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The quaternion cubature Kalman filter (QCKF) algorithm has emerged as a 
prominent nonlinear filter algorithm and has found extensive applications 
in the field of GNSS/SINS integrated attitude determination and positioning 
system (GNSS/SINS-IADPS) data processing for unmanned aerial vehicles (UAV). 
However, on one hand, the QCKF algorithm is predicated on the assumption 
that the random model of filter algorithm, which follows a white Gaussian noise 
distribution. The noise in actual GNSS/SINS-IADPS is not the white Gaussian 
noise but rather a ubiquitous non-Gaussian noise. On the other hand, the use of 
quaternions as state variables is bound by normalization constraints. When applied 
directly in nonlinear non-Gaussian system without considering normalization 
constraints, the QCKF algorithm may result in a mismatch phenomenon in the 
filtering random model, potentially resulting in a decline in estimation accuracy. 
To address this issue, we propose a novel Gaussian sum quaternion constrained 
cubature Kalman filter (GSQCCKF) algorithm. This algorithm refines the random 
model of the QCKF by approximating non-Gaussian noise with a Gaussian 
mixture model. Meanwhile, to account for quaternion normalization in attitude 
determination, a two-step projection method is employed to constrain the 
quaternion, which consequently enhances the filtering estimation accuracy. 
Simulation and experimental analyses demonstrate that the proposed GSQCCKF 
algorithm significantly improves accuracy and adaptability in GNSS/SINS-IADPS 
data processing under non-Gaussian noise conditions for Unmanned Aerial 
Vehicles (UAVs).
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1 Introduction

Currently, Global Navigation Satellite Systems (GNSS) and 
Strapdown Inertial Navigation Systems (SINS) have experienced rapid 
development in both military and civilian fields. However, a single 
navigation technology, although it has its advantages in a specific 
environment, generally performs poorly in conventional occasions 
and may even fail to complete the task (Groves, 2008; Noureldin et al., 
2013). Therefore, combining GNSS and SINS to form a GNSS/SINS 
integrated positioning and attitude determination system (GNSS/
SINS-IADPS) can maximize their advantages and compensate for 
each other’s limitations (Teunissen and Montenbruck, 2017; Farrell 
and de Haag, 2020). At present, GNSS/SINS-IADPS has become one 
of the key technologies in aviation, aerospace and land navigation 
systems, and receives more attention in military strike, civil aviation, 
economic construction, and scientific research in various countries (Li 
and Chen, 2022; Boguspayev et al., 2023). The foundation of GNSS/
SINS-IADPS relies on attitude representation methods, which include 
the attitude quaternion method, Rodrigues parameters and so on 
(Savage, 1998; Markley, 2003). The attitude quaternion method, in 
particular, has increasingly garnered attention in the realm of GNSS/
SINS-IADPS data processing due to its advantages of avoiding 
singularities, requiring less computational effort, offering higher 
accuracy, and enabling complete attitude maneuvers. Consequently, 
filter algorithms predicated on the attitude quaternion have become a 
pivotal technology for the processing of GNSS/SINS-IADPS data 
processing (Ryzhkov, 2021; Michał et al., 2022). However, in practical 
applications, the mathematical model of GNSS/SINS-IADPS is 
frequently nonlinear. As such, investigating quaternion-based 
nonlinear filter algorithms is pivotal for enhancing the efficacy of 
GNSS/SINS-IADPS data processing (Ali and Mirza, 2010; Zhu 
et al., 2021).

For a long time in the past, the quaternion extended Kalman filter 
(QEKF) algorithm has been an important method of quaternion based 
nonlinear filter algorithm, but this approximately linearized 
suboptimal filter algorithm has the defect of high-order truncation 
errors (Gui and de Ruiter, 2018). To overcome the limitations of QEKF 
algorithm, the quaternion unscented Kalman filter (QUKF) algorithm 
approximates the probability density distribution of the nonlinear 
system through the sigma point set, avoiding the linearization errors 
and solving the Jacobi matrix. Although the filtering estimation 
performance is improved, frequent switching of quaternions and 
modification of Rodrigues parameters during iteration result in a large 
computational burden (Julier et al., 2000; Chang et al., 2013; Challa 
et al., 2016). The Cubature Kalman filter (CKF) algorithm employs a 
set of cubature points generated by the third-order sphere-phase 
diameter cubature rule to approximate the probability density 
distribution of nonlinear system, which has a more rigorous 
theoretical basis and better numerical stability than the unscented 
Kalman Filter algorithm (Arasaratnam et al., 2010; Zhang et al., 2019; 
Chang et al., 2021). By combining it with the attitude quaternion 
method, the obtained quaternion cubature Kalman filter (QCKF) 
algorithm shows the characteristics of simple implementation, good 
convergence, high precision, and suitability for high-dimensional 
systems (Geng et  al., 2021; Swati, 2022; Wang et  al., 2023). 
Furthermore, the quaternion augmented cubature Kalman filter 
(QACKF) algorithm enhances the estimation accuracy of QCKF 
algorithm to some extent, but its computational complexity is 

significantly higher than that of QCKF algorithm (Wang et al., 2017). 
For this reason, Huang et al. studied the quaternion state switching 
cubature Kalman filter (QSSCKF) algorithm, which ensured the 
filtering estimation accuracy while effectively reducing the 
computation amount (Huang et  al., 2020). However, the use of 
quaternions as state variables is bound by normalization constraints 
in practical applications. If these constraints are overlooked during 
data processing, the resulting accuracy of the filter and the positive 
quality of covariance will be compromised (Huang et al., 2016; Qiu 
and Qian, 2018). In addition, these previous studies are based on the 
assumption that the random model is the white Gaussian noise, and 
the actual process noise and measurement noise in GNSS/SINS-
IADPS deviate from ideal Gaussian distribution. That is to say, GNSS/
SINS-IADPS is a nonlinear non-Gaussian system. In such case, if the 
random model is mismatched, it may affect the accuracy of filtering 
estimation and even lead to accuracy divergence in severe cases 
(Duong and Chiang, 2012; Wang et  al., 2020; Taghizadeh and 
Safabakhsh, 2023). Therefore, if the QCKF algorithm can be extended 
to take into account both the effect of non-Gaussian noise and 
normalization constraints, it will show better estimation performance.

Researchers have proposed various adaptive filter algorithms to 
address the problem of non-Gaussian noise in state estimation, which 
are mainly divided into functional model based adaptive filter and 
stochastic model based adaptive filter (Mohamed and Schwarz, 1999; 
Chang, 2014; Elmezayen and El-Rabbany, 2021; Jiang et al., 2021; Yang 
et al., 2021; Wu et al., 2022). The Sage-Husa filter algorithm can obtain 
real-time statistical data on current epoch process noise and 
measurement noise. However, when the moving carrier generates a 
large disturbance, it is difficult for this kind of filter algorithm to 
distinguish between the model error and measurement noise, thus 
affecting the estimation results (Song et al., 2022; Chen et al., 2023). 
The fading filter algorithm makes the algorithm meet the optimality 
through a fading factor, but this method is limited to dealing with 
non-Gaussian process noise only (Sun et al., 2022; Wang et al., 2022). 
The robust adaptive filter algorithm can handle non-Gaussian noise 
in both process and measurement noise. When these two types of 
noise are present, the algorithm can achieve the purpose of stable state 
estimation results by adjusting the adaptive factor and equivalent 
weight matrix factor, but this method requires redundant 
measurement values (Dong et al., 2023). Nonetheless, in the context 
of the aforementioned research, when dealing with non-Gaussian 
noise problems, the stochastic model of noise is usually covered by a 
Gaussian distribution with greater variance.

The Gaussian mixture model (GMM) offers an alternative 
approach to address the issue of non-Gaussian noise through its multi-
mode approximation technique. After being processed by its multi-
mode approximation method, it has higher accuracy compared to the 
traditional extended variance Gaussian distribution approximation 
method (Alspach and Sorenson, 1972). In recent years, the filter 
random model has been optimized by GMM, which has gradually 
been recognized as a superior approach, attracting attention in target 
tracking, speech recognition, signal analysis, navigation integrity 
monitoring, and other aspects (Sun et al., 2020; Zickert and Yarman, 
2021; Zhu et al., 2022; Yu et al., 2023). The literature sequentially 
delves into the nonlinear optimization problem associated with the 
Gaussian sum filter (GSF) algorithm grounded in GMM, such as the 
Gaussian sum extended Kalman filter (GSEKF) algorithm, Gaussian 
sum unscented Kalman filter (GSUKF) algorithm, Gaussian sum 
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quadrature Kalman Filter (GSQKF) algorithm, and Gaussian sum 
cubature Kalman filter (GSCKF) algorithm, and these studies have to 
some extent optimized the integrated navigation information fusion 
algorithm (Wang and Cheng, 2015; Qian et al., 2021; Wang et al., 2021; 
Bai et al., 2022). While numerous algorithms have been put forward 
to optimize the random model of nonlinear filter algorithms under 
non-Gaussian noise conditions based on GMM, there are limited 
reports on research on quaternion-based algorithm in GNSS/SINS-
IADPS data processing for UAVs.

To tackle the issue of random model mismatch under 
non-Gaussian noise conditions and quaternions normalization 
constraints affecting the QCKF algorithm, which leads to degradation 
in estimation accuracy during GNSS/SINS-IADPS data processing for 
UAVs, a novel Gaussian sum quaternion constrained cubature Kalman 
filter (GSQCCKF) algorithm is proposed in this paper. The algorithm 
combines the GMM principle with the two-step projection method 
and improves the QCKF algorithm. Firstly, multiple sub-filters are 
decomposed using GMM. Secondly, the quaternion is restricted by the 
two-step projection method to achieve the purpose of quaternion 
normalization in attitude determination. Finally, simulation and 
experiments in GNSS/SINS-IADPS data processing for UAVs are 
conducted to verify the improvement of estimation accuracy and 
adaptability for GSQCCKF. The outcomes demonstrate that the 
proposed GSQCCKF algorithm significantly mitigates the adverse 
effects of non-Gaussian noise on state estimation, substantially 
improving both accuracy and adaptability in the GNSS/SINS-IADPS 
data processing utilized on UAVs.

2 Preliminaries and problem 
formulation

2.1 Mathematical models for GNSS/
SINS-IADPS

We have adopted an integrated navigation system composed of 
single antenna GNSS and SINS, which is tightly integrated in 
combination. This tightly integrated GNSS/SINS-IADPS has better 
navigation accuracy and anti-interference performance than the 
individual attitude determination and positioning technology of 
GNSS and SINS, so it is widely used in numerous scientific fields. In 
the GNSS/SINS-IADPS, the QEKF algorithm is generally used to fuse 
GNSS and SINS navigation information. To use the QEKF algorithm, 
it is customary to use the linearized GNSS/SINS-IADPS mathematical 
model. However, when the GNSS/SINS-IADPS works in high 
maneuverability, it will show obvious nonlinear characteristics. At this 
time, if the GNSS/SINS-IADPS mathematical model is linearized, the 
estimation accuracy will be reduced because of the linearization error. 
Therefore, in order to cope with linearization errors, need to establish 
the nonlinear mathematical model of GNSS/SINS-IADPS. The 
nonlinear mathematical models consist of two components: state-
space equation and measurement equation.

The state estimate of GNSS/SINS-IADPS at epoch k −1 is defined 
in formula (1).

 x q v pk k� � � �� �1 1 � � �, , , ,��  (1)

here, δq is attitude quaternion errors, δ v is velocity errors, δp is 
position errors, µ is the gyroscope biases drift, ∇ is the accelerometer 
biases drift. The state-space equation of GNSS/SINS-IADPS is 
described as follows:

 
x x g wk k k k k kf� � �� � � �1 1 1  (2)

here, xk k−1 is the state prediction, f �� � is a nonlinear function, gk  
is the system noise driven matrix, wk  is the process noise. Assuming 
that wk  is characterized as white Gaussian noise, it can be represented 
mathematically as w Qk k~ 0,� �.

The measurement zk of the measurement equation is composed 
of the corrected pseudo-range and pseudo-range rate, which have 
been adjusted for the satellite clock bias, tropospheric delay, and 
ionospheric delay. Then, according to the state prediction xk k−1 
determined in formula (2) and measurement zk, the measurement 
equation of GNSS/SINS-IADPS is established:

 
z x vk k k kh� � � ��1  

(3)

here, h �� � is a nonlinear measurement function; vk  is the 
measurement noise, which is caused by receiver noise, multipath 
effects, and orbit prediction errors. Assuming that the measurement 
noise vk  is characterized as white Gaussian noise, it can 
be represented mathematically as vk k~ 0,R� �.

2.2 Quaternion cubature Kalman filter 
algorithm

The QCKF algorithm is a Gaussian filter algorithm that estimates 
the posterior distribution of the probability density function (PDF) of 
a nonlinear function by utilizing a set of cubature points, thereby 
circumventing the necessity for linearization of the nonlinear function 
(Geng et  al., 2021; Swati, 2022; Wang et  al., 2023). The concrete 
implementation procedures of the QCKF algorithm are 
outlined below:

Step  1: The selection of the cubature points ��c k k, � �1 1  is 
accomplished through the utilization of the third-order sphere-phase 
diameter cubature rule in formulas (4, 5).

 
�� ��c k k k k c k k, � � � � � �� �1 1 1 1 1 1S x

 (4)
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here, the Cholesky decomposition of the matrix Sk k− −1 1 can 
be obtained as P S Sk k k k k k� � � � � ��1 1 1 1 1 1

T , Pk k− −1 1 is the covariance 

pertains to the state estimation at epoch k −1, and c m n= =1 2 2, , , ,  
n is the dimension of the state estimation, that is, the overall quantity 
of cubature points is double the dimensionality of the state estimation.
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Step 2: Prediction.
The propagated cubature points xc k k, �

�
1 are estimated through the 

nonlinear function f �� �, which can be expressed in formula (6).

 
xc k k c k kf, ,�
�

� �� � �1 1 1��
 

(6)

Then, the state prediction xk k−1 at epoch k  can be computed, as 
illustrated in formula (7).

 
x xk k

c

m

c k km�
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�� �1
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1
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(7)

The state prediction covariance Pk k−1 can be derived, as depicted 
in formula (8).

 
P x x x x Qk k

c

m
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T T

 
(8)

Step 3: Update.
The cubature points ��c k k, �1  can be re-estimated in formula (9).

 
�� ��c k k k k c k k, � � �� �1 1 1S x

 (9)

here, P S Sk k k k k k� � ��1 1 1

T .
The propagated cubature points zc k k,

�
�1  can 

be  estimated by applying the nonlinear function h �� �, which is 
expressed in formula (10).

 
zc k k c k kh, ,
�

� �� � �1 1��
 

(10)

Subsequently, the measurement prediction zk k−1 can 
be computed, as illustrated in formula (11).

 
zk k

c

m

c k km�
�

�
�� �1

1

1

1 z ,

 
(11)

The covariance Pzz,k k−1 of the measurement prediction, cross-
covariance Pxz,k k−1 of the measurement prediction, and the 
filter gain Kk can be  derived, as depicted in formulas (12)–(14), 
respectively.

 
P z z Rzz, , ,k k
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(12)
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(13)

 
K P Pxz zzk k k k k� � �

�
, ,1 1

1

 (14)

Subsequently, the state estimation xk k  and its covariance Pk k  at 
epoch k  can be obtained, which are expressed in formulas (15) and (16).

 
x x K z zk k k k k k k k� � �� �� �1 1  

(15)

 P P K P Kzzk k k k k k k k� �� �1 1,
T

 (16)

2.3 The limitation of QCKF algorithm

The wavelet transform method is employed to analyze the statistical 
properties of SINS errors, and Allan variance analysis is utilized to 
scrutinize the statistical characteristics of GNSS residuals (El-Sheimy 
et al., 2008; Wang et al., 2018; Zhang et al., 2020). From the analysis 
results, it was found that SINS errors and GNSS residuals do not 
conform to the distribution of zero-mean white Gaussian noise. Instead, 
the SINS errors and GNSS residuals remnants are a mixed distribution 
of Gaussian noise and non-Gaussian noise (El-Sheimy et al., 2008; Wang 
et al., 2018; Zhang et al., 2020). Since the QCKF algorithm is based on 
the white Gaussian noise hypothesis, this hypothesis may lead to 
suboptimal estimation results for GNSS/SINS-IADPS due to the 
random model mismatch inherent in the QCKF algorithm.

