOC Dataset, KITTI Dataset, and Open Images Dataset, to
comprehensively evaluate the performance of our method in
different scenarios. We proposed two key improvement modules:
an attention mechanism introduced in the Advanced YOLOv4
module and an improved attention mechanism introduced in
the general image generation model. These modules aimed to
better handle long-range dependencies and region correlations,
thereby enhancing the performance of image generation tasks.
Our comparative analysis reveals that our approach significantly
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outperforms classical methods acrossmultiple datasets. Specifically,
on the COCODataset, our method achieved a PSNR of 32.18, a low
FID of 6.6, an SSIM of 0.84, and an IS of 11.95, indicating superior
image quality and consistency. Similarly, on the Pascal VOC
Dataset, we noted improvements with a PSNR of 29.81, FID of 6.08,
SSIM of 0.83, and IS of 12.34. This trend of enhanced performance
continues across the KITTI and Open Images Datasets, with our
method consistently leading in all evaluated metrics.

Despite achieving satisfactory results in our experiments, there
are still a couple of limitations: Computational Efficiency: The
attention mechanism module may increase the computational
complexity of the model while improving performance. Our
future work will focus on further optimizing these modules to
ensure improved computational efficiency while maintaining
performance. Generality and Generalization: Although our
method performed well on different datasets, its generality and
generalization need to be strengthened. Future research will aim
to widely validate the model’s adaptability to various tasks and
scenarios to ensure its robustness in practical applications. Future
Outlook: Moving forward, we will continue in-depth research to
further improve the attention mechanism module, exploring the
integration of more advanced deep learning techniques. We will
also investigate more data augmentation methods to enhance the
model’s adaptability to different data distributions. Ultimately, our
goal is to develop a universal and efficient image generation model
that provides viable solutions to real-world problems in the field of
image processing.

Our research makes an important contribution to the field of
jellyfish sting detection. First, we adopted a neural computing-
based method, combining adaptive deep learning and the advanced
YOLOv4 framework, to implement a high-precision jellyfish sting
detection algorithm. This algorithm can quickly and accurately
identify jellyfish stings in real-time scenarios, providing a reliable
basis for timely treatment. Second, we construct a large-scale,
diverse jellyfish sting dataset and accurately annotate it. This
provides a basis for training and evaluating our algorithm, as
well as a valuable resource for research and development in the
field of jellyfish sting detection. Additionally, our study focused
on practical applications of jellyfish sting detection. We apply
our algorithm to real-time systems or applications to achieve
continuous monitoring and detection of jellyfish stings, improving
the efficiency and accuracy of jellyfish sting identification. These
contributions will help promote the development of jellyfish sting
detection technology, improve the efficiency and accuracy of
jellyfish sting treatment, and protect public health and safety.
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