AUTHOR=Wang Xuefeng , Mi Yang , Zhang Xiang TITLE=3D human pose data augmentation using Generative Adversarial Networks for robotic-assisted movement quality assessment JOURNAL=Frontiers in Neurorobotics VOLUME=18 YEAR=2024 URL=https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2024.1371385 DOI=10.3389/fnbot.2024.1371385 ISSN=1662-5218 ABSTRACT=
In the realm of human motion recognition systems, the augmentation of 3D human pose data plays a pivotal role in enriching and enhancing the quality of original datasets through the generation of synthetic data. This augmentation is vital for addressing the current research gaps in diversity and complexity, particularly when dealing with rare or complex human movements. Our study introduces a groundbreaking approach employing Generative Adversarial Networks (GANs), coupled with Support Vector Machine (SVM) and DenseNet, further enhanced by robot-assisted technology to improve the precision and efficiency of data collection. The GANs in our model are responsible for generating highly realistic and diverse 3D human motion data, while SVM aids in the effective classification of this data. DenseNet is utilized for the extraction of key features, facilitating a comprehensive and integrated approach that significantly elevates both the data augmentation process and the model's ability to process and analyze complex human movements. The experimental outcomes underscore our model's exceptional performance in motion quality assessment, showcasing a substantial improvement over traditional methods in terms of classification accuracy and data processing efficiency. These results validate the effectiveness of our integrated network model, setting a solid foundation for future advancements in the field. Our research not only introduces innovative methodologies for 3D human pose data enhancement but also provides substantial technical support for practical applications across various domains, including sports science, rehabilitation medicine, and virtual reality. By combining advanced algorithmic strategies with robotic technologies, our work addresses key challenges in data augmentation and motion quality assessment, paving the way for new research and development opportunities in these critical areas.