In addition, the quaternion normalization problem exists in the 
attitude quaternion of state estimation. Neglecting the quaternion 
constraint during filtering calculations may result in a decline in the 
estimation accuracy, potentially leading to covariance singularity.

Therefore, to enhance the QCKF algorithm estimation 
performance of the GNSS/SINS-IADPS under non-Gaussian noise 
environments, it is necessary to further refine the random model of 
QCKF algorithm and optimize its algorithm model employed in the 
GNSS/SINS-IADPS.

3 Gaussian sum quaternion 
constrained cubature Kalman filter 
algorithm

The QCKF algorithm based on the assumption of white Gaussian 
noise is difficult to obtain ideal performance in state estimation due to 
the influence of random model mismatch and the oversight of 
quaternion normalization. In this section, a novel GSQCCKF 
algorithm is proposed, which is based on the QCKF algorithm 
framework. The aim of this algorithm is to address the state estimation 
problem of QCKF algorithm used in non-Gaussian noise environment 
for GNSS/SINS-IADPS data processing. The steps involved in the 
GSQCCKF algorithm are described as follows.

3.1 Modeling of non-Gaussian probability 
density function by GMM

Non-Gaussian noise can be  modeled as a multi-component 
system based on the degree of nonlinearity or the maximum 
eigenvalue of the covariance matrix (Maebashi et al., 2008; Liu et al., 
2014; Qian et  al., 2021). The PDF of xk k− −1 1 in formula (1) can 
be approximately expressed as follows:
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here, �k i� � �1  denotes the weight of the ith Gaussian component, 
N ; ,x Pk k k k ki i� � � � �� � � �� �1 1 1 1 1��  represents the ith Gaussian 

component with a mean of ��k i� � �1  and a variance of Pk k i� � � �1 1 , I  
signifies the total number of Gaussian components.

Correspondingly, the PDF of the process noise p kw� � in 
formula (2) and the PDF of the measurement noise p kv� � in 
formula (3) can be approximately expressed as follows:

p j N j j jk
j

J
k k k k

i

J
kw w w Q� � � � � � � � �� � � � �

� �
� �
1 1

1� �; , ,

 
(18)

 
p l l l lk

l

L
k k k k

l

L
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� �
� �
1 1

1� �N ; , ,

 
(19)

here, �k j� � represents the weight of the jth Gaussian component, 
N j jk k kw w Q; ,� � � �� �  represents the jth Gaussian component with 

a mean of wk j� � and a variance of Qk j� �, J  represents the total 
number of Gaussian components; �k l� � represents the weight of the 
lth Gaussian component, N ; ,v v Rk k kl l� � � �� �  represents the lth 
Gaussian component with a mean of vk l� � and a variance of Rk l� �, 
L represents the total number of Gaussian components.

3.2 Gaussian sum quaternion cubature 
Kalman filter algorithm

Following the implementation of the non-Gaussian PDF through 
GMM, the prediction and update on each sub-filters are carried out.

Step 1: Prediction.
The cubature points ��c k k, � �1 1  are formulated utilizing the third-

order sphere-phase diameter cubature rule.

 
�� ��c k k k k c k ki r i, � � � � � �� � � � � � � � �1 1 1 1 1 1S x

 (20)

here, Sk k r� � � �1 1  is derived through Cholesky decomposition of 
Pk k r� � � �1 1 , which can be  expressed 
as P S Sk k k k k kr r r� � � � � �� � � � � � �1 1 1 1 1 1

T , r i I j� �� � � �1 .
By propagating the cubature points ��c k k i, � � � �1 1  through the 

nonlinear function f �� �, we can obtain �� ��c k k c k ki f i, , .�
�

� �� � � � �� �1 1 1  
The state prediction xk k r� � �1  is calculated as follows:
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(21)

Subsequently, the covariance of state prediction Pk k r� � �1  can 
be derived, as depicted in formula (22).
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(22)

here, ωωc  denotes the weight of the cubature points.
Step 2: Update.
The cubature points are assessed:

 
�� ��c k k k k c k kr r r, � � �� � � � � � � �1 1 1S x
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Here,  
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T
.

By propagating the cubature points ��c k k r, � � �1  through the 
nonlinear function h �� �, the propagated cubature points can 
be  obtained as: zc k k c k kr h r, , .�

�
�� � � � �� �1 1��  The measurement 

prediction zk k r l� � �1 ,  is calculated as follows:
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The covariance matrix of measurement prediction Pzz,k k r l� � �1 , , 
the cross-covariance Pxz,k k r l� � �1 , , the filter gain Kk r l,� �, the state 
estimation xk k g� � and its corresponding covariance  
Pk k g� � can be  derived, as depicted in formulas (25)–(29),  
respectively.
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Here,  g r L l� �� � �1 .
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Step 3: Global point estimate.
The state estimationxk k  and its covariance matrix Pk k  are 

computed as
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(31)

here, ��k g� �  denotes the weight of the gth Gaussian component, 
which is calculated as formula (32).
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In this regard, the PDF of the gth Gaussian component is given 
by, and its computation can be expressed as follows:
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(33)

From formulas (32) and (33), it is evident that the weight ��k g� �  
of the Gaussian component adaptively modifies in response to the 
innovation z zk k k r l� � ��1 , , thereby enhancing the robustness of the 
filter algorithm.

Step 4: Gaussian component reduction.
From formula (20) to (30), it can be found that after step 3 the 

number of Gaussian components reaches I J L⋅ ⋅ . If I J L I� � � , there 
will be a mismatch between the number of Gaussian components at 
epoch k and epoch k − 1 when the recurrence operation is performed 
at epoch k. It can be  seen that the total number of Gaussian 
components will increase with each iteration of filtering, which will 
eventually lead to an exponential increase in filtering recursion. 
Therefore, it is necessary to reduce the number of Gaussian 
components after each iteration, this ensures that the total number of 
Gaussian components in the state estimation remains I . Gaussian 
component merging generally employs a quasi-Bayesian 
approximation, but the threshold selection depends on experience. 
Here, we adopt a different approach, by arranging the weight values of 
the Gaussian components in descending order, the Gaussian 
components are then sequentially labeled as g I J L� � �1, , , while 
retaining I −1 components, then the weight value ��k I� �  of the I −1 
Gaussian component at epoch k  can be calculated:
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The mean of state estimation xk k I� � and its covariance Pk k I� � 
corresponding to the Ith Gaussian component is shown in 
formulas (35) and (36), respectively.
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(36)

here, �� �� ��k k kg g I� � � � � � �/  denotes the regularization weight. 
Through the aforementioned procedures, I −1 Gaussian components 
and the Ith Gaussian component as described in formulas (35) and 
(36) are employed for the filtering recursion in the subsequent epoch. 
It is evident that following the merging of Gaussian components, the 
overall number of Gaussian components within the filter algorithm 
remains unchanged.

3.3 Two-step projection method

The two-step projection method (Tang et al., 2012; Huang, 2017) 
is employed herein to address quaternion constraint problem. In the 
initial step, the unconstrained state estimation distribution is projected 
onto the constrained surface so that the attitude estimation 
distribution complies with the quaternion constraint. However, this 
action may result in a reduction in the variance of attitude estimation. 
In the subsequent step, the constrained state estimation distribution 
is projected onto the constrained surface so that the mean of the 
attitude estimation satisfies the quaternion constraint. Simultaneously, 
the attitude estimation variance is compensated, to enhance the 
accuracy of attitude estimation while ensuring quaternion 
normalization. The specific processing steps are outlined as follows:

Step 1: the mean of constrained state estimation distribution xk k  
and its covariance 


Pk k  can be computed, which are detailed below:
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(38)

here, �� ��c k k c k k, , ,� � ���  �� ��c k k k k c k k, ,� � �S x  P S Sk k k k k k= T ,  
� �� � is the constraint function.

Step 2: the ultimate state estimation xk k  and its covariance Pk k  
can be calculated:
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3.4 GSQCCKF algorithm structure

The GSQCCKF algorithm is implemented in five stages, as 
illustrated in Figure 1.

Stage 1: State estimation, process noise, and measurement noise 
are modeled by GMM, as shown in formulas (17)–(19).

Stage 2: The prediction of GSQCKF algorithm at epoch k  is 
calculated, as shown in formulas (20)–(22).

Stage 3: The Update of GSQCKF algorithm at epoch k  is 
calculated, as shown in formulas (23)–(29).

Stage 4: Global point estimate (formulas 30–33) and then perform 
Gaussian component reduction (formulas 34–36).

Stage 5: The two-step projection method is applied to deal with 
the quaternion normalization issue, and the output of state estimation 
at epoch k , as shown in formulas (39) and (40).

4 Performance evaluation and 
discussion

In this section, the performance of the GSQCCKF algorithm was 
assessed, then, a comparative analysis was conducted on the 
performance of four different algorithms (GSQCCKF, QEKF, QCKF, 
and QCCKF).

4.1 Simulations and analysis

The performance of proposed GSQCCKF algorithm was 
evaluated by the Monte Carlo simulations, which were based on the 
design of a dynamic UAV equipped with a GNSS/SINS-IADPS. The 
flight trajectory of the UAV is depicted in Figure 2, which includes 
a variety of maneuvering states, such as climbing, level flight, 
turning and descending. The initial attitude of UAV was set as roll 
0°, pitch 0°, and yaw 0°, while its initial speed was specified as 0 m/s 
in East, 120 m/s in North, and 0 m/s in Up. The initial position of 
UAV was established at 110.2° longitude, 34.0° latitude, and 2000 m 

altitude. Additionally, the initial attitude error of UAV was specified 
as roll 1 “, pitch 1 “, yaw 1.5 “, while its initial velocity error was set 
at 0.3 m/s in the East, 0.3 m /s in the North, 0.3 m/s in the Up 
direction, and the initial position error of UAV was defined as 10 m 
longitude, 10 m latitude, and 10 m altitude. The SINS parameter 
configurations of the GNSS/SINS-IADPS are presented in Table 1. 
The GNSS measurement was simulated based on the satellite 
constellation and epoch information on June 13, 2023. The pseudo 
range observation error of the GNSS receiver was 10 m, and the 
sampling frequency of the GNSS receiver was 1 Hz.

White Gaussian noise scenario and non-Gaussian noise scenario 
were simulated separately. For each scenario, 100 Monte Carlo 
simulations were carried out, and each simulation time was 1,500 s. 
The configuration of the computing platform used in the simulation 
is as follows. CPU: Inter Core i7-12700, 2.9GHZ; Internal memory: 
DDR4 16GB; Simulation software: Matlab R2020b. The precision of 
each filter estimation was assessed using the root mean square error 
(RMSE), which is mathematically expressed in formula (41).
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here, N  signifies the total number of Monte Carlo simulations; Xi 
represents the reference; Xi signifies the estimation.

4.1.1 White Gaussian noise scenario
In this scenario, both process noise and observation noise are 

simulated as white Gaussian noise, the covariance of which are defined 
in formula (42).
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FIGURE 1

The flow diagram of proposed GSQCCKF algorithm.
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FIGURE 3

RMSEs of the attitude and position obtained by four different algorithms for the white Gaussian noise scenario. (A) Attitude. (B) Position.

The RMSE of attitude and position results calculated by four 
different algorithms (QEKF, QCKF, QCCKF, and GSQCCKF) under 
white Gaussian noise scenario are shown in Figure 3, where the epoch 
range ranges from 0 s to 1500s.

Additionally, the average RMSEs (ARMSEs) for each algorithm 
are also computed and presented in Figure 4 for ease of comparison.

As is evident from Figures  3, 4, QEKF, QCKF, QCCKF, and 
GSQCCKF, these four algorithms all demonstrate convergence in the 
white Gaussian noise scenario. Our analysis reveals that the QEKF 
algorithm exhibits the highest estimation error. This can be attributed 
to the fact that when the initial attitude error is present in the QEKF 
algorithm, the high-order truncation error within the filter leads to a 
reduction in estimation accuracy and filtering stability. In contrast, 
algorithms of QCKF, QCCKF, and GSQCCKF are all derived from the 
QCKF algorithm framework. The QCKF algorithm computes the state 
estimation and its covariance using a set of cubature points, thus 
enabling algorithms of QCKF, QCCKF, and GSQCCKF to mitigate the 
impact of nonlinear function linearization errors inherent in the 
QEKF algorithm on estimation accuracy.

In comparison to the QCKF algorithm, both the QCCKF 
algorithm and the GSQCCKF algorithm exhibit a marked 
enhancement in estimation accuracy. This is because both of them 
consider the quaternion constraint in the state estimation, so the filter 
gain calculated by these two algorithms is also constrained, which 
further improves the estimation accuracy of attitude and position. It 
is noteworthy that the computational accuracy of the QCCKF 
algorithm and the GSQCCKF algorithm are similar to each other. This 
outcome is attributable to the fact that the QCCKF algorithm is based 
on the assumption of white Gaussian noise, while the GSQCCKF 
represents an enhancement of the QCCKF, grounded in the GMM 
approach. In white Gaussian noise scenario, both the QCCKF 
algorithm and the GSQCCKF algorithm are capable of converging, 
resulting in similar estimation accuracies.

4.1.2 Non-Gaussian noise scenario
In non-Gaussian noise scenario, non-Gaussian process noise is 

modeled and generated by the model 
0 9 1 0 9 10. . ,N , N ,0 Q 0 Qk k� � � �� � � �  while the non-Gaussian 
measurement noise is also modeled and generated by the model 
0 9 1 0 9 10. . .N , N ,0 R 0 Rk k� � � �� � � �  The RMSEs of attitude and 
position which result from four different algorithms (QEKF, QCKF, 
QCCKF, and GSQCCKF) are shown in Figure  5 and their 

FIGURE 2

The UAV flight trajectory.

TABLE 1 Parameters of SINS.

Parameter Value

Constant drift of gyroscope
0 1. /

o
h� �

Random walk coefficient of gyroscope
0 01. /

o
h� �

Zero bias of accelerometer 0 001. g� �

Random walk coefficient of accelerometer
0 0001. g �� �s

Sampling rate 50 Hz� �
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corresponding ARMSEs are illustrated in Figure 6, where the epoch 
range ranges from 0 s to 1500s.

As can be observed from Figures 5, 6, the estimation errors of 
QEKF algorithm, QCKF algorithm, and QCCKF algorithm increase 
significantly in the non-Gaussian noise scenario when compared to 
the white Gaussian noise scenario. Taking the yaw estimation results 
as example, the yaw ARMSEs calculated by algorithms of QEKF, 
QCKF, and QCCKF increased from 0.39′, 0.31′, 0.29′ to 0.61′, 0.47′, 
0.44′, with error increase rates approximately 56.41, 52.61, and 
51.72%, respectively. In contrast, the variation of the estimation error 
of GSQCCKF algorithm is the smallest. And the ARMSE calculated 
by the GSQCCKF algorithm changes from 0.28′ to 0.36′, resulting in 
an error increase rate of about 28.57%. It indicates that the GSQCCKF 
algorithm exhibits the highest estimation accuracy in the presence of 

non-Gaussian noise. The reason for this phenomenon lies in the fact 
that the GSQCCKF algorithm enhances the filtering estimation 
accuracy by refining the random model through GMM, and this 
optimization method can make the adaptability of the algorithm more 
effectively to mitigate the impact of non-Gaussian noise on the GNSS/
SINS-IADPS data processing.

4.1.3 Computational performance
The computational time per epoch run, for four different 

algorithms (QEKF, QCKF, QCCKF, and GSQCCKF), as shown in 
Table  2. In addition, the computational efficiency of them was 
compared in Figure 7.

As depicted in Table 2 and Figure 7, it reveals that the changes of 
computation time for all these four algorithms are relatively similar in 
white Gaussian noise scenario and non-Gaussian noise scenario. The 
QEKF algorithm exhibits the shortest computational time. However, 
the computational time of QCKF algorithm is at least 27.57% longer 
than that of QEKF algorithm, due to the complex and time-consuming 
process involved in cubature transformation calculations. Further, the 
computational time of the QCCKF algorithm is at least 15.19% larger 
than that of the QCKF algorithm owing to the calculation of the 
quaternion constraint. Due to the complexity of the computational 
process, the GSQCCKF algorithm takes the longest computational 
time, approximately twice that of QCCKF algorithm, as it performs 
distributed filtering and global point estimation at each iteration. 
Fortunately, the Gaussian components are trimmed and merged 
during the processing, preventing exponential growth in 
computational time (accounting for approximately 285.76% of QEKF). 
Furthermore, with the significant increase in computing power today, 
the millisecond-level operation time of GSQCCKF algorithm 
(16.43 ms) can still meet the real-time data processing requirements 
of GNSS/SINS-IADPS. In conclusion, despite its increased 
computational time, the GSQCCKF algorithm remains capable of 
handling high-dynamic navigation for GNSS/SINS-IADPS equipped 
on UAVs.

Roll Pitch Yaw
0

0.2

0.4

0.6

0.8

ARMSEs of UAV attitude

A
R

M
SE

 in
 a

tti
tu

de
(′) QEKF QCKF QCCKF GSQCCKF

0.250.21
0.180.19 0.170.180.190.24

0.390.310.290.28

Longitude Latitude Altitude
0

10

20

30

ARMSEs of UAV position

A
R

M
SE

 in
 p

os
iti

on

QEKF QCKF QCCKF GSQCCKF

9.67
6.46

12.78
9.199.66

6.80
6.155.98 5.955.88

8.388.21

A

B

FIGURE 4

ARMSEs of the position and attitude obtained by four different 
algorithms for the white Gaussian noise scenario. (A) Attitude. 
(B) Position.
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FIGURE 5

RMSEs of the attitude and position obtained by four different algorithms for the non-Gaussian noise scenario. (A) Attitude. (B) Position.
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FIGURE 7

Relative computational efficiencies of four different algorithms. 
(A) White Gaussian noise scenario. (B) Non-Gaussian noise scenario.

TABLE 3 System parameters of GNSS/SINS-IADPS.

Sensors Parameter Value

SINS Gyroscope constant drift 10

/ h

Random walk coefficient of gyroscope 0 6. /
 h

Zero deviation of angular velocity meter 40 µg

Random walk coefficient of accelerometer 80 �g h�

Sampling rate 100/Hz

GNSS Position measurement noise 15 / m

Sampling rate 10 / Hz

The simulation analysis and comparison conducted in sections 
4.1.1, 4.1.2, and 4.1.3 reveal that the proposed GSQCCKF algorithm 
can effectively refine the random model of filter algorithm and 
mitigate the impact of non-Gaussian noise on the estimation 
performance in the GNSS/SINS-IADPS under non-Gaussian noise 
conditions. As a result, the GSQCCKF algorithm exhibits a higher 

level of computational accuracy and adaptability when compared to 
algorithms of QEKF, QCKF, and QCCKF. Despite the increased 
computational time, the GSQCCKF algorithm remains suitable for 
real-time solution of GNSS/SINS-IADPS under dynamic 
navigation states.

4.2 Experiments and analysis

The performance of GSQCCKF algorithm was evaluated by 
experiments using UAV that involved a diverse range of maneuvers. 
The experimental data were collected continuously for a duration of 
70 min on September 15, 2023, in Zhengzhou, China (114.0°E, 
34.3°N).

The UAV is equipped with a GNSS/SINS-IADPS, the parameters 
of which are detailed in Table 3. The GNSS reference station is located 
on the ground, with a maximum distance of 20 km from the UAV. The 
UAV is also equipped with a GNSS receiver, which processes the 
paired data between it and the GNSS reference station to obtain the 
differential GPS (DGPS) data with an accuracy of better than 0.1 m. 
This DGPS data serves as a reference value for assessing the 
performance of different algorithms.

The starting position of the UAV was 34.654° latitude, 109.193° 
longitude, and an altitude of 2,683 meters. The initial velocity for the 
eastern, northern, and up direction are 180 m/s, 60 m/s, and 40 m/s, 
respectively. Other initial parameters are the same as the simulation. 
Four different algorithms (QEKF, QCKF, QCCKF, and GSQCCKF) 
were, respectively, used for GNSS/SINS-IADPS data processing. The 
test accuracy is measured by 3D positioning error, calculated in 
formula (43).

 � � � �p L h� � ��2 2 2
 (43)

here, ��  is the positioning error in longitude; ∆L  is the 
positioning error in latitude; ∆h  is the positioning error in altitude.

To ascertain whether the process noise and measurement noise 
encountered during experiments are non-Gaussian noise, Allan 
variance analysis is carried out on the inertial element, the results of 
which are depicted in Figure 8. The findings indicate that the noise of 
the inertial element exhibited by the inertial element utilized in the 
experiments is not white Gaussian noise, but rather a complex noise 
term encompassing angle random walk, rate slope, quantization noise, 
and bias instability.
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FIGURE 6

ARMSEs of the attitude and position obtained by four different 
algorithms for the non-Gaussian noise scenario. (A) Attitude. 
(B) Position.

TABLE 2 Computational time per epoch run of four different algorithms.

Algorithm The average time spent per epoch 
(ms)

White Gaussian 
noise scenario

Non-Gaussian 
noise scenario

QEKF 5.42 5.75

QCKF 6.76 7.34

QCCKF 7.35 8.21

GSQCCKF 15.15 16.43
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The statistical properties of the pseudo-range noise of satellites 
with different cutoff angle are shown in Table 4 and Figure 9. Notably, 
G14 has a higher cutoff angle while G22 possesses a lower cutoff angle. 
As observed from Table 4 and Figure 9, the kurtosis value of the 
pseudo noise of the G22 satellite is significantly less than 3, that is, it 
shows negative kurtosis. Consequently, it can be deduced that the 
pseudo-range noise of G22 exhibits pronounced non-Gaussian  
characteristics.

According to Figure 8 and Table 4 as well as Figure 9, the SINS 
errors and the pseudo-range noise of GNSS present in this experiment 
data are not white Gaussian noise, but rather non-Gaussian noise.

The 3D positioning error curves of four different algorithms (QEKF, 
QCKF, QCCKF, and GSQCCK) for the epoch range ranging from 100s 
to 1100s are illustrated in Figure 10. The 3D positioning ARMSEs of 
different algorithms based on 1,000 sets of data and 4,000 sets of data 
are shown in Figure 11. It is worth noting that the epoch ranges for the 

1,000 sets of data encompass the epoch from 100 s to 1100s, while the 
epoch range for the 4,000 sets of data spans from 100 s to 4,100 s.

As depicted in Figures 10, 11, the period ranges from 100 s to 1100s 
reveals that the QEKF algorithm is susceptible to linearization errors, 
resulting in a substantial RMSE of approximately 17.01 m. In contrast, 
the QCKF algorithm employs a set of cubature points to compute the 
mean and its covariance, thereby mitigating the linearization error 
associated with the nonlinear function. Consequently, the QCKF 
algorithm exhibits a more accurate positioning performance compared 
to the QEKF algorithm, with the RMSE of approximately 16.38 m. 
Moreover, because the QCCKF algorithm considers the constraint 
condition of quaternion, the RMSE is slightly reduced compared with 
the QCKF algorithm, reaching 16.07 m. Notably, the maximum 
variation range of the 3D positioning error curves of GSQCCKF 
algorithm is narrower than that of observed in algorithms of QEKF, 
QCKF, and QCCKF. This can be attributed to the GSQCCKF algorithm’s 
use of GMM to accurately modeling the random model, resulting in the 
smallest RMSE of approximately 15.45 m. Therefore, the same 
conclusion as the simulation can be obtained, that is, compared with the 
other three algorithms (QEKF, QCKF, QCCKF), the GSQCCKF 
algorithm can achieve the best estimation accuracy and adaptability in 
GNSS/SINS-IADPS data processing.

It can also evident from Figure  11 that, an increase in the 
experiment data from 1,000 sets to 4,000 sets, the estimation accuracy 
of four different algorithms (QEKF, QCKF, QCCKF and GSQCCKF) 
is reduced (QEKF from 17.01to 17.76 m, QCKF from 16.38 to 16.82 m, 
QCCKF from 16.07 to 16.54 m, and GSQCCKF from 15.45 to 
15.63 m). Notably, the estimation accuracy of GSQCCKF algorithm is 
always better than the other three filter algorithms. When the 
experiment data comprises 1,000 sets, the 3D positioning RMSEs of 
GSQCCKF algorithm are about 9.18, 5.545, and 3.70% higher than 
those of QEKF, QCKF and QCCKF, respectively. As the experiment 
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Accelerometer Allan variance results.

TABLE 4 Statistical characteristics of the pseudo-range noise.

Satellite Pseudo-range noise

Mean value (m) Variance (m) Kurtosis

G14 0.153 0.22 3.06

G22 0.995 0.87 0.90
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Non-Gaussian characteristics of the pseudo-range noise.
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data increases to 4,000 sets, the accuracy advantage of GSQCCKF 
algorithm becomes even more pronounced, which is about 11.01, 
6.89, and 5.27% higher than those of QEKF, QCKF, and QCCKF, 
respectively. This shows that the GSQCCKF algorithm possesses 
robust processing capabilities for non-Gaussian noise and significantly 
enhances the GNSS/SINS-IADPS estimation accuracy. Furthermore, 
the GSQCCKF algorithm maintains high accuracy in long-sailing 
GNSS/SINS-IADPS applications.

5 Conclusion

This paper introduces a novel Gaussian sum quaternion 
constrained cubature Kalman filter algorithm to tackle the limitations 
of using QCKF algorithm in the non-Gaussian environments for 
GNSS/SINS-IADPS. The primary contributions of this research are 
summarized as follows:

 1. The framework of GSQCCKF algorithm is set up. Firstly, the 
QCKF algorithm based on attitude quaternion for nonlinear/
Gaussian systems is presented, followed by an analysis of its 
limitations. Secondly, the idea of GMM is introduced, which 
employs a set of Gaussian distributions to approximate the PDF 
of non-Gaussian variables, including process noise, 
measurement noise, and state estimation. Thirdly, the 
combination of QCKF algorithm and GMM produces the 
proposed GSQCCKF algorithm used for nonlinear 
non-Gaussian system estimation, which essentially consists of 
a set of parallel QCKFs.

 2. In order to address the quaternion normalization problem in 
attitude estimation of the proposed GSQCCKF algorithm, a 
two-step projection method is proposed to resolve the 
quaternion constraint issue. This approach further enhances 
the accuracy and numerical stability of GSQCCKF algorithm 
for GNSS/SINS-IADPS data processing.

Results of simulation and experimentation demonstrate that the 
proposed GSQCCKF algorithm exhibits a remarkable ability to 
counteract the adverse effects of non-Gaussian noise on state 
estimation for GNSS/SINS-IADPS, and it demonstrates significantly 
enhanced estimation accuracy and adaptability in comparison with 
algorithms of QEKF, QCKF, and QCCKF.

The GSQCCKF algorithm proposed in this article also has 
limitations. Theoretically, the GSQCCKF algorithm are unable to 
adjust to time-varying non-Gaussian noise. In practical terms, due to 
the non-stationary nature of challenging operation environments of 
GNSS/SINS-IADPS data processing for UAVs, the non-Gaussian noise 
may vary over time. The inability to effectively mitigate the impact of 
such time-varying non-Gaussian noise in the GSQCCKF algorithm 
could potentially distort the performance of GNSS/SINS- 

IADPS. Future research efforts should focus on discussing modeling 
approaches for time-varying non-Gaussian noise in GNSS/SINS-
IADPS data processing for UAVs.

Data availability statement

The data analyzed in this study is subject to the following licenses/
restrictions: the data that support the findings of this study are 
available from the corresponding author upon reasonable request. 
Requests to access these datasets should be directed to QD, daiqing@
lypt.edu.cn.

Author contributions

QD: Funding acquisition, Writing – original draft, Writing – 
review & editing. G-RX: Methodology, Writing – original draft. G-HZ: 
Formal analysis, Validation, Writing – review & editing. Q-QY: 
Visualization, Writing – review & editing. S-YH: Validation, 
Visualization, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. This research 
was funded by the National Natural Science Foundation of China 
(grant no. 42274045), the Henan Province Science and Technology 
Research Projects (grant no. 242102241067), the Key Research 
Funding Projects for Higher Education Institutions in Henan Province 
(grant no. 24A420003), and the Scientific Research Project of 
Wenzhou University of Technology (grant no. ky202208).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any 
product that may be  evaluated in this article, or claim that may 
be made by its manufacturer, is not guaranteed or endorsed by the  
publisher.

References
Ali, J., and Mirza, M. R. U. B. (2010). Performance comparison among some nonlinear 

filters for a low cost SINS/GPS integrated solution. Nonlinear Dynam. 61, 491–502. doi: 
10.1007/s11071-010-9665-y

Alspach, L. D., and Sorenson, W. H. (1972). Nonlinear Bayesian estimation using 
Gaussian sum approximations. IEEE Trans. Autom. Control 17, 439–448. doi: 10.1109/
TAC.1972.1100034

Arasaratnam, I., Haykin, S., and Hurd, R. T. (2010). Cubature Kalman filtering for 
continuous-discrete systems: theory and simulations. IEEE Trans. Signal Process. 58, 
4977–4993. doi: 10.1109/TSP.2010.2056923

Bai, J. G., Ge, Q. B., Li, H., Xiao, J. M., and Wang, Y. L. (2022). Aircraft trajectory 
filtering method based on Gaussian-sum and maxi-mum Correntropy Square-root 
cubature Kalman filter. Cogn. Comput. Syst. 4, 205–217. doi: 10.1049/ccs2.12049

https://doi.org/10.3389/fnbot.2024.1374531
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
mailto:daiqing@lypt.edu.cn
mailto:daiqing@lypt.edu.cn
https://doi.org/10.1007/s11071-010-9665-y
https://doi.org/10.1109/TAC.1972.1100034
https://doi.org/10.1109/TAC.1972.1100034
https://doi.org/10.1109/TSP.2010.2056923
https://doi.org/10.1049/ccs2.12049


Dai et al. 10.3389/fnbot.2024.1374531

Frontiers in Neurorobotics 13 frontiersin.org

Boguspayev, N., Akhmedov, D., Raskaliyev, A., Kim, A., and Sukhenko, A. (2023). A 
comprehensive review of GNSS/INS Integra-tion techniques for land and air vehicle 
applications. Appl. Sci. 13:4819. doi: 10.3390/app13084819

Challa, S. M., Moore, G. J., and Rogers, J. D. (2016). A simple attitude unscented 
Kalman filter: theory and evaluation in a Magne-tometer-only spacecraft scenario. IEEE 
Access. 4, 1845–1858. doi: 10.1109/ACCESS.2016.2559445

Chang, G. B. (2014). Robust Kalman filtering based on Mahalanobis distance as outlier 
judging criterion. J. Geod. 88, 391–401. doi: 10.1007/s00190-013-0690-8

Chang, L. B., Hu, B. Q., and Chang, G. B. (2013). Modified unscented quaternion 
estimator based on quaternion averaging. J. Guid. Control. Dyn. 37, 305–309. doi: 
10.2514/1.61723

Chang, Y. Z., Wang, Y. Q., Shen, Y. Y., and Ji, C. G. (2021). A new fuzzy strong tracking 
cubature Kalman filter for INS/GNSS. GPS Solutions 25:120. doi: 10.1007/
s10291-021-01148-5

Chen, Y., Yan, H., and Li, Y. C. (2023). Vehicle state estimation based on sage–Husa 
adaptive unscented Kalman filtering. World Electr. Veh. J. 14:167. doi: 10.3390/
wevj14070167

Dong, J. Q., Lian, Z. Z., Xu, J. C., and Yue, Z. (2023). UWB localization based on 
improved robust adaptive cubature Kalman filter. Sensors 23:2669. doi: 10.3390/
s23052669

Duong, T. T., and Chiang, W. K. (2012). Non-linear, non-Gaussian estimation for INS/
GPS integration. Sens. Lett. 10, 1081–1086. doi: 10.1166/sl.2012.2267

Elmezayen, A., and El-Rabbany, A. (2021). Real-time GNSS precise point positioning 
using improved robust adaptive Kalman filter. Surv. Rev. 53, 528–542. doi: 
10.1080/00396265.2020.1846361

El-Sheimy, N., Hou, H. Y., and Niu, X. J. (2008). Analysis and modeling of inertial 
sensors using Allan variance. IEEE Trans. Instrum. Meas. 57, 140–149. doi: 10.1109/
TIM.2007.908635

Farrell, J., and de Haag, M. U. (2020). Position, navigation, and timing technologies in 
the 21st century. Hoboken, NJ: Wiley.

Geng, J. J., Xia, L. Y., and Wu, D. J. (2021). Attitude and heading estimation for indoor 
positioning based on the adaptive cubature Kalman filter. Micromachines 12:79. doi: 
10.3390/mi12010079

Groves, D. P. (2008). Principles of GNSS, inertial, and multisensor integrated navigation 
systems. London: Artech House.

Gui, H. C., and de Ruiter, H. J. A. (2018). Quaternion invariant extended Kalman 
filtering for spacecraft attitude estimation. J. Guid. Control. Dyn. 41, 863–878. doi: 
10.2514/1.G003177

Huang, W. (2017). Quaternion constrained cubature Kalman filter attitude estimation 
based on uncertain measurements. J. Harb. Inst. Technol. 49, 116–121. doi: 10.11918/j.
issn.201509022

Huang, Y., Wu, L. H., and Yu, Q. (2020). Underwater square-root cubature attitude 
estimator by use of quaternion-vector switch-ing and geomagnetic field tensor. J. Syst. 
Eng. Electron. 31, 804–814. doi: 10.23919/JSEE.2020.000055

Huang, W., Xie, H. S., Shen, C., and Li, J. P. (2016). A robust strong tracking cubature 
Kalman filter for spacecraft attitude estimation with quaternion constraint. Acta 
Astronaut. 121, 153–163. doi: 10.1016/j.actaastro.2016.01.009

Jiang, C., Zhang, S. B., Li, H., and Li, Z. (2021). Performance evaluation of the filters 
with adaptive factor and fading factor for GNSS/INS integrated systems. GPS Solutions 
25:130. doi: 10.1007/s10291-021-01165-4

Julier, S., Uhlmann, J., and Durrant-Whyte, F. H. (2000). A new method for the 
nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. 
Autom. Control. 45, 477–482. doi: 10.1109/9.847726

Li, B. F., and Chen, G. E. (2022). Improving the combined GNSS/INS positioning by 
using tightly integrated RTK. GPS Solutions 26:144. doi: 10.1007/s10291-022-01331-2

Liu, Y., Dong, K., Wang, H. P., Liu, J., He, Y., and Pan, L. N. (2014). Adaptive Gaussian 
sum squared-root cubature Kalman filter with Split-merge scheme for state estimation. 
Chin. J. Aeronaut. 27, 1242–1250. doi: 10.1016/j.cja.2014.09.007

Maebashi, K., Suematsu, N., and Hayashi, A. (2008). Component reduction for 
Gaussian mixture models. IEICE Trans. Inf. Syst. E91-D, 2846–2853. doi: 10.1093/ietisy/
e91-d.12.2846

Markley, F. L. (2003). Attitude error representations for Kalman filtering. J. Guid. 
Control. Dyn. 26, 311–317. doi: 10.2514/2.5048

Michał, G., Michał, W., Cezary, S., Mariusz, K., Albert, Z., and Krystian, B. (2022). 
Quaternion attitude control system of highly maneuverable aircraft. Electronics 11, 1–13. 
doi: 10.3390/electronics11223775

Mohamed, A. H., and Schwarz, K. P. (1999). Adaptive Kalman Filtering for INS/GPS. 
J. Geod. 73, 193–203. doi: 10.1007/s001900050236

Noureldin, A., Karamat, B. T., and Georgy, J. (2013). Fundamentals of inertial 
navigation, satellite-based positioning and their integration. Berlin Heidelberg: Springer.

Qian, C., Song, C. Y., Li, S., Chen, Q. W., and Guo, J. (2021). Algorithm of Gaussian 
sum filter based on SGQF for nonlinear non-Gaussian models. Int. J. Control. Autom. 
Syst. 19, 2830–2841. doi: 10.1007/s12555-020-0490-x

Qiu, Z. B., and Qian, H. M. (2018). Modified multiplicative quaternion cubature 
Kalman filter for attitude estimation. Int. J. Adapt. Control Sign. Process. 32, 1182–1190. 
doi: 10.1002/acs.2895

Ryzhkov, L. M. (2021). Quaternion attitude determination by vector measurement. 
Int. Appl. Mech. 57, 613–617. doi: 10.1007/s10778-021-01111-4

Savage, G. P. (1998). Strapdown inertial navigation integration algorithm 
design part 1: attitude algorithms. J. Guid. Contr. Dynam. 21, 19–28. doi: 
10.2514/2.4228

Song, H. R., Cheng, S. X., Xu, Z. X., and Zang, N. Research on PPP/INS algorithm 
based on sequential Sage-Husa adaptive filtering. China Satellite Navigation Conference 
(CSNC 2022) Proceedings, Beijing, China, 26–28 April 2022; Springer Nature Singapore: 
Singapore, (2022).

Sun, L. L., Cao, Y. H., Wu, W. H., and Liu, Y. T. (2020). A multi-target tracking 
algorithm based on Gaussian mixture model. J. Syst. Eng. Electron. 31, 482–487. doi: 
10.23919/JSEE.2020.000020

Sun, B., Zhang, Z. W., Liu, S. C., Yan, X. B., and Yang, C. X. (2022). Integrated 
navigation algorithm based on multiple fading factors Kalman filter. Sensors 22:5081. 
doi: 10.3390/s22145081

Swati, (2022). Continuous discrete cubature quadrature Kalman filter. Asian J. Control 
24, 483–493. doi: 10.1002/asjc.2505

Taghizadeh, S., and Safabakhsh, R. (2023). Low-cost integrated INS/GNSS 
using adaptive H∞ cubature Kalman filter. J. Navig. 76, 1–19. doi: 10.1017/
S0373463322000583

Tang, X. J., Liu, Z. B., and Zhang, J. S. (2012). Square-root quaternion cubature 
Kalman filtering for spacecraft attitude estimation. Acta Astronaut. 76, 84–94. doi: 
10.1016/j.actaastro.2012.02.009

Teunissen, J. G. P., and Montenbruck, O. (2017). Springer handbook of global 
navigation satellite systems. Berlin Heidelberg: Springer.

Wang, J. W., Chen, X. Y., and Shi, C. F. (2023). A novel robust iterated CKF for GNSS/
SINS integrated navigation applications. Eurasip J. Adv. Sign. Process. 1:83. doi: 10.1186/
s13634-023-01044-9

Wang, L., and Cheng, X. H. (2015). Algorithm of Gaussian sum filter based on high-
order UKF for dynamic state estimation. Int. J. Contr. Autom. Syst. 13, 652–661. doi: 
10.1007/s12555-014-0114-4

Wang, D. J., Dong, Y., Li, Q. S., Li, Z. Y., and Wu, J. (2018). Using Allan variance to 
improve stochastic modeling for accurate GNSS/INS integrated navigation. GPS 
Solutions 22:53. doi: 10.1007/s10291-018-0718-x

Wang, L., Gao, W.X., Wang, L., and Hu, F.Z. Design and analysis of Gaussian sum 
high-order CKF for nonlinear/non-Gaussian dynamic state estimation. 2021 33rd 
Chinese Control and Decision Conference (CCDC). IEEE: Kun-ming (2021).

Wang, Z. P., Li, X., Zhu, Y. B., Li, Q., and Fang, K. (2022). Integrity monitoring of 
global navigation satellite system/inertial Navi-gation system integrated navigation 
system based on dynamic fading filter optimisation. IET Radar Sonar Navig. 16, 
515–530. doi: 10.1049/rsn2.12199

Wang, D. J., Lv, H. F., and Wu, J. (2017). Augmented cubature Kalman filter for 
nonlinear RTK/MIMU integrated navigation with non-additive noise. Measurement 97, 
111–125. doi: 10.1016/j.measurement.2016.10.056

Wang, G. C., Xu, X. S., and Zhang, T. (2020). M-M estimation-based robust cubature 
Kalman filter for INS/GPS integrated navigation system. IEEE Trans. Instrum. Meas. 70, 
1–11. doi: 10.1109/TIM.2020.3021224

Wu, Y. L., Chen, S. A., and Yin, T. T. (2022). GNSS/INS tightly coupled navigation with 
robust adaptive extended Kalman filter. Int. J. Automot. Technol. 23, 1639–1649. doi: 
10.1007/s12239-022-0142-7

Yang, Z. H., Li, Z. K., Liu, Z., Wang, C. C., Sun, Y. W., and Shao, K. F. (2021). Improved 
robust and adaptive filter based on non-holonomic constraints for RTK/INS integrated 
navigation. Meas. Sci. Technol. 32:105110. doi: 10.1088/1361-6501/ac0370

Yu, B., Zhang, Y. Z., Xie, W. S., Zuo, W. J., Zhao, Y. M., and Wei, Y. L. (2023). A network 
traffic anomaly detection method based on Gaussian mixture model. Electronics 12:1397. 
doi: 10.3390/electronics12061397

Zhang, L., Li, S., Zhang, E., Chen, Q. W., and Guo, J. (2019). Improved square root 
adaptive cubature Kalman filter. IET Signal Process. 13, 641–649. doi: 10.1049/iet-
spr.2018.5029

Zhang, Q., Niu, X. J., and Shi, C. (2020). Impact assessment of various IMU error 
sources on the relative accuracy of the GNSS/INS systems. IEEE Sensors J. 20, 
5026–5038. doi: 10.1109/JSEN.2020.2966379

Zhu, T. G., Liu, Y., Li, W. K., and Li, K. L. (2021). The quaternion-based attitude error 
for the nonlinear error model of the INS. IEEE Sensors J. 21, 25782–25795. doi: 10.1109/
jsen.2021.3118039

Zhu, W. Q., McBrearty, W. I., Mousavi, S. M., Ellsworth, L. W., and Beroza, C. G. 
(2022). Earthquake phase association using a Bayesian Gaussian mixture model. J. 
Geophys. Res. Solid Earth. 5:127. doi: 10.1029/2021JB023249

Zickert, G., and Yarman, C. E. (2021). Gaussian mixture model decomposition of 
multivariate signals. Signal Image Video Process. 16, 429–436. doi: 10.1007/
s11760-021-01961-y

https://doi.org/10.3389/fnbot.2024.1374531
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://doi.org/10.3390/app13084819
https://doi.org/10.1109/ACCESS.2016.2559445
https://doi.org/10.1007/s00190-013-0690-8
https://doi.org/10.2514/1.61723
https://doi.org/10.1007/s10291-021-01148-5
https://doi.org/10.1007/s10291-021-01148-5
https://doi.org/10.3390/wevj14070167
https://doi.org/10.3390/wevj14070167
https://doi.org/10.3390/s23052669
https://doi.org/10.3390/s23052669
https://doi.org/10.1166/sl.2012.2267
https://doi.org/10.1080/00396265.2020.1846361
https://doi.org/10.1109/TIM.2007.908635
https://doi.org/10.1109/TIM.2007.908635
https://doi.org/10.3390/mi12010079
https://doi.org/10.2514/1.G003177
https://doi.org/10.11918/j.issn.201509022
https://doi.org/10.11918/j.issn.201509022
https://doi.org/10.23919/JSEE.2020.000055
https://doi.org/10.1016/j.actaastro.2016.01.009
https://doi.org/10.1007/s10291-021-01165-4
https://doi.org/10.1109/9.847726
https://doi.org/10.1007/s10291-022-01331-2
https://doi.org/10.1016/j.cja.2014.09.007
https://doi.org/10.1093/ietisy/e91-d.12.2846
https://doi.org/10.1093/ietisy/e91-d.12.2846
https://doi.org/10.2514/2.5048
https://doi.org/10.3390/electronics11223775
https://doi.org/10.1007/s001900050236
https://doi.org/10.1007/s12555-020-0490-x
https://doi.org/10.1002/acs.2895
https://doi.org/10.1007/s10778-021-01111-4
https://doi.org/10.2514/2.4228
https://doi.org/10.23919/JSEE.2020.000020
https://doi.org/10.3390/s22145081
https://doi.org/10.1002/asjc.2505
https://doi.org/10.1017/S0373463322000583
https://doi.org/10.1017/S0373463322000583
https://doi.org/10.1016/j.actaastro.2012.02.009
https://doi.org/10.1186/s13634-023-01044-9
https://doi.org/10.1186/s13634-023-01044-9
https://doi.org/10.1007/s12555-014-0114-4
https://doi.org/10.1007/s10291-018-0718-x
https://doi.org/10.1049/rsn2.12199
https://doi.org/10.1016/j.measurement.2016.10.056
https://doi.org/10.1109/TIM.2020.3021224
https://doi.org/10.1007/s12239-022-0142-7
https://doi.org/10.1088/1361-6501/ac0370
https://doi.org/10.3390/electronics12061397
https://doi.org/10.1049/iet-spr.2018.5029
https://doi.org/10.1049/iet-spr.2018.5029
https://doi.org/10.1109/JSEN.2020.2966379
https://doi.org/10.1109/jsen.2021.3118039
https://doi.org/10.1109/jsen.2021.3118039
https://doi.org/10.1029/2021JB023249
https://doi.org/10.1007/s11760-021-01961-y
https://doi.org/10.1007/s11760-021-01961-y

	A novel Gaussian sum quaternion constrained cubature Kalman filter algorithm for GNSS/SINS integrated attitude determination and positioning system
	1 Introduction
	2 Preliminaries and problem formulation
	2.1 Mathematical models for GNSS/SINS-IADPS
	2.2 Quaternion cubature Kalman filter algorithm
	2.3 The limitation of QCKF algorithm

	3 Gaussian sum quaternion constrained cubature Kalman filter algorithm
	3.1 Modeling of non-Gaussian probability density function by GMM
	3.2 Gaussian sum quaternion cubature Kalman filter algorithm
	3.3 Two-step projection method
	3.4 GSQCCKF algorithm structure

	4 Performance evaluation and discussion
	4.1 Simulations and analysis
	4.1.1 White Gaussian noise scenario
	4.1.2 Non-Gaussian noise scenario
	4.1.3 Computational performance
	4.2 Experiments and analysis

	5 Conclusion
	Data availability statement
	Author contributions

	 References

