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Traditional trajectory learningmethods based on Imitation Learning (IL) only learn

the existing trajectory knowledge from human demonstration. In this way, it can

not adapt the trajectory knowledge to the task environment by interacting with

the environment and fine-tuning the policy. To address this problem, a global

trajectory learning method which combinines IL with Reinforcement Learning

(RL) to adapt the knowledge policy to the environment is proposed. In this paper,

IL is proposed to acquire basic trajectory skills, and then learns the agent will

explore and exploit more policy which is applicable to the current environment

by RL. The basic trajectory skills include the knowledge policy and the time stage

information in the whole task space to help learn the time series of the trajectory,

and are used to guide the subsequent RL process. Notably, neural networks

are not used to model the action policy and the Q value of RL during the RL

process. Instead, they are sampled and updated in the whole task space and then

transferred to the networks after the RL process through Behavior Cloning (BC)

to get continuous and smooth global trajectory policy. The feasibility and the

e�ectiveness of the method was validated in a custom Gym environment of a

flower drawing task. And then, we executed the learned policy in the real-world

robot drawing experiment.

KEYWORDS

path planning, imitation learning, reinforcement learning, behavioral cloning,

probabilistic movement primitives

1 Introduction

Trajectory learning is crucial in robot task learning, encompassing most applications

in the field of robotics, especially in industrial robotics where learning specific movement

skill trajectories is fundamental.

Traditional task trajectory learning methods primarily rely on imitation learning.

Imitation learning based on mathematical modeling can achieve simplified representation

and reproduction of specific shape trajectories by extracting their mathematical

characteristics. This is commonly used for teaching robots specific actions like shaking,

picking, drawing, etc. Later, with the rise of neural networks, methods based on

neural networks could approximate action skill sampling strategies directly through BC,

or approach human global strategies using Generative Adversarial Imitation Learning

(GAIL) methods that differentiate between human and neural network strategies. Inverse

Reinforcement Learning (IRL) methods also approximate human strategies through

exploration. These methods have achieved good results in imitating, reproducing, and

generalizing human trajectories.
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However, these methods are all based on human operation

as a benchmark. They learn skills that more accurately represent

human operation to complete task strategies but do not interact

with the environment to correct and optimize actions. The

reality is, not all human operations are optimal. Therefore, these

methods cannot learn strategies beyond human skills, meaning

they cannot achieve strategy exploration and discovery based on

the environment, making it difficult to perform effective strategy

optimization.

In methods that enable global policy optimization, the

exploration and reward mechanisms in RL are powerful tools for

policy exploration and discovery (Zhao et al., 2023; Bing et al.,

2023a,b, 2022a), commonly used in autonomous learning tasks

for robotic operations. However, a significant drawback of RL

is the difficulty in exploring the continuous and dense policy

space, which under a time-series context, resembles an endless

ocean. Finding a trajectory that meets specific requirements is

particularly challenging. Therefore, it’s widely believed that using

RL to learn skill trajectories is impractical due to the enormous

number of explorations required. Despite this, the exploration

and discovery functions of RL are very appealing for policy

optimization. Consequently, guided RL methods have emerged,

aiming to constrain the exploration learning process of RL through

skill knowledge, to achieve rapid learning of basic human strategies

and subsequent optimization.

Up to now, knowledge-guided RL methods have been

significantly applied in robot task learning. However, the methods

vary across different tasks, including using expert strategies to

replace some random exploration strategies, ensuring full use of

knowledge, narrowing the exploration range based on knowledge

to reduce irrational exploration actions, or constructing special

reward functions to guide learning toward specific actions. These

methods optimize and modify RL through existing task knowledge,

integrating prior knowledge into the RL process for task-specific

optimization, thereby enhancing learning efficiency or quality.

Based on this concept, we propose a knowledge-guided

trajectory policy learning optimization method. This method

extracts mathematical characteristics of demonstration trajectories

in traditional imitation learning, including shape, temporal, and

reasonable exploration range features, and uses these features to

guide the basic policy learning and optimization in RL. Unlike

traditional RL methods, we record action strategies, advantageous

action libraries, and action values through sampling during the

exploration learning process, rather than using neural networks.

After policy iteration learning based on sampled states, the learned

strategies are recorded in neural networks through BC, achieving

continuous representation of strategies and providing a basis for

sampling continuous, smooth task trajectories.

Our contributions are as follows:

1. Sample the state point in the task space with DTWmethod for

trajectory alignment.

2. Establish the basic knowledge policies and the time stages by

IL, which are used to guide the subsequent RL.

3. A RL method guided by human skill knowledge, based on

sampled action policies and action values, is proposed to

achieving global policy learning and optimizing in the task

space.

4. Using BC to obtain continuous action policies from global

policy samples for generating proper robot flower drawing

task trajectories.

The paper is organized as follows: Section 2 discusses related

work. Section 3 introduces the extraction methods of human skill

knowledge, including the basic trajectory skills, and the action

exploration range. Section 4 describes the task space sampling

RL method guided by skill knowledge. Section 5 covers the

reinforcement learning experiments and result analysis, along with

real-world robot experiments. Finally, Section 6 concludes the

paper.

2 Related work

2.1 Trajectory learning method based on
imitation learning

Trajectory learning based on imitation methods is mainly

divided into those based on mathematical analysis and those

based on neural networks. The traditional mathematical analysis

methods primarily work by establishing mathematical models to

learn and reproduce trajectories. For example, the attractor models

of trajectory and force are based on the Dynamic Movement

Primitives (DMP) method, the probabilistic models of trajectory

parameters are based on Probabilistic Movement Primitives

(ProMPs), and the time-related trajectory point probability models

are based on Time-Parameterized Gaussian Mixture Models (TP-

GMM). The application of the DMP includes using DMP to

establish trajectory and force profile models in Liao et al. (2023), to

learn the stiffness profiles of the robot in robot compliance control

(Bian et al., 2020), and to improve the human-robot handover

tasks in Wang et al. (2021a). The employment of ProMPs involves

applying ProMPs to human-robot interaction scenarios in Koert

et al. (2019), where they are used to achieve obstacle avoidance by

changing shapes and time scaling. A general probabilistic adaptive

method is also proposed in Frank et al. (2022), which provides

a unified ProMPs framework for multiple complex robotic tasks

like obstacle avoidance, via-points, and mutual avoidance. What’s

more, a method combining the advantages of DMP and ProMPs

is also provided in Li et al. (2023b), in which the ProMPs is

embedded into neural networks to achieve efficient end-to-end

learning of advanced trajectory statistics. The TP-GMM method,

in Rozo et al. (2015); El Zaatari et al. (2021); Duque et al.

(2019) for instance, establishes a Gaussian mixture model by

extracting probability models under the task and base coordinate

systems, then reproduces trajectories through the GaussianMixture

Regression (GMR). In this way, the method could learn the

characteristics of the trajectory in specific task frame. Overall, the

IL methods based on mathematical analysis can effectively extract

data parameters of the trajectory, such as the shape and the via-

points of the trajectories. However, the limitation of them is that

they can only reproduce the existing trajectory features based on
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the mathematical models but cannot learn extra trajectory policy

related to the task environment in the whole task space.

IL methods based on neural networks like BC, utilizes the

policy samples obtained from human demonstration to train neural

networks for policy learning. For example, it is used in Li et al.

(2023a) to learn autonomous driving technologies from the human

driving skills. It is also applied to learn robot assembly task in

Zang et al. (2023). Even though BC method has the potential

to model the global task strategy, it may also be hard for it

to learn extra policy to adapt to the environment. While the

Generative Adversarial Imitation Learning (GAIL) method aims at

learning the human task strategy by training the generators and

discriminators to interact with each other. In the previous study,

GAIL are used to learn human driving strategies in Bhattacharyya

et al. (2023), to learn human navigation trajectories in Fahad et al.

(2020), and robot assembly tasks in Jiang et al. (2023); Gubbi

et al. (2020). Inverse reinforcement learning (IRL) methods design

specific reward function for the target task to allow RL agents

to approximate human strategy under the attraction of the task

reward. It has been used for learning the navigation strategies in

Herman et al. (2015); Xia and El Kamel (2016), ping pong playing

strategies in Muelling et al. (2014), and robot force-related tasks in

Hussein et al. (2019).

2.2 Knowledge guided reinforcement
learning method for robot task

Nowardays, RL has been widely used to help robot learn task

strategies (Bing et al., 2022b,c, 2023c). And knowledge-guided RL

methods related to robot task learning are mainly divided into

exploration strategy planning, network parameter initialization,

and the setting of special reward functions.

Among them, exploration strategy planning is the most

common method. Since most of the current knowledge exists

in the form of policy actions, improving the exploration process

of reinforcement learning based on expert strategies is a direct

and effective method of guidance for reinforcement learning

(Subramanian et al., 2016; Ma et al., 2021). An expert system

is introduced to multi-agent reinforcement learning methods

to guide strategy exploration, thereby improving the learning

efficiency of reinforcement learning in Wang et al. (2022b).

Nair A and others from the University of California (Sharma

et al., 2019) avoid unreasonable random exploration by restarting

from demonstrated actions. However, this exploration method

also does not achieve optimization of the exploration strategy.

Nicolas and others from the National Institute of Information

and Communications Technology in Japan (Bougie et al., 2018)

optimize the exploration strategy by training neural networks

to choose advantageous decisions. Although they have achieved

optimization of the exploration strategy, the optimization of

exploration strategies based on neural networks often struggles

with generalization.

Parameter initialization refers to the pre-training of the agent

with skill parameters or the direct assignment of values to

reinforcement learning-related variables before the reinforcement

learning process begins, allowing the agent to initially master

task skills (Kim et al., 2020). Taylor ME and others at Edgewood

Technical Institute assigned initial values to demonstration

action values based on demonstrated operations (Taylor et al.,

2011). However, due to the sparsity of the demonstration value

parameters, they cannot provide comprehensive guidance for

reinforcement learning. In Bendikas et al. (2023), tasks are

recursively decomposed into a series of subtasks, and then the agent

is initialized with the existing critic network parameters to guide

the current actor, thus achieving the guiding effect of the network

Q function. In Wang et al. (2021b) and Wang et al. (2022a), for

the control of complex assembly tasks, imitation learning is used to

initially learn the outline of the trajectory, and then its parameters

are used for subsequent force control learning, resulting in effective

assembly force control strategies.

The setting of the reward function is a very important

part of the reinforcement learning process. Thus, setting specific

reward functions according to the characteristics of the task,

enabling the reinforcement learning agent to learn knowledge-

biased trajectories, is one of the methods of knowledge-guided

reinforcement learning. For example, Guo et al. (2023) uses

an innovative composite auxiliary reward structure and a Soft

Actor-Critic with Self-Paced Prioritization (SAC-SP) mechanism to

realize optimal feedback control in real-time. In Gu et al. (2023), an

artificial potential field is used to set the reward function, allowing

the reinforcement learning agent to learn robot trajectories that

avoid obstacles. The same artificial potential field reward method

is also used in Xue et al. (2023) to guide the reinforcement

learning agent to learn avoidance behaviors. Ao et al. (2023) designs

a practical reward function for unmanned aerial vehicle (UAV)

applications, taking into account the throughput, safety distance,

and power consumption of the UA virtual machine.

3 Human skills extraction method

In the work of Zang et al. (2023), we modeled demonstration

trajectories using the ProMPs imitation learning method based on

mathematical analysis. We then estimated the current state’s time

stage using probabilistic methods and set the midpoint of the next

time stage as the target point to obtain a target position strategy

based on position control. Finally, we learned the pin insertion

assembly strategy based on position control using the BC method.

In this paper, we will use the samemethod to extract basic strategies,

but we have made some improvements in the implementation

details, and the specific implementation methods are as follows.

3.1 Basic knowledge extraction

In order to provide initial strategy guidance and time stage

guidance for the reinforcement learning process, we also use

the method in Zang et al. (2023) to segment the demonstration

information by time stages and extract knowledge strategies,

considering them as the fundamental trajectory knowledge.

In this paper, we focus on knowledge-guided reinforcement

learning for two-dimensional trajectories. Therefore, we set the

collection of demonstration trajectories as Y , with each trajectory

being two-dimensional but of varying lengths, denoted as Y1 : 2.
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Due to the varying time progression of human demonstration

information, we process Y using DTW to obtain the processed two-

dimensional trajectory sequence YDTW
1 : 2 (N), where N represents the

length of the aligned trajectory timeline. Additionally, the distance

function of DTW is set as the Euclidean distance between two

sampling points, meaning for any two sequence points 1PDTW and
2PDTW , their distance is expressed by the Equation 1.

Dist = ||1YDTW
1 : 2 − 2YDTW

1 : 2 || (1)

For each dimension k ∈ {1, 2} of the geometric representation

YDTW
1 : 2 , we establish probability motion primitives, expressed as

Equations 2, 3.

yDTWk (t) = 8kwk + ǫyDTW
k

(2)

P(τk|wk) = 5
t
N

(

yDTWk (t)|8kwk,6yDTW
k

)

(3)

Where8k ∈ R
n are the basis functions of the four-dimensional

geometric representation variable of ProMPs, and n represents

the number of these basis functions. wk is the weight vector

corresponding to the basis function. ǫyDTW
k

∼ N (0,6yDTW
k

). Then,

we use the same method as in Zang et al. (2023) to calculate

the Gaussian model parameters θk = {µwk
,6wk

} of the weight

parameters.

When dividing the trajectory into time stages, we still adopt

the method from Zang et al. (2023). First, we set the maximum

distance for each time stage of the trajectory lthre, as well as the

maximum time step tthre, ensuring that all points within the same

time stage satisfy the Equation 4. Then, for the mean trajectory

YDTW
mean (t) generated based on ProMPs, we traverse from the first

point to the last point. As soon as any point fails to satisfy either

condition of Equation 4, we start a new time stage from that event

point, making it tstart , while the previous point tend becomes the end

of the previous time stage.

{

∀t ∈ Ts, ||Y
DTW
1 : 4 (ts)− YDTW

1 : 4 (tstart)|| ≤ lthre
tend − tstart ≤ tthre

(4)

Then, for all the trajectories, we use all the sampling points of

each time stage to calculate the Gaussian model θTs = {µTs ,6Ts}

of the trajectory points for that time stage. This model is used

to subsequently determine the time stage information for any

sampling point.

For any given sampling point Psample, we calculate the

probability density pts of all the time stage Gaussian models

at that sampling point. The time stage corresponding to the

highest probability density is considered to be the time stage of

that sampling point. However, when generating trajectories with

ProMPs, having only the time stages is not sufficient. Therefore, we

always assume that the time point in which the sampling point is

located is represented by the Equation 5.

t = int

(

tend+tstart

2

)

(5)

FIGURE 1

The picture of the guided exploration range.

Based on the estimated time points and the positions of the

sampling points, we set the sampling points for ProMPs and then

generate the target trajectory. In the generated target trajectory,

we set the target position as the mean of some sampling points

in the next time stage. To ensure sufficient task progress in the

guided trajectory, the end time of this part of the sampling points

is set to the tend of the next time stage, while the starting time

point is set to any time point on either side of the midpoint of

the next time stage. We designate the final target point as Psample,

thereby obtaining the current knowledge strategy aknow defined as

Equation 6.

aknow = Ptarget − Psample (6)

Due to the randomness in time sampling, it also ensures that

our strategy does not converge at the beginning, thus providing

sufficient learning space for the subsequent reinforcement learning

process.

3.2 The exploration range extraction

After determining the knowledge strategy for the sampling

points, we will guide the exploration behavior according to

the direction and magnitude of the knowledge strategy. We

assume that the knowledge strategy at the sampling point Psample

is aknow. When exploring in a two-dimensional environment,

to ensure the general direction of the exploration trajectory,

we assume that the size of the exploration angle range is

θguide, and the size range of the exploration action length

is [absmin, absmax]. We represent the exploration range as

Figure 1.

Assuming there are two random values εθ ∈ [−0.5, 0.5], εl ∈

[0, 1], and assuming the direction vector of the knowledge strategy

a is va, then we can determine that the exploration action aexp needs

to revolve around the policy aknow with the rotationmatrix given by

the Equation 7.
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Tguide =

[

cos εθθguide − sin εθθguide

sin εθθguide cos εθθguide

]

(7)

The length of the aexp can be denoted as Equation 8.

lguide = εl(absmax − absmin)+ absmin (8)

Then, the aexp can be denoted as Equation 9.

aexp = lguide · Tguideva (9)

4 Knowledge-guided reinforcement
learning method with sampled task
states

In the previous chapter, we acquired task knowledge including

information about time stages, exploration knowledge strategies,

and exploration ranges. In this chapter, we will dedicate

ourselves to utilizing this knowledge to guide the reinforcement

learning process and complete the learning of trajectory drawing

tasks.

4.1 Sampling states in task space

Unlike traditional reinforcement learning methods that learn

directly in a continuous task space, in this paper, we will

perform spatial sampling in a two-dimensional task space and

learn at limited, discrete sampling points. This is because,

although traditional continuous spaces theoretically allow for

random strategy learning across the entire task space, such

learning is based on a large number of explorations and

is not conducive to practical operations. At the same time,

with the constant updating of policies and value functions in

reinforcement learning, it is not easy to achieve the convergence

of both policy and value functions to a better strategy.

Especially for tasks like trajectory learning that do not require

a very complex distribution of strategies, using sampled states

for reinforcement learning is a very feasible and time-saving

approach.

First, we divide the two-dimensional task space into many

equal areas Rtask as the basic areas for our strategy learning, and

for each area, we determine its corresponding time stage TR
s . To

focus on learning effective sampling points, we will determine

the sampling density based on the distribution of demonstration

trajectories. For the number of real demonstration trajectory

samples in an area Rtask, we set certain thresholds, thus classifying

them into areas with different sampling densities. For example,

if the number of real demonstration trajectory samples Nreal in

an area Rtask is 0, we can set the number of sampling points to

1, i.e., we only set one sampling point ssample in the center of

the area, and Nssample

R = 1. If the number of real demonstration

trajectory samples is 0 < Nreal ≤ 50, we can set an average

of 4 sampling points ssample in these areas, with Nssample

R =

4, and so on. Thus, we have sampled different areas of the

task space with different densities based on the demonstration

trajectories.

4.2 Knowledge guided reinforcement
learning

In the guided learning based on sampled states, we set the

strategy as a determined strategy for all sampling points ssample,

denoted as as
sample

. However, unlike traditional reinforcement

learning which establishes an experience replay pool, we do not

use a randomly sampled experience replay pool. Instead, we

use a similarly sampled experience strategy library Ls
sample

. This

experience strategy library stores several advantageous strategies

for each state sampling point, ensuring that the agent does not

forget some advantageous actions due to the learning process not

yet converging. We set an upper limit on the number of experience

strategies stored for all sampling points as NL
max, ensuring that

the storage space we use and the computational load during

optimization are both controllable.

In our study, the value function is also sampled based on the

distribution of the sampling points. Thus, for each state sampling

point, we establish a deterministic policy as
sample

, an action value

Qssample
, and an experience strategy library Ls

sample
.

During the exploration process, we conduct action exploration

for all the sampling points we have set. Firstly, we constrain

the exploration actions according to the method described in

Section 3.1, selecting suitable exploration actions. By conducting

explorations from the same starting point and choosing the

exploration action with higher rewards, we update the policy

as
sample

and simultaneously refresh the experience strategy

library, achieving constrained random exploration for the task.

Additionally, we search for superior strategies within a small range

around the existing experience strategies, replacing the original

strategies to fine-tune the experience strategy library, known as

minor local exploration. Through constrained random exploration

and minor local exploration, we can offer a sampling-based guided

reinforcement learning exploration strategy.

Regarding the calculation method for exploration rewards,

we have also made improvements. Firstly, to ensure that the

policy trajectory does not involve repetitive cycles, we stipulate

that rewards can only be obtained after exploring for a certain

number of steps and reaching a time phase beyond the starting

point; otherwise, a penalty is incurred. Moreover, the discount

factors for the reward calculation include both the current time

phase’s discount factor and subsequent time stages’ discount factors,

thereby estimating the agent’s potential to obtain more rewards

in the current time phase. The final formula for calculating

exploration rewards is as Equation 10.

Gssample

aexp
=

{

∑

γ1
t−1R

Ts
t + γ2Qs′

−Rpunish

if ∃Ts′ > Ts

if ∀Ts′ ≤ Ts
(10)

Here, R
Ts
t represents the reward obtained at the t-th time step

after starting from the initial sampling point. Rpunish is a fixed value.

Qs′ denotes the action value of the sampling point when the agent

reaches the subsequent time phase’s sampling point s′.
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FIGURE 2

The relationship of the proposed variables as
sample

, Ls
sample

and Ls
sample

dom
.

During the process of policy updating, we calculate the

reward value for each exploration action, and use the obtained

advantageous actions and advantage experience library to update

the old policy and experience library. In the updating process, we

adopt an updating method that incorporates the idea of temporal

difference learning. The formula is as Equations 11, 12.

as
sample

= (1− αa)a
ssample

+ αaa
ssample

dom (11)

Ls
sample

= (1− αL)L
ssample

+ αLL
ssample

dom (12)

In this context, as
sample

dom
represents the best action

determined after random and local exploration, yielding the

highest reward. On the other hand, Ls
sample

dom
refers to a set

of advantageous actions identified post-exploration, which

are characterized by higher rewards. αa and αL are the

update coefficients for the policy and experience strategy

library, respectively.

Finally, to present the relationship of the proposed variables

as
sample

, Ls
sample

and Ls
sample

dom
more clearly, Figure 2 is given

in follows.

4.3 Behavior cloning for sampled policy

After several iterations of guided reinforcement learning, we

obtain a converged set of exploration action samples. However,

these cannot be directly used as the final policy, as such a

policy is discrete and fails to produce a continuous, smooth

trajectory. Therefore, we model the acquired policy through

behavior cloning. By employing the behavior cloning method,

the derived policy can be approximated using a neural network,

resulting in a continuous and smooth policy. Moreover, since

our policy is sampled across the entire task space, we can

also train it using multiple neural networks of different styles.

This approach allows for better approximation effects or smaller

network structures.

FIGURE 3

The reward distribution of the flower drawing environment as well

as the human demonstration trajectories.

5 Experiments and evaluation

To validate the effectiveness of our proposed sampling-

based guided reinforcement learning method, we conducted

reinforcement learning iterative experiments and real robot

experiments. Firstly, we set up a flower trajectory drawing

experiment and established a Gym environment for the task. The

schematic diagram of the environment is shown in Figure 3.

In this setup, the task space is 600 units long and 500 units

wide. The black part represents the standard trajectory, while the

dark yellow and light yellow parts are the trajectory’s extension

areas. The rewards are allocated as follows: the highest reward is

set for the black part at 100, the dark yellow part has a reward of

2, and the light yellow part has the lowest reward, set at 0.05. The
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FIGURE 4

The sampling process of task space. (A) is the number of sampling points of demonstration information in each area. (B) is the final sampling

condition of the task space. Notably, the color of the sampling points in (B) is only used to distinguish the di�erent areas of the division.

reward for all other parts is set to 0. It’s important to note that

the agent do not have prior knowledge of the reward distribution

in the environment before learning, the guidance information

can be obtained according to the gray demonstration trajectory.

Additionally, to ensure the continuity of the trajectory, our rewards

are also only for one-time, which means that the reward for a

specific location will not be granted a second time.

5.1 Acquisition of trajectory skills

Firstly, to sample the states within the task space, we divided

the task space into several 25 × 25 units. We then counted the

number of sampling points of demonstration information in each

area, as shown in Figure 4A. After determining the number of

sampling points, we proceeded with the sampling of the task space,

as illustrated in Figure 4B.

According to the method in Section 3.1, we extract the

knowledge policy of each sample point in each area of the task

space, as shown in Figure 5.

Additionally, we obtained information about the time stages

of different areas in the task space, as depicted in Figure 6. In

this figure, the darker areas represent time phase regions near the

demonstration information, while the lighter areas are time phase

regions further from the demonstration information. During the

learning process, we will first focus on strategy learning in the

darker regions, followed by the lighter regions.

5.2 Knowledge guided reinforcement
learning experiment

We utilized the empirical knowledge obtained in Section 5.1

for the subsequent guided reinforcement learning. According to

FIGURE 5

The knowledge policy of each sample point in each area of the task

space.

the time phase segmentation in Section 5.1, we conducted action

exploration for each sampling point. The exploration related

parameter θguide is set to
2
3π . As for parameter lguide, since absmin

and absmax are 2 and 4 respectively, lguide is in between. In this way,

each exploration action can be determined according to Section

3.2. For each exploration, the maximum number of steps was set

to 50. For each sampling point, we carried out 10 constrained

random explorations and 5 minor local explorations. Completing

the exploration process for each sampling point constitutes one

complete iteration. After 100 complete iterations, we found that the

policy could achieve convergence.
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FIGURE 6

The time stages of di�erent areas in the task space.

To validate the superiority of our proposed method, we

conducted the following comparative experiments:

1. Guided trajectory RL with demonstration density sampling

states + BC (Our method).

2. Naive trajectory RL with demonstration density sampling

states + BC.

3. Partially Guided DDPG trajectory RL with continuous states.

4. Naive DDPG trajectory RL with continuous states.

5. Knowledge-based strategy only + BC.

It’s important to note that our guided reinforcement learning

method cannot be fully applied to the DDPG method. Therefore,

in experiment 3, we only used the network parameters from

experiment 5 to initialize the DDPG Actor network and used the

exploration range constraints obtained from Section 3.2 to restrict

exploration behavior. To allow the Critic network’s parameters

to adapt to the initial Actor parameters, we did not train the

Actor network in the first 100 steps, and these steps were not

counted in the learning process. That is, the learning process for

experiment 3 began after 100 steps. Additionally, since experiment

5 did not involve iterations, we will directly present its experimental

results.

Furthermore, since network parameter initialization was

performed in Experiment 3, we set the number of iteration

steps to 5,000 for this experiment, while in Experiment 4,

it was set to 10,000 steps. In recording, we also noted

data at intervals of 50 steps for Experiment 3 and 100

steps for Experiment 4, ultimately obtaining 100 sets of

data.

We test the trajectory policy of the obtained agents in

experiment 1–4 as shown in Figure 7. It illustrates the policy

changes over the learning iteration goes on. For Experiments 1

and 2, we recorded the policy experimental results after the 3rd,

20th, 50th, and 100th complete iterations. For Experiments 3 and

4, we showcased the data from the 3rd, 20th, 50th, and 100th sets.

For each set of data, we uniformly sampled 600 trajectories in the

entire task space, each trajectory lasting 200 time steps. The figure

demonstrates the learning situation of these trajectories.

In Figure 8, we conducted BC for the policies obtained from

Experiments 1 and 2, presenting the trajectory test results of the

policies represented by neural networks. Additionally, this figure

includes the trajectory test results from Experiment 5.

We also recorded the environmental reward test results for

each recorded iteration in Experiments 1–4, as shown in Figure 9.

Additionally, we tested the reward results for Experiment 5, which

are represented by dashed lines in each subplot.

We also provide policy sampling diagrams for the

results of Experiments 1–4, as illustrated in Figure 10.

The policy sampling diagram for Experiment 5, which

represents the knowledge strategy sampling, is shown

in Figure 4.

Additionally, based on the continuous policy generated by

the BC network in Experiment 1, we generated real robot

trajectories and validated their feasibility on a Franka Emika

robot. In the experiment, the robot’s inverse kinematics were

used to calculate the joint angles required for generating two-

dimensional end-effector trajectories. Then, a joint position control

method was employed to enable the robot to draw the flower

trajectory. Snapshots of one experiment and several experimental

result images are shown in Figure 11. Furthermore, a video of

the experiment will be uploaded to https://youtube.com/shorts/

FGWAfngazxk?feature=share.

5.3 Results and evaluation

As shown in (Figures 7A–D), under the influence of the

knowledge strategy and guided exploration, the reinforcement

learning agent can quickly learn useful policies. Through iteration,

these policies are optimized, allowing the agent to learn a global

strategy capable of generating complete trajectories. This process

also leads to better adaptation to the environment and the

acquisition of more rewards.

For the unguided sampling-based reinforcement learning

method in Experiment 2, while the agent can learn strategies to

obtain rewards, the lack of guided policies means it lacks long-term

vision. It can only learn strategies concentrated in reward areas,

failing to generate complete trajectories and obtaining only limited,

unstable rewards.

In the guided DDPGmethod, thanks to parameter initialization

and exploration guidance, the agent initially performs well, learning

better strategies in the early stages of the trajectory. However, as

this method is neural network-based and cannot sample the entire

task space’s strategies simultaneously, the agent gradually forgets

the initial effective strategies. This leads to slow learning initially

and rapid forgetting later, preventing the formation of an effective

global strategy.

Regarding the naive DDPG reinforcement learning method,

despite having twice the number of iterations compared to the

guided methods, it still fails to learn an effective strategy. This

difficulty can be attributed to our experimental environment not
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FIGURE 7

The result of the test trajectory policy of the obtained agents in experiment 1–4. (A–D) is the result of experiment 1. (E–H) is the result of experiment

2. (I–L) is the result of experiment 1. (M–P) is the result of experiment 4.

FIGURE 8

The result of the test trajectory policy of the BC process. (A, B) is the result of BC agent obtained in experiment 1 and experiment 2. (C) is the result of

BC agent obtained in experiment 5.
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FIGURE 9

The test results of the environment reward in experiment 1–4. (A) is the result of experiment 1. (B) is the result of experiment 2. (C) is the result of

experiment 1. (D) is the result of experiment 4.

FIGURE 10

The policy sampling of the test results of experiments 1–4. (A) is the result of experiment 1. (B) is the result of experiment 2. (C) is the result of

experiment 1. (D) is the result of experiment 4.

FIGURE 11

The picture of the real world experiment snapshots and the flower drawing results.
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being fully Markovian, and the temporal task itself requiring

extensive exploration to learn basic strategies. Hence, in

Experiment 4, the agent struggles to learn strategies in the

task space without guidance.

Overall, our method has significant advantages over traditional

reinforcement learning approaches in learning basic strategies,

optimizing strategies according to environmental rewards, and

preserving existing knowledge strategies to prevent neural network

knowledge forgetting. Comparing the results of Experiments 2

and 3, we see that sampling-based reinforcement learning indeed

helps avoid past pitfalls. Comparing Experiments 3 and 4, we

conclude that guided reinforcement learning aids the agent in

rapidly mastering basic strategies, leading to quicker learning of

effective, environment-adaptive strategies. Additionