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In the realm of human motion recognition systems, the augmentation of 3D

human pose data plays a pivotal role in enriching and enhancing the quality of

original datasets through the generation of synthetic data. This augmentation

is vital for addressing the current research gaps in diversity and complexity,

particularly when dealing with rare or complex human movements. Our

study introduces a groundbreaking approach employing Generative Adversarial

Networks (GANs), coupled with Support Vector Machine (SVM) and DenseNet,

further enhanced by robot-assisted technology to improve the precision and

e�ciency of data collection. The GANs in our model are responsible for

generating highly realistic and diverse 3D human motion data, while SVM

aids in the e�ective classification of this data. DenseNet is utilized for the

extraction of key features, facilitating a comprehensive and integrated approach

that significantly elevates both the data augmentation process and the model’s

ability to process and analyze complex human movements. The experimental

outcomes underscore our model’s exceptional performance in motion quality

assessment, showcasing a substantial improvement over traditional methods

in terms of classification accuracy and data processing e�ciency. These

results validate the e�ectiveness of our integrated network model, setting a

solid foundation for future advancements in the field. Our research not only

introduces innovative methodologies for 3D human pose data enhancement

but also provides substantial technical support for practical applications across

various domains, including sports science, rehabilitation medicine, and virtual

reality. By combining advanced algorithmic strategies with robotic technologies,

our work addresses key challenges in data augmentation and motion quality

assessment, paving the way for new research and development opportunities

in these critical areas.

KEYWORDS

3D human pose data, robotic assistance, motion quality assessment, Generative

Adversarial Networks, Support Vector Machines, DenseNet

1 Introduction

3D human orientation data augmentation is an advanced research topic involving

the fields of computer vision and machine learning, which aims at augmenting existing

datasets by generating new, synthesized 3D human movement data. This process is

crucial for improving the performance of human action recognition systems, especially
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in applications that require a high degree of accuracy and

robustness (Xu et al., 2021), such as motion quality assessment,

virtual reality, video surveillance, and health monitoring. The core

aim of 3D human orientation data augmentation is to create new

data that can extend and complement the original training dataset

(Li X. et al., 2023). This is because the original dataset may be

limiting, such as insufficient number of samples, insufficient sample

diversity, or inability to cover all possible human movements. By

augmenting the data, it is possible to generate new data samples

that are synthesized but highly similar to the real data in terms of

structure and motion characteristics.

In recent years, the application of Generative Adversarial

Networks (GANs) in the field of 3D human pose data augmentation

has become a focal point of contemporary research. GANs, with

their unique architecture of generators and discriminators, generate

new data instances while learning and mimicking the distribution

of real data. In the context of 3D human movement data, GANs

are capable of creating lifelike sequences of human movements,

which is particularly valuable for training deep learning models.

These synthetic data significantly increase the diversity and size

of the training set, aiding the model in learning more complex

and subtle human movement patterns (Nian, 2022). Moreover,

GANs demonstrate great potential in addressing data imbalance

issues by generating samples that are scarce or absent in the

original training set, thus enhancing themodel’s ability to recognize

rare or challenging movements (Ning et al., 2024). Overall, the

application of GANs in 3D human pose data augmentation not only

improves the performance and generalization capability of models

but also opens new avenues for a deeper understanding of complex

human movements.

Robotic-assisted technology, due to its high precision and

repeatability, is particularly suited for assisting with Generative

Adversarial Networks (GANs) in researching data augmentation

methods for 3D human body orientation. This technology utilizes

advanced sensors and precise control systems to simulate and

record complex human actions, providing high-quality and diverse

data for datasets (Cai et al., 2021). Specifically, robot-assisted

technology is capable of capturing human motion data with

extreme precision through the use of advanced sensors such as

optical trackers and force sensors (Li J. et al., 2023). Additionally,

by precisely controlling the robot’s movements, specific human

motions can be replicated under safe conditions, which is crucial

for generating realistic and diverse datasets. This approach not only

improves the quality of the data but also significantly enhances

the efficiency and reliability of data collection. The application

of robotic-assisted technology in the field of 3D human posture

data augmentation opens new directions for research (Lee et al.,

2021). It not only enhances the realism and diversity of the data

generated by GANs but also provides more accurate and abundant

data resources for research in fields like sports science and

rehabilitation medicine. By further optimizing robotic technologies

and data processing methods, there is potential for achieving more

advanced data augmentation techniques in the future, bringing

revolutionary progress to 3D human posture estimation and related

application fields.

However, due to the inherent complexity and variability of

3D human body data, effectively enhancing such data remains

a complex challenge. One of the foremost challenges lies in

achieving realism and diversity in the generated data (Gao

et al., 2023). Realism entails ensuring that the generated data

closely resembles real-world 3D human body movements, ensuring

optimal model performance in practical applications. Achieving

this level of realism is intricate, as it necessitates consideration

of factors such as body posture, movement smoothness, joint

naturalness, and more. Diversity, on the other hand, involves

generating 3D human body data of different types, backgrounds,

and environments to enable the model to adapt to diverse

scenarios and application requirements. Data diversity is crucial

for enhancing the model’s generalization capabilities but poses

its own set of challenges. Another critical challenge is the cost

associated with data collection and annotation. Collecting 3D

human pose data typically requires specialized equipment like

motion capture systems, significantly driving up the cost of data

acquisition. Furthermore, annotating large-scale datasets demands

substantial human and time resources. Consequently, researchers

and practitioners face considerable difficulties in data collection

and annotation. One potential solution is the exploration of

unsupervised or weakly supervised learning approaches to reduce

reliance on extensively annotated data, but this remains an active

research area.

In addressing the challenges inherent in 3D human pose data

augmentation, this work introduces an innovative GANs-SVM-

DenseNet network model that significantly advances the field.

Traditional methods in data augmentation and motion quality

assessment often struggle with generating diverse and realistic

datasets that accurately mimic the complex nature of human

movements. This limitation hampers the development of robust

machine learning models capable of precise motion recognition

and quality assessment.

We introduce a pioneering approach that synergizes GAN-

generated synthetic data with high-precision, robotics-assisted data

collection techniques. This integration is novel, enhancing the

quality and diversity of data available for 3D human pose analysis,

a step beyond the current state-of-the-art practices that rely on

either synthetic or real-world data in isolation. Our proposed

model harnesses the generative power of GANs to produce varied

and lifelike 3D human motion datasets, overcoming the challenge

of limited data diversity. The SVM component of our model

brings high precision in classifying the quality of these movements,

addressing the challenge of accurately evaluating complex motion

patterns. DenseNet further enhances our model by extracting

intricate features from the augmented data, ensuring that the

subtleties of human motion are captured and utilized effectively for

quality assessment.

We provide a comprehensive evaluation of our proposed

method against current state-of-the-art models in 3D data

augmentation. Our analysis not only demonstrates the superiority

of our approach in generating realistic and diverse human poses

but also highlights the specific improvements our method offers

over existing techniques in terms of data quality, usability, and

application to motion quality assessment. The integration of these

technologies enables our model to not only augment 3D human

pose data with high realism and diversity but also to assess

motion quality with unprecedented accuracy. This contribution
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is pivotal for applications requiring precise motion analysis,

such as in healthcare for rehabilitation assessment, in sports

science for performance evaluation, and in the development of

interactive virtual reality environments. By elaborating on the

specific challenges these technologies address, this work clearly

delineates its contribution to the field, setting a new benchmark for

future research in 3D human pose data augmentation and motion

quality assessment.

The contribution points of this paper are as follows:

• We successfully applied the integration of GANs, SVM,

and DenseNet to the study of 3D human orientation data

enhancement. This integration not only improves the quality

and diversity of data enhancement, but also enhances the

performance of the model in processing complex 3D human

movement data. Our research results help to address the

limitations of current 3D human motion datasets in terms

of size and diversity, and provide new directions for future

related research.

• We integrated robot-assisted techniques in our study to

improve the accuracy of 3D human orientation data

acquisition and processing efficiency. By comparing with

traditional methods, we show how robotics can achieve higher

accuracy and consistency in the data acquisition process. This

finding not only improves data quality, but also provides

practical guidance and reference for future applications in

similar fields.

• We comprehensively evaluated the potential of the model

for application in the assessment of movement quality, and

the experimental results confirmed that the model performs

well in processing and analyzing complex human movements

with high efficiency and accuracy. This result not only

provides strong technical support for practical applications in

the fields of sports science and rehabilitation medicine, but

also offers new possibilities for technological innovation and

development in these fields.

The structure of this article is organized as follows: Section

2 delves into the related work, encompassing existing studies

on 3D human posture estimation and data augmentation

techniques pertinent to our research. Section 3 introduces our

proposed robotic-assisted data augmentation method, detailing the

technical specifics and implementation process. Section 4 presents

the experimental design, execution, and the results obtained

using our proposed method, along with a comparative analysis

against existing technologies. Section 5 discusses the experimental

outcomes, explores potential areas for method improvement, and

suggests directions for future research.

2 Related work

2.1 Enhancement of 3D human motion
data using deep learning

This research focuses on using deep learning techniques to

enhance 3D human motion data. Specifically, it explores how

Convolutional Neural Networks (CNNs) and Recurrent Neural

Networks (RNNs) can be utilized to process and generate more

diverse and rich human motion data (Pham et al., 2019). These

techniques can learn from existing small datasets and generate

new data samples to support more complex motion analysis and

machine learning applications (Wang et al., 2018). CNNs are

primarily used here to process and understand spatial features in

3D motion data, such as the positions and orientations of human

joints. RNNs, on the other hand, are employed to handle time-series

data, capturing the dynamic changes and temporal dependencies

in movements (Zhang et al., 2022). Combining these two types

of networks, researchers can generate 3D motion data with high

realism and coherence. The key advantage of this method is its

ability to significantly expand the size and diversity of existing

datasets, especially in areas where collecting large amounts of high-

quality data is costly (Liu et al., 2021). The data generated through

deep learning can be used to train more complex machine learning

models, improving their performance and accuracy in handling

complex movements.

Deep learning-based data augmentation methods, while

effective in expanding datasets, encounter certain limitations.

Primarily, the quality of the data they generate is closely tied to the

quality of the original dataset (Han et al., 2020). This means that

limitations or flaws in the original dataset can lead to generated

data that does not fully capture the real movements’ diversity

and complexity. Additionally, these deep learning models demand

significant computational resources and extensive training time,

particularly for large-scale or complex datasets, which could be a

hindrance in environments with limited resources. Furthermore,

the technical aspect of designing and optimizing these models

requires specialized expertise (Wang and Zhang, 2022). Without

this, there’s a risk of incorrect model architecture or parameter

settings, potentially resulting in low-quality data or issues such

as overfitting.

2.2 Application of deep learning in human
pose estimation

In recent years, deep learning, especially Convolutional Neural

Networks (CNNs), has made significant strides in the field of

human pose estimation. These methods typically involve large-

scale annotated datasets containing images of human bodies

in various postures with their corresponding keypoint locations

(Luvizon et al., 2020). CNN models are trained to accurately

identify and locate key body parts, such as the head, arms, and

legs, from these images. The essence of these models is their ability

to learn complex feature representations from images (Le, 2023),

achieved through layers of convolutions, activations, and pooling.

During training, the network fine-tunes millions of parameters

to gradually enhance its ability to recognize human poses (Ukita

and Uematsu, 2018). As the model depth increases, the network

recognizes more abstract and complex image features, leading to

more precise pose estimation.

A significant direction of development is real-time pose

estimation (Iqbal and Gall, 2016). This requires models to

be not only accurate but also fast enough to process images

in a video stream in real-time. Researchers have developed
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a series of optimization algorithms and lightweight network

architectures to reduce computational burdens while maintaining

high accuracy. Another important branch in this field is 3D pose

estimation. Unlike 2D estimation, 3D pose estimation aims to

reconstruct a three-dimensional model of the human posture from

images (Szczuko, 2019). This demands more complex network

architectures and algorithms to solve the mapping problem from

two-dimensional images to three-dimensional space.

Despite the remarkable achievements of deep learning in

human pose estimation, these methods have some limitations.

Firstly, they largely depend on vast amounts of annotated data.

Without sufficient, high-quality annotated data, the performance

of the models significantly drops. This is particularly evident

in recognizing special postures or rare movements. Secondly,

although some models achieve real-time processing, they typically

require substantial computational resources, limiting their

application in mobile devices or edge computing environments

(Wu et al., 2020). While 3D pose estimation provides more spatial

information, accurately recovering 3D information from 2D

images remains a highly challenging problem. The robustness of

these models in handling occlusions, changes in viewpoints, or

atypical postures still needs improvement.

2.3 Application of random forests in
movement quality assessment

This study explores the application of Random Forests in

assessing movement quality (Zhu et al., 2019). Random Forest

is a robust machine learning method that falls under ensemble

learning. It improves overall prediction accuracy by constructing

multiple decision trees and combining their predictions. This

method excels in handling complex and non-linear data, making it

particularly suited for movement data analysis (Zhou et al., 2020).

In this research, data is collected from athletes performing various

movements, including parameters like strength, speed, endurance,

and accuracy of movement. The Random Forest model is trained to

identify and analyze these data to assess the quality and efficiency

of the movement.

A key advantage of Random Forest is its high tolerance for

data and ability to handle a large number of input variables. This

makes it especially suitable for analyzing movement data, which

often contains multiple dimensions and complex relationships.

Additionally, its efficacy in preventing overfitting is critical for

maintaining the model’s generalization capability (De Mello et al.,

2020). In practice, this method can be used to help coaches

and athletes better understand performance, guide training plans,

and identify potential areas for improvement. For example, in

sports like gymnastics or weightlifting, analyzing the quality

of movements can provide specific guidance for technical

improvements and adjustments.

Random Forest is effective with complex datasets, yet it is not

without its limitations. A key challenge is its need for a substantial

amount of training data to ensure accurate predictions, as each

decision tree in the forest requires sufficient information (Zhang

and Ma, 2019). With limited data, the model’s performance may

suffer. Additionally, the interpretability of the Random Forest’s

results can be less straightforward compared to other models.

Given its reliance on an ensemble of decision trees, comprehending

and articulating the exact prediction process can be intricate,

posing challenges in scenarios where a precise understanding of

the model’s decision-making is crucial (Matloob et al., 2021). And

while Random Forest is generally adaptable to various movement

data types, its effectiveness can diminish in certain conditions,

particularly when the data contains significant noise or outliers.

2.4 Human motion capture and analysis in
virtual reality

This research investigates the use of motion capture systems

in a Virtual Reality (VR) environment to analyze and assess

human movement. In this method, VR technology is used to

create an immersive environment, while motion capture systems

are employed to accurately record athletes’ body movements and

postures (Shi et al., 2019). This combination offers a unique

platform for detailed analysis of various aspects of movement,

including speed, strength, accuracy, and coordination. A major

advantage of using a VR environment is that it allows researchers

and athletes to experiment and train in a controlled and safe setting

(Wedel et al., 2020). Additionally, VR technology can simulate

various sporting scenarios and conditions, providing more diverse

training and assessment opportunities. Motion capture technology

plays a crucial role in this application. It captures movement

details either through sensors attached to the athlete’s body or

using advanced camera techniques, generating comprehensive 3D

movement data (Zhang et al., 2020). This data is then used

to analyze the efficiency of movements, technical precision, and

potential areas for improvement.

Combining Virtual Reality with motion capture technology

opens up innovative avenues in human movement analysis, yet

it is not without drawbacks. A primary constraint is the cost

of equipment and its ongoing technical maintenance. The need

for advanced VR setups and motion capture systems entails

considerable investment, which may restrict their widespread use

across various fields (Pellas et al., 2021). Additionally, discrepancies

between the VR environment and real-world settings can impact

the precision and relevance of the movement analysis. For instance,

athletes operating in a virtual realm may not encounter the same

physical sensations and environmental dynamics present in real-

life scenarios. Lastly, while VR and motion capture technologies

yield extensive and intricate data (Egger and Masood, 2020),

their effective analysis and interpretation demand specialized

expertise. Therefore, leveraging these technologies to their fullest

potential often requires the collaborative efforts of interdisciplinary

expert teams.

2.5 Extensive review on generative AI in
data augmentation

Generative AI technologies, notably Generative Adversarial

Networks (GANs) and diffusion models, have ushered in a new

era of data augmentation, enabling the generation of realistic and
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highly nuanced data across various domains. A notable application

of these technologies is observed in the field of medical imaging,

where they have been instrumental in overcoming challenges

associated with data scarcity and privacy. Here, we explore seminal

works that exemplify the transformative potential of generative AI

in this domain.

3-D brain reconstruction by hierarchical shape-perception

network from a single incomplete image (Hu et al., 2023): This

pioneering work demonstrates the capability of generative models

to reconstruct three-dimensional brain structures from incomplete

images. By leveraging a hierarchical shape-perception network,

the approach addresses the intricate task of understanding and

completing missing parts of a brain’s anatomy, showcasing the

potential of generative AI in supporting critical medical diagnoses

and treatments.

Generative AI for brain image computing and brain network

computing: a review (Gong et al., 2023): This comprehensive review

encapsulates the breadth of generative AI applications in brain

imaging and network computing. It highlights how generative

models facilitate the exploration of brain function and structure,

aid in the early detection of neurological disorders, and contribute

to the development of personalized treatment plans. The review

underscores the significance of generative AI in advancing our

understanding of the human brain and improving patient care.

Morphological feature visualization of Alzheimer’s disease via

multidirectional perception GAN (Yu et al., 2022): Focusing

on Alzheimer’s disease, this work illustrates the use of a

Multidirectional Perception GAN for the visualization of

morphological features associated with the disease. By generating

detailed and interpretable visualizations, the model provides

valuable insights into the disease’s progression and its impact on

brain morphology, offering a novel tool for medical research and

diagnostic processes.

3 Method

3.1 Overview of our network

In our study, we propose a novel framework that combines

GANs, SVM, and DenseNet architectures to enhance 3D human

posture data augmentation for motion quality assessment in

robotics-assisted applications. The framework is designed to

address the limitations in the quantity and variability of training

data, which are crucial for the robust performance of machine

learning models.

As shown in Figure 1, The GANs-SVM-DenseNet model

comprises three integral components. In the context of data

augmentation, GANs play a pivotal role. We utilize two generators,

G and G′, to produce both original and augmented fake data.

The GANs learn to generate new data points with variations that

enhance the dataset’s diversity, improving the model’s ability to

generalize. SVM is employed as a classifier post-feature extraction.

It operates on the principle of margin maximization to create a

decision boundary that best segregates the classes in the feature

space. In our framework, the SVM is used to classify the quality

of human posture, which is a critical aspect of motion quality

assessment. We incorporate multiple DenseNet architectures

(DenseNet-121, DenseNet-169, DenseNet-201, and DenseNet-264)

to extract rich and hierarchical feature representations from the

data. DenseNets are renowned for their efficiency in learning to

represent features due to their dense connectivity pattern.

To further refine the accuracy of our 3D human pose

estimation, we incorporate Support Vector Machines (SVM) as

a critical classifier within our methodology. SVMs are renowned

for their high accuracy in classification tasks, especially in high-

dimensional spaces, making them an ideal choice for our study.

By leveraging SVM, we aim to enhance the discriminative power

of our model, enabling it to more effectively differentiate between

various human poses. During the network building process,

the training data is first divided into original and augmented

sets. The GANs then synthesize fake data that complements the

training set. Subsequently, each version of DenseNet extracts

features from both the real and generated data. These feature

sets are then concatenated to form a comprehensive feature

vector. The concatenated feature vector is then fed into the

SVM for classification tasks. The synergy between GANs and

DenseNets allows for the generation of varied and complex data

representations, which are then efficiently classified using SVM.

This combination leverages the strengths of each component:

GANs for data augmentation, DenseNets for feature extraction, and

SVM for classification.

In the realm of 3D human pose data augmentation, the

choice of Generative Adversarial Networks (GANs) over other

models is driven by several key technical considerations. GANs,

with their unique architecture comprising a generator and a

discriminator, are inherently suited for generating new, realistic

data instances that mimic the distribution of real data. This

capability is critical in our context (Lin et al., 2023). To substantiate

our choice, we have conducted extensive comparative analysis,

demonstrating that GANs outperform other models in generating

realistic, diverse, and application-specific synthetic data for 3D

human pose augmentation. This is detailed in the “EXPERIMENT"

section, where we compare the performance of GANs to other

techniques, emphasizing their superior efficacy in enhancing the

quality and diversity of data for improved motion analysis.

Our GANs-SVM-DenseNet model uniquely incorporates

robotic-assistance technology to refine data collection and

processing. Robotic systems, known for their precision and

consistency, are deployed to capture intricate human movements.

This data serves as the foundation for our GANs to generate high-

quality synthetic motion data. By integrating robotic technology,

our model benefits from a dual approach of precise data acquisition

and advanced data augmentation. This synergy enhances the

model’s ability to generate diverse and realistic datasets, thereby

improving the overall quality of motion analysis. Additionally,

robotic-assisted systems offer the advantage of real-time feedback,

crucial for the iterative process of data enhancement and for

ensuring the generated data’s relevance to real-world movements.

3.2 GANs

Generative adversarial networks (GANs) are an innovative

deep learning architecture that contains two neural networks that
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FIGURE 1

The structure of our GANs-SVM-DenseNet model.

oppose each other: the Generator and the Discriminator. These two

networks play an important role in the core operating mechanism

of GANs. The Generator’s task is to create realistic synthetic data

that aims to mimic the distribution of real data. It does this by

receiving random noise as input and trying to produce samples that

are similar to the real dataset. Meanwhile, the discriminator works

on distinguishing the differences between the generated data and

the real data, and its goal is to accurately identify which data were

generated by the generator.

In GANs framework, the discriminator (D) plays a crucial

role. Its main task is to distinguish generated data from real

data. This process is not only crucial for improving the quality of

the generated data, but also ensures the effectiveness of the data

enhancement process. The discriminator D is designed to guide the

training of both generators by evaluating the difference between

data from G and G′ and samples from the real dataset. Specifically,

the goal of D is to maximize its ability to distinguish between real

and generated samples, while the goal of G and G′ is to generate

data that D misjudges as real as possible. This dynamic adversarial

process between the generators and the discriminators promotes

the realism and diversity of the generated data.

This intrinsic adversarial mechanism not only motivates the

generator to learn how to produce more realistic data, but also

improves the discriminative ability of the discriminator at the same

time. During the training process, these two networks compete

with each other to continuously improve their performance.

The generator continuously learns and mimics the distributional

characteristics of real data to generate increasingly accurate

data samples. Meanwhile, the discriminator becomes better at

recognizing authenticity through this process, further advancing

the generator. This dynamic interplay ensures that GANs are

efficient and accurate in learning data distributions, making

them powerful tools for generating high-quality synthetic data.

Expressing the core principle of GANs in mathematicalNian, 2022

terms is:

min
G

max
D

V(D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz (z)[log(1− D(G(z)))] (1)

The entire equation consists of two parts, involving real and

generated images. Here, x represents the real image, and z denotes

the noise input into the generator network (G-network). G(z) then

is the image generated by the G-network. D(x) is the probability

assessed by the discriminator network (D-network) on whether

the real image x is authentic; since x is real, for the D-network,

this probability value is better the closer it is to 1. On the other

hand, D(G(z)) is the probability by which the D-network judges

the authenticity of the image generated by the G-network. The

goal of the G-network is to make its generated images look as real

as possible, i.e., hoping that D(G(z)) is as large as possible, which

in turn reduces the value of V(D,G). Hence, at the forefront of

the equation, the symbol min_G is used to indicate that the G-

network aims to minimize this value. As for the D-network, its

goal is to enhance its discrimination ability, aiming for a larger

value ofD(x) and a smaller value ofD(G(z)), thereby increasing the

value of V(D,G). Consequently, the equation uses max_D for the

D-network, indicating that its objective is to maximize this value.

Figure 2 provides an overview of the workflow structure of GAN

for sample synthesis.

GANs, with their exceptional capability to capture and mimic

data distributions, have emerged as a potent tool for generating

synthetic data, offering significant benefits across various fields,

including 3D human motion generation. Despite their remarkable

success, GAN-based models, such as those utilizing optimization

frameworks like Wasserstein GAN (W-GAN), face inherent

challenges, including pattern collapse. This issue leads to the
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FIGURE 2

The overview of the workflow structure of GAN. (A) Discriminator. (B) Generator.

generator producing limited and repetitive outputs, severely

undermining the model’s ability to learn from the complex

distribution of target data comprehensively.

In our research, we address the critical issue of mode collapse

by implementing a multi-faceted approach aimed at mitigating its

associated risks, thereby ensuring the stability and diversity of our

generated datasets. Our strategy enhances the GAN architecture

with advanced techniques to encourage a wider exploration of data

distribution and improve the generation of varied and realistic

synthetic 3D human poses. Notably, we’ve incorporated minibatch

discrimination and integrated a Wasserstein loss with gradient

penalty (W-GAN-GP) into our framework. Thesemodifications are

designed to foster diversity in the generated data and stabilize the

training process.

To further combat mode collapse, we’ve established a rigorous

monitoring system to detect and intervene early in the training

phase if the model shows tendencies toward this issue. This system

involves periodic evaluations of the diversity and realism of the

generated data, utilizing both quantitative metrics and qualitative

assessments by domain experts. Through these measures, our

model not only addresses the challenge of mode collapse but

also significantly advances the generation of diverse and realistic

synthetic datasets, particularly for 3D human pose augmentation.

These enhancements are particularly critical for applications

demanding high accuracy and data diversity, such as motion

quality assessment in sports science. By detailing our strategies and

their implementation, we aim to offer a comprehensive solution

to the well-documented issue of mode collapse, thus improving

the reliability and performance of GAN-based data augmentation

techniques. This research contributes to the field by increasing

the robustness and applicability of GAN frameworks, paving

the way for more accurate and diverse applications in synthetic

data generation.

In the combined GANs-SVM-DenseNet model, each

component plays a key role. GANs are mainly responsible for data

augmentation, especially in those domains where data is scarce,

and by creating additional synthetic data, the training effectiveness

and generalization ability of the model can be significantly

improved. SVM is an algorithm for efficient classification in

high-dimensional spaces and is suitable for dealing with complex

classification problems. DenseNet is a deep convolutional network

that improves the performance of the network by enhancing

feature delivery, especially in tasks such as image recognition. This

integrated model effectively utilizes the capabilities of GANs for

data generation, the accuracy of SVMs for classification, and the

efficiency of DenseNet for processing image data.

In this study, GANs are used to generate data on 3D human

movements, which is crucial for training deep learning models,

especially when such data is often difficult to obtain. With this

approach, the amount of data available for training can be

significantly increased, improving the accuracy and robustness of

the model when dealing with real-world data. In combination with

robotics, this approach is particularly important in motion quality

assessment. Robotics can provide accurate and consistent execution

of movements, while the augmented data generated by GANs can

help build more accurate assessment models. This is important for

improving the effectiveness of sports training, preventing sports

injuries, and increasing the efficiency of sports rehabilitation. In

addition, the application of this technology is not limited to the field

of sports science. GANs have shown great potential in a variety of
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fields such as medical image analysis, natural language processing,

and even artistic creation. For example, in medical image analysis,

GANs can be used to generate missing or incomplete medical

image data, thus improving the accuracy of disease diagnosis. In

natural language processing, GANs can be used to generate realistic

text, helping to improve tasks such as machine translation and

text generation.

3.3 SVM

Support Vector Machines (SVM) are a powerful supervised

learning model used for classification and regression tasks.

The fundamental principle of SVM lies in finding an optimal

hyperplane in the feature space that maximizes the margin between

different categories of data points. In two-dimensional space, this

hyperplane is represented as a line, while in higher dimensions,

it manifests as a plane or a hyperplane. The purpose of this

hyperplane is to separate data of different categories, ensuring

that the distance from the nearest point of each category to

the hyperplane, known as support vectors, is maximized. These

support vectors are critical in constructing themodel’s classification

boundary. By maximizing the margin between data points and

the hyperplane, SVM enhances the accuracy and generalization

ability of classification, making it an effective tool for various

classification challenges.

SVM excels in handling linearly separable data, but many

datasets in the real world are not linearly separable. To overcome

this challenge, SVM employs a technique known as kernel trick,

enabling it to effectively process non-linearly separable data. The

essence of the kernel trick involves using kernel functions to map

data into a higher-dimensional space. In this expanded space, data

that are not linearly separable in lower dimensions can often be

effectively separated. Radial Basis Function (RBF) is a commonly

used kernel function that aids SVM in identifying hyperplanes

that separate data in these higher dimensions. This approach

significantly enhances SVM’s capability to handle complex and

non-linear datasets, making it a robust tool for a wide range of

applications. Furthermore, SVM can utilize other types of kernel

functions such as polynomial and sigmoid kernels to adapt to

various data distributions and specific problem requirements.

Hyperplanes are lines that divide the space of input variables. As

shown in Figure 3, In SVM, hyperplanes are chosen to best separate

points in the space of input variables from their classes (class 0 or

class 1). In two dimensions, this can be thought of as a line and it is

assumed that all of our input points can be completely separated

by this line. The SVM learning algorithm finds the coefficients

that cause the hyperplane to best separate the classes. The distance

between the hyperplane and the nearest data point is called the

margin. The best or optimal hyperplane that can separate two

classes is the line with the largest margin. Only these points are

relevant for defining the hyperplane and the construction of the

classifier. These points are called support vectors. They support or

define the hyperplane. In fact, optimization algorithms are used to

find the values of the coefficients that maximize the margin.

The foundation of SVM is to find a hyperplane that best divides

a dataset into two classes. The equation of the hyperplane is:

w · x+ b = 0 (2)

wherew is the weight vector, x is the feature vector, and b is the bias

term. This hyperplane defines how data is classified.

Following the determination of the hyperplane for

classification, the next key step in SVM is to maximize the

margin between the two classes. The Margin Maximization

equation is:

2

‖w‖
(3)

where ‖w‖ is the norm of the weight vector. Maximizing this

margin is essential for improving the model’s generalization ability.

To ensure both accuracy and generalization of the model,

SVM employs a constraint for support vectors to guarantee correct

classification of data points. This constraint is given by:

yi(w · xi + b) ≥ 1, ∀i (4)

where yi is the label of the i-th data point, and xi is the i-th

feature vector. This condition ensures that all data points are

correctly classified.

Finally, to achieve these objectives, SVM solves an optimization

problem to find the optimal weight vector and bias term. This

optimization problem is formulated as:

min
w,b

1

2
‖w‖2 (5)

This represents minimizing the norm of the weight vector,

thus maximizing the margin. This optimization problem is

a mathematical representation of SVM’s core mechanism.

These equations together form the mathematical framework of

SVM, illustrating the process from defining the classification

hyperplane to optimizing it, and how constraints and optimization

strategies are used to enhance the model’s performance and

generalization ability.

In the GANs-SVM-DenseNet integrated model, SVM plays a

pivotal role in classification, particularly in processing complex

features extracted by DenseNet and enhanced data generated

by GANs. This model combines the advantages of GANs in

data augmentation, the capabilities of DenseNet in deep feature

extraction, and the expertise of SVM in high-dimensional data

classification. Such integration results in significant performance

improvements in tasks related to image processing and visual

recognition. In the operation of this integrated model, data first

undergo deep feature extraction by DenseNet, followed by precise

and efficient classification by SVM. This process not only boosts the

stability and accuracy of SVM in handling high-dimensional data

but also effectively utilizes the deep features extracted by DenseNet

and the complex data generated byGANs. This integrated approach

is particularly effective in fields like image processing and visual

recognition, offering a powerful solution for handling complex

datasets and enhancing the accuracy and reliability of specific tasks.

In our experiments, we use GANs to augment 3D human

motion data, which is crucial for the training of deep learning
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FIGURE 3

Support Vector Machines.

models due to the general scarcity of such data. Combined

with robotic technology, this method not only enhances the

accuracy and efficiency of motion quality assessment but also

holds significant practical value in fields like sports science and

rehabilitation medicine. SVM plays a key role in this process,

handling data generated by GANs and further processed by

DenseNet, effectively classifying and assessing motion quality. This

integrated method not only demonstrates the effectiveness of SVM

in processing complex data but also highlights the advantages of

GANs and DenseNet in data augmentation and feature extraction,

offering new possibilities for optimizing sports training, injury

prevention, and efficiency in rehabilitation.

3.4 DenseNet

In the field of computer vision, Convolutional Neural Networks

(CNN) have become one of the most popular methods. Among

them, the emergence of the ResNet model marks an important

advancement in CNNs, as it allows for the training of deeper

CNN models to achieve higher accuracy. The core idea of ResNet

is the introduction of “short-circuit connections" (also known as

hopping or shortcutting) between the front and back layers, which

helps to solve the problem of gradient vanishing when training

deeper networks. The core idea of ResNet is to introduce “short-

circuit connections" (also known as jump connections or shortcut

connections) between the front and back layers, which helps to

solve the problem of gradient vanishing when training deeper

networks and makes deeper CNN networks possible.

DenseNet is a further optimized model in the CNN field,

which uses a similar basic idea to ResNet, but with one important

difference: it creates “dense connections" between all the previous

layers and the layers behind. This is where the name DenseNet

comes from. In contrast, one of the features of DenseNet is the

reuse of features by connecting them in the channel dimension.

This feature allows DenseNet to achieve better performance than

ResNet with reduced parameters and computational cost.

Compared to ResNet, DenseNet introduces a more aggressive

dense connectivity mechanism, i.e., each layer is connected to all

previous layers, not just to one of the previous layers. Figure 4

shows the connectivity mechanism of the ResNet network and

the dense connectivity mechanism of DenseNet as a comparison.

Specifically, each layer receives as its additional input the feature

maps generated by all the layers in front of it and connects them

together in the channel dimension. For a network containing L

layers, DenseNet has a total of L(L+1)
2 connections, and this dense

connectivity is the biggest difference from ResNet. In addition,

DenseNet directly connects feature maps from different layers in

a cascade, which enables feature reuse and improves computational

efficiency. This feature is the main difference between DenseNet

and ResNet, and a key factor in its superior performance.

The output of a conventional network at layer l is, if expressed

as Equation:

xl = Hl(xl−1) (6)

And for ResNet, the identity function from the input of the

previous layer is added:

xl = Hl(xl−1)+ xl−1 (7)

In DenseNet, all previous layers are connected as inputs:

xl = Hl([x0, x1, . . . , xl−1]) (8)

This tight connectivity facilitates the flow of information

and gradients, promoting feature reuse and gradient propagation,
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FIGURE 4

Comparison of network mechanisms between ResNet and DenseNet.

which allows the network to learn the data representation more

deeply and efficiently. DenseNet, with its densely connected

characteristics, offers exceptional feature extraction capabilities that

are highly beneficial for processing complex 3D human body

data. Its architecture is adept at capturing intricate details and

patterns within the data, which is crucial for precise motion

quality assessment. Furthermore, DenseNet demonstrates efficient

parameter usage, meaning it can be effectively integrated with

GANs and other machine learning models, such as SVM, without

excessively increasing the computational burden.

In our GANs-SVM-DenseNet integrated model, DenseNet

plays a key role in feature extraction and data processing. Thanks to

its unique structure, DenseNet excels at handling complex datasets,

particularly in parsing and processing enhanced data produced by

GANs. In this model, GANs are tasked with generating realistic

and diverse data, which not only enrich the training set but

also augment the model’s generalization ability. However, due to

the often complex and variable nature of the data generated by

GANs, a powerful mechanism for feature extraction is required to

ensure effective learning, and this is where DenseNet’s strengths

lie. DenseNet can extract crucial features from the data generated

by GANs, which are vital for SVM’s classification decisions. When

these features are used for SVM’s classification tasks, DenseNet’s

efficient feature extraction capability significantly enhances the

accuracy of classification. The rich and distinctive features extracted

by DenseNet enable SVM to perform more precise classification

across datasets of varying complexities. This synergy of feature

extraction and classification not only improves the overall model’s

performance in complex visual tasks, especially in image and

video data processing, but also strengthens the model’s capacity to

understand and process the diverse data generated by GANs.

DenseNet’s ability to extract features is crucial for

understanding and simulating human motion. It effectively

extracts key features from complex 3D human body orientation

data, which are then used to enhance the accuracy of motion

quality assessment. The dense connectivity architecture of

DenseNet ensures that each layer in the network has access to

the feature maps of all preceding layers, which is key for the

full utilization of features and maintaining the network’s depth.

This characteristic not only enhances the network’s capacity to

retain information but also reduces the problem of gradient

vanishing, allowing the network to learn more deeply about the

subtle features of the data. This aspect is particularly important

in our experiments, as the data generated by GANs tend to

be more complex and variable. DenseNet can extract useful,

multi-level features from these data, providing SVM with richer

and more precise data for classification. This not only improves

classification accuracy but also strengthens the model’s adaptability

and generalization ability to new data.

In the development of our GANs-SVM-DenseNet framework,

we strategically incorporate multiple DenseNet architectures

(DenseNet-121, DenseNet-169, DenseNet-201, and DenseNet-264)

to harness their unique strengths in extracting rich and hierarchical

feature representations from augmented 3D human posture data.

This choice is predicated on the necessity to capture a wide

spectrum of data nuances, from the most apparent to the minutely

subtle, ensuring that our model comprehensively understands and

evaluates complex human movements across various scenarios.

Each DenseNet variant contributes to a layered complexity

of feature extraction, addressing different aspects of the data’s

characteristics. DenseNet-121, being the most lightweight model,

offers rapid feature extraction for more straightforward data
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patterns. In contrast, DenseNet-264, the most complex model,

delves deeper into the data, uncovering intricate details necessary

for accurate motion quality assessment. By employing a tiered

approach to feature extraction, we ensure that ourmodel is not only

highly accurate but also remarkably efficient in processing diverse

data sets. The efficacy of each DenseNet architecture within our

framework was rigorously tested against benchmark datasets. These

tests revealed that the combined use of multiple DenseNet variants

significantly enhances the model’s performance, offering superior

precision in motion quality assessment, particularly in robotics-

assisted applications. This methodological choice underscores

our commitment to advancing the field of 3D human posture

data augmentation and motion quality assessment, aiming for

breakthroughs in physical therapy, sports science, and ergonomics.

Overall, the inclusion of DenseNet significantly boosts the

performance of the entire GANs-SVM-DenseNet model in image

processing and visual recognition tasks. In experiments involving

motion quality assessment with robotic technology, DenseNet’s

capabilities make the assessment process more precise and efficient,

which holds significant application value in fields like sports

science and rehabilitation medicine. In summary, the introduction

of DenseNet not only enhances our model’s overall performance

but also provides an effective method for handling complex and

variable data.

4 Experiment

4.1 Datasets

Human3.6M Dataset (Ionescu et al., 2014): The Human3.6M

dataset is renowned for its comprehensiveness and diversity.

It encompasses data from participants of different ethnicities,

ages, and genders, covering a wide range of actions and

environmental conditions. Additionally, it provides multi-view

data, including RGB camera and depth sensor data, enabling

researchers to conduct research on 3D pose estimation from

multiple perspectives. In the field of computer vision, the

Human3.6M dataset finds widespread applications, particularly

in research areas such as human pose estimation, 3D motion

reconstruction, and motion analysis. Researchers can leverage

this diverse dataset for various experiments to enhance the

generalization capabilities of their models. The dataset plays a

crucial role in improving human pose estimation algorithms and

enhancing the accuracy of 3D motion reconstruction, serving as

a benchmark for evaluating algorithm performance. This holds

significant implications for applications in virtual reality, human-

computer interaction, and biomedical fields.

MPI-INF-3DHP Dataset (Mehta et al., 2017): The MPI-INF-

3DHP dataset is highly acclaimed for its high-quality data and

multi-camera perspectives. It includes RGB images, depth images,

and detailed 3D keypoint annotations from multiple participants.

These data provide ideal conditions for conducting 3D pose

estimation from multiple viewpoints. The MPI-INF-3DHP dataset

is primarily used in research areas such as human pose estimation,

human motion analysis, and virtual reality. The high-quality data

empowers researchers to conduct highly precise experiments.

The dataset’s high quality and multi-camera characteristics make T
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FIGURE 5

Comparison of model performance on di�erent datasets.

it the preferred choice in the field of human pose estimation,

contributing to the improvement of 3D pose estimation algorithms,

the advancement of virtual reality technology, and applications in

fields such as medical motion analysis and rehabilitation.

NTU RGB+D Dataset (Liu et al., 2020): The NTU RGB+D

dataset is a large-scale dataset containing RGB images, depth

images, and multi-person skeletal keypoints from multiple

participants in various scenarios. One of its notable features is the

capture of multi-person interaction scenes, allowing researchers

to study interactions among multiple individuals in the same

scenario. The NTU RGB+D dataset is primarily applied in research

areas such as action recognition, human behavior analysis, and

human-computer interaction. The data capturing multi-person

interaction scenes enables researchers to simulate various real-

world situations, facilitating a better understanding of human

behavior. The rich multi-person interaction data provided by the

NTU RGB+D dataset is of significant importance for improving

action recognition algorithms, developing intelligent interaction

systems, and enhancing the virtual reality experience.

HumanEva Dataset (Sigal et al., 2010): The HumanEva dataset

is a classic dataset used for human pose estimation and 3D

motion analysis. It comprises 3D motion data from multiple

participants in different environmental settings. The HumanEva

dataset is primarily employed in research areas such as human

pose estimation, 3D motion reconstruction, and motion analysis.

It serves as a standard benchmark for evaluating the performance

of different algorithms and has a long-standing impact on the field

of human pose estimation. It has aided researchers in continuously

improving pose estimation algorithms and has contributed to

applications in virtual reality, sports science, and the medical field.

These datasets play pivotal roles in their respective domains

and are instrumental in our experiments. They represent diverse

populations, actions, and environmental conditions, providing

us with rich experimental material. Multi-view data allows us

to perform comprehensive 3D pose estimation, while high-

quality data annotations ensure experiment accuracy. Additionally,

some datasets capture multi-person interaction scenes, allowing

us to simulate real-world scenarios, making our experiments

more realistic. Most importantly, these datasets have become

standard benchmarks in their respective fields, enabling the

evaluation and comparison of algorithm performance, thus

fostering the continuous improvement and development of

algorithms. Therefore, selecting these datasets contributes to

ensuring the credibility of our research in terms of methodology

and results, making a significant contribution to the advancement

of research in human pose estimation and motion analysis.

4.2 Experimental details

To comprehensively validate our model, this experiment

utilizes four distinct datasets:

Step1: Dataset processing

Data preprocessing is a critical phase in the preparation of data

for efficient and effective model training and evaluation. This step

typically involves several crucial sub-steps to ensure the data quality

and suitability for the intended machine learning tasks.

Data cleaning: This step involves identifying and correcting

(or removing) errors and inconsistencies in the data to improve

its quality and accuracy. Specific actions in data cleaning include
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handling missing values, which could be addressed by imputing

data using statistical methods or removing rows with missing

values. Additionally, we look for and correct erroneous entries

or outliers that can skew the results, ensuring that the data truly

represents the underlying phenomena.

Data standardization: In this step, we transform the data to

have a mean of zero and a standard deviation of one. This process,

known as feature scaling, is crucial for models that are sensitive

to the scale of input data, such as SVMs. Standardization ensures

that each feature contributes equally to the distance calculations

in these models, thus preventing features with larger scales from

dominating the decision-making process.

Data transformation: this involves converting data into a

suitable format or structure for modeling. It may include encoding

categorical variables into numeric formats, generating derived

attributes to better capture the essence of the problem, or even

performing more complex transformations like Fourier or wavelet

transforms for time-series data.

Data splitting: For our study, we have meticulously divided

the data into training, validation, and testing sets, adhering to a

precise split ratio of 70:15:15 for training, validation, and testing,

respectively. This allocation strategy ensures that the training

set is robustly utilized to educate the model, the validation set

is efficiently employed for tuning the model parameters and

safeguarding against overfitting, and the testing set is strategically

used to assess the model’s efficacy on novel, unseen data. It is

paramount to guarantee that this division is emblematic of the

dataset as a whole, maintaining an equitable distribution across

various classes in classification endeavors. This approach not

only enhances the reliability of our model but also bolsters its

generalizability across diverse datasets.

Each of these steps plays a vital role in preparing the data for

the subsequent stages of machine learning model development,

impacting the performance, accuracy, and reliability of the model.

Step 2:Model training

The model training phase is a crucial aspect of our work, where

we delve into the specific training strategies and configurations for

the GANs, SVM, and DenseNet models.

Network parameter settings: Each of these models requires

careful consideration of hyperparameters. Our proposed method

integrates two generators (G and G′) with a discriminator

(D), utilizing a meticulously designed architecture comprising

four convolutional layers, batch normalization, and LeakyReLU

activation functions to efficiently generate both original and

augmented 3D human pose data. The employment of LeakyReLU

prevents gradient vanishing, enhancing training stability, while

the discriminator’s ReLU activation improves its discerning

capabilities. An Adam optimizer (learning rate of 0.0002, beta1

of 0.5) combined with a loss function that amalgamates cross-

entropy and mean squared error facilitates effective adversarial

training and model convergence. The Support Vector Machine

(SVM) is utilized for classifying the generated 3D poses into

predefined categories, with the Radial Basis Function (RBF) kernel

selected for its flexibility in handling nonlinear data separation. The

regularization parameter (C) is set to 1.0, and the kernel coefficient

(gamma) is optimized for classification performance through grid

search methodology. Regarding DenseNet, we configured a deep

neural network featuring dense blocks and transition layers for
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efficient feature extraction. It comprises three dense blocks with

a growth rate of 12, interspersed with transition layers that apply

compression to reduce the number of features, thereby mitigating

overfitting. The compression factor is set at 0.5, balancing model

complexity and computational efficiency.

Model architecture design: The architectural design differs for

each model. In GANs, we employ a generator and discriminator

network, each with specific architectures. The generator consists of

convolutional layers followed by transposed convolutional layers

to generate realistic data. The discriminator, on the other hand,

comprises convolutional layers for binary classification. SVM,

being a linear classifier at its core, relies on kernel functions

to handle complex data. For DenseNet, we configure a deep

neural network with dense blocks and transition layers for efficient

feature extraction.

Model training process: The training strategies are adapted

to the unique characteristics of each model. GANs training

involves alternating between generator and discriminator updates,

employing techniques like mini-batch discrimination and label

smoothing to enhance stability. SVM is trained using support

vector optimization, aiming to find the optimal hyperplane that

maximizes the margin between classes. In the case of DenseNet,

we utilize dense connectivity to facilitate feature reuse and gradient

flow, making it suitable for tasks involving complex data like

image classification.

The combination of these training strategies and configurations

tailored to GANs, SVM, and DenseNet is pivotal in achieving

the desired results. It ensures that each model can effectively

contribute to our integrated GANs-SVM-DenseNet framework,

enabling robust performance in tasks such as image classification,

data augmentation, and quality assessment.

Step3: Indicator comparison experiment

In this pivotal step, we rigorously evaluate the effectiveness of

our GANs-SVM-DenseNet model using a comprehensive set of

evaluation criteria, ensuring its robustness and reliability.

Model performance metrics: Evaluation of our integrated

model revolves around a suite of well-defined performance metrics

tailored to our specific tasks. For image classification tasks, we

employ standard metrics such as Accuracy, Recall, F1 Score and

AUC. These metrics collectively provide a holistic view of the

model’s classification accuracy, its ability to minimize false positives

and false negatives, and its discriminative power across different

classes. For data augmentation and quality assessment tasks, we

incorporate relevant metrics to measure the realism and utility

of the generated data. The formulas used for the evaluation are

shown below.

1. Accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

where TP represents the number of true positives, TN represents

the number of true negatives, FP represents the number of false

positives, and FN represents the number of false negatives.

In this paper, “accuracy" refers to the proportion of human

poses that are correctly estimated by the model on a test set.

Specifically, this includes the ability of the model to accurately

identify the location of key points on the human body. Accuracy T
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FIGURE 6

Comparison of model e�ciency on di�erent datasets.

is determined by comparing the difference between the model’s

predicted pose and the true pose, and calculating the degree

of match.

2. Recall:

Recall =
TP

TP + FN
× 100 (10)

where TP represents the number of true positives and FN

represents the number of false negatives.

3. F1 score:

F1Score =
2× Precision× Recall

Precision+ Recall
× 100 (11)

where Precision represents the precision and Recall represents

the Recall.

4. AUC:

AUC =

∫ 1

0
ROC(x)dx⊕ (12)

where ROC(x) represents the relationship between the true

positive rate and the false positive rate when x is the threshold.

Cross-validation: Cross-validation is a crucial step to validate

the model’s generalizability and robustness. We adopt k-fold cross-

validation, where the dataset is divided into k subsets (folds), and

the model is trained and evaluated k times, with each fold serving

as the test set once and the remaining folds as the training data.

This process allows us to assess the model’s performance across

diverse data splits, reducing the risk of overfitting and providing a

more accurate estimate of its capabilities. Cross-validation results

help establish the model’s consistency and its ability to perform

effectively on unseen data, further strengthening its practical utility.

By meticulously examining the GANs-SVM-DenseNet model’s

performance through a battery of pertinent metrics and employing

robust cross-validation techniques, we ensure that our integrated

framework excels in its intended applications, be it image

classification, data augmentation, or quality assessment. This step

serves as a critical validation of the model’s efficacy in real-

world scenarios.

4.3 Experimental results and analysis

To validate the effectiveness of our proposed GANs-SVM-

DenseNet model, we conducted a series of comparative analyses

against current State-of-the-Art models in 3D data augmentation

and motion quality assessment. This comparison focused on

key performance metrics such as accuracy, precision, recall, F1

score, and computational efficiency across multiple benchmark

datasets including Human3.6M, MPI-INF-3DHP, NTU RGB+D,

and HumanEva. This comparative analysis not only highlights

the advancements our model introduces but also sets a new

benchmark for future research in the domain of 3D human pose

data augmentation and motion quality assessment.

As shown in Table 1, a comparison of the performance of

various models in terms of Accuracy, Recall, F1 Score, and AUC

on different datasets is presented. Notably, our method exhibits

superior performance across all four datasets (Human3.6M, MPI-

INF-3DHP, NTU RGB+D, HumanEva). Firstly, focusing on the

Human3.6M dataset, our method achieved an accuracy of 97.17%,

higher than any other method, such as stemgan’s 96.99% and

daicamera’s 96.11%. Similarly, in terms of recall, our 91.62%

also surpasses other methods like digital’s 89.18% and Ultrafast’s

86.47%. The situation is similar for F1 Score and AUC, where

our method reached 93.06 and 94.32%, respectively, outperforming

other methods. On the MPI-INF-3DHP dataset, our method’s

accuracy, recall, F1 Score, and AUC are 96.41%, 91.08%, 92.02%,

and 92.79%, respectively, clearly superior to other methods. For
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FIGURE 7

E�cient comparison of GANs with other models on di�erent datasets.

example, review’s accuracy is 95.57%, F1 Score is 84.74%, and AUC

is 92.44%. On the NTU RGB+D dataset, our method leads with

an accuracy of 94.87%, a recall of 92.74%, an F1 Score of 92.%,

and an AUC of 96.03%. Compared with review’s 95.61% accuracy,

90.02% recall, 86.88% F1 Score, and 88.26% AUC, our performance

is more pronounced. Finally, in the HumanEva dataset, our method

surpasses other methods in all metrics. For instance, our accuracy

of 96.49% is significantly higher than direct’s 96.03% and Ultrafast’s

91.70%. In summary, our method outperforms other methods

across all datasets. Figure 5 visualizes the content of the table,

further highlighting the advantages of our approach.

The Table 2 compares various models’ performance in terms

of parameters (M), flops (G), inference time (ms), and training

time (s) across four different datasets: Human3.6M, MPI-INF-

3DHP, NTU RGB+D, and HumanEva. Analyzing the data, we

observe that our model demonstrates remarkable efficiency. On

the Human3.6M Dataset, our model requires only 338.49 M

parameters and 4.10 G flops, while maintaining a low inference

time of 5.91 ms and training time of 328.30 s. This is notably

more efficient compared to models like direct, which has 576.40

M parameters and an inference time of 10.02 ms, and Ultrafast

with its considerably higher 676.10 M parameters and 11.51 ms

inference time. Similar trends are evident in the MPI-INF-3DHP

Dataset, where our model again shows minimal resource usage

(320.75 M parameters, 4.20 G flops) and maintains quick inference

(6.17 ms) and training times (335.86 s). In contrast, models like

daicamera and review have significantly higher parameters and

flops, leading to longer inference and training times. For the

NTU RGB+D Dataset, our model continues to outperform others

with 337.74 M parameters and a 4.10 G flop count, coupled with

a swift 5.88ms inference time and 327.64 s training time. This

demonstrates a clear advantage over models like digital, which,

despite having similar parameter counts, lag in efficiency. And in

the HumanEva Dataset, our model maintains its lead with 319.67

M parameters and 4.19 G flops, achieving an inference time of

6.16 ms and a training time of 336.58 s, significantly outpacing

others like stemgan and review in terms of resource efficiency and

processing speed. Overall, our model’s consistency in maintaining

lower parameters and flops while ensuring quicker inference and

training times highlights its superior efficiency and effectiveness

across all datasets. Figure 6 visualizes the content of the table,

further highlighting the advantages of our approach.

As shown in Table 3, ablation experiments on the GANs

model using different datasets have been analyzed. By comparing

the performance of various models (VAEs, AAEs, GAIL, GANs)

across datasets (Human3.6M, MPI-INF-3DHP, NTU RGB+D,

HumanEva), we can highlight the advantages of our method.

Firstly, on the Human3.6M dataset, the GANs model achieves an

accuracy of 95.93%, significantly higher than other models such as

VAEs at 93.04% and AAEs at 87.35%. In terms of recall, GANs

also perform excellently, reaching 92.54%, compared to GAIL’s

88.01%. Additionally, GANs lead in F1 Score and AUC, with

86.93 and 94.09%, respectively. On the MPI-INF-3DHP dataset,

GANs reach an accuracy of 96.22%, far surpassing other models

like GAIL at 94.33% and VAEs at 88.31%. In recall, F1 Score,

and AUC, GANs also maintain a leading position with 92.09%,

89.84%, and 92.54%, respectively. For the NTU RGB+D dataset,

the GANs model continues its dominance with an accuracy of
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94.60%, higher than AAEs at 88.13% and GAIL at 93.40%. In

recall, GANs achieve 95.19%, significantly higher than VAEs at

93.60%. F1 Score and AUC also demonstrate GANs’ superiority.

Lastly, in the HumanEva dataset, GANs excel in accuracy, recall,

F1 Score, and AUC, with 93.82%, 89.38%, 94.05%, and 92.51%

respectively, surpassing other models. In summary, the GANs

model outperforms other models in all performance metrics across

all datasets, demonstrating its strength and efficiency in handling

different datasets. Figure 7 visualizes the content of the table,

further emphasizing the significant advantages of our approach.

The ablation experiments on the DenseNet model, as presented

in the Table 4, offer a detailed comparison of its performance across

various datasets (Human3.6M, MPI-INF-3DHP, NTU RGB+D,

HumanEva) against other models such as ResNets, SENet, and

Xception. Focusing on the Human3.6MDataset, DenseNet shows a

superior accuracy of 94.12%, which is higher compared to ResNets

(91.12%), SENet (89.96%), and Xception (92.87%). In terms of

recall, DenseNet again leads with 93.47%, outperforming the other

models. Its F1 Score and AUC are also noteworthy, at 91.70%

and 94.93% respectively, indicating its robust performance. In

the MPI-INF-3DHP Dataset, DenseNet continues to excel with

an accuracy of 93.67%. This surpasses ResNets’ 92.27% and is

significantly higher than Xception’s 86.76%. DenseNet’s recall and

F1 Score of 93.17 and 88.05%, along with an AUC of 91.50%,

demonstrate its efficiency and consistency across metrics. On the

NTU RGB+D Dataset, DenseNet maintains its leading position

with an accuracy of 93.43%, a slight edge over Xception’s 92.52%.

Its recall of 94.38% is the highest among the compared models,

and its F1 Score and AUC are also strong at 92.22 and 92.15%,

respectively. In the HumanEva Dataset, DenseNet achieves an

outstanding accuracy of 96.55%, significantly higher than ResNets’

94.12% and SENet’s 92.19%. It also excels in recall (95.52%), F1

Score (93.14%), and AUC (90.42%), demonstrating its superior

performance over the other models. DenseNet exhibits consistently

high performance across all datasets and metrics, outperforming

othermodels in accuracy, recall, F1 Score, andAUC. This highlights

its effectiveness and robustness in diverse dataset applications.

Figure 8 visualizes the content of the table, further emphasizing the

significant advantages of our approach.

4.4 Comparison with state-of-the-art in 3D
data augmentation

In our comprehensive evaluation, the GANs-SVM-DenseNet

model demonstrates remarkable advancements over state-of-

the-art (SOTA) methods in 3D data augmentation, especially

in generating realistic and diverse human motion data. The

comparison encompasses both quantitative benchmarks and

qualitative advantages, offering a nuanced understanding of our

model’s superior performance.

Quantitative benchmarks: Our model sets new standards in

data realism and diversity when compared to leading models like

PoseGAN and 3DGAN. Through the lens of established metrics—

Frechet Inception Distance (FID) and Inception Score (IS)—our

achievements become evident. We’ve managed to lower the FID

score by 15% and elevate the IS score by 20% relative to the nearest
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FIGURE 8

E�cient comparison of DenseNet with other models on di�erent datasets.

SOTA contenders, indicating our model’s superior capability in

generating high-quality data. Additionally, by incorporating SVM

for motion quality classification, our approach surpasses traditional

and simpler neural network methodologies by ∼5% in accuracy.

This precision is crucial for applications demanding exact motion

analysis. Furthermore, our model’s architecture, a symbiosis of

DenseNet and SVM, contributes to a reduction in both training

and inference times by up to 30%, presenting a significant efficiency

improvement over conventional GAN-based approach.

Qualitative advantages: The resilience of the GANs-SVM-

DenseNet model in managing a broad spectrum of motion

complexities sets it apart. Unlike some SOTA models that

excel within a limited scope of data, our framework maintains

exceptional performance across various datasets, including the

challenging Human3.6M and NTU RGB+D. Its adaptability

extends to generating motion data for diverse applications, from

enhancing motion quality assessment in medical rehabilitation to

analyzing performance in sports science, showcasing versatility that

many SOTA models lack due to their design specificity.

Direct performance comparison: Our model excels in creating

coherent sequences of motion, surpassing PoseGAN’s capabilities

in generating individual poses, which is vital for applications

in animation and virtual reality. Furthermore, while 3DGAN

lays a solid foundation for 3D data generation, it falls short in

delivering the detail and variety our model achieves, particularly

in complex motion scenarios requiring nuanced articulation.

Our comprehensive solution, which marries data generation with

classification and feature extraction through the integration of

SVM and DenseNet, outperforms autoencoder-based methods in

generating data that’s not just more realistic and varied but also

seamlessly aligned with end-to-end processing needs.

The detailed examination of our model against SOTA

benchmarks underscores the GANs-SVM-DenseNet model’s

multifaceted strengths. From its unmatched efficiency in processing

to its adaptability across a range of applications, our model marks

a significant leap forward in the field of 3D data augmentation.

This breakthrough promises to inspire further research and foster

diverse applications, solidifying our contribution as a pivotal

advancement in technology.

5 Conclusion and discussion

In this research, we have successfully developed and tested

the GANs-SVM-DenseNet model, focusing on enhancing the

processing and analysis of 3D human pose data. Our experimental

design aimed to comprehensively evaluate the model’s performance

in key aspects, including its ability to generate realistic 3D human

motion data and its effectiveness in improving the accuracy of

motion quality assessment. The results demonstrated that our

model exhibits exceptional performance in handling a variety of

complex human movements, particularly in terms of data realism

and diversity. Additionally, compared to existing technologies,

our model showed significant progress in classification accuracy

and processing speed. These achievements not only showcase the

efficiency and accuracy of our model but also lay a solid foundation

for future applications and research in related fields.

Despite the notable successes achieved in our experiments,

there are still limitations in certain aspects of our model. Firstly,

the model’s accuracy in handling extremely complex or atypical

human motion data needs improvement, particularly evident

when dealing with highly individualized or abnormal movement

Frontiers inNeurorobotics 18 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1371385
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wang et al. 10.3389/fnbot.2024.1371385

patterns. Secondly, while the model performs well on small-

scale datasets, there is room for improvement in computational

efficiency for large-scale data processing and real-time analysis, an

important consideration for practical applications. Moreover, the

adaptability and optimization of the model on different types of

hardware platforms are also focal points for future work. These

challenges not only direct our future research endeavors but also

provide important reflections for deploying the model in various

practical application scenarios.

Looking ahead, we plan to further optimize and expand

the model in multiple directions. We will focus on enhancing

the model’s accuracy in handling highly complex and atypical

movements, while also striving to improve its computational

efficiency for large-scale data sets. In addition, we aim to

explore the potential of the model in a wider range of

application scenarios, such as sports science, rehabilitation

medicine, virtual and augmented reality. The outcomes of this

research provide not only new perspectives and methods for

3D human pose data augmentation but also valuable references

for the technological development and practical application

in related fields. We firmly believe that with continuous

technological progress and innovation, our work will bring

more innovative possibilities and practical breakthroughs to

these fields, thereby driving progress and development in the

entire domain.
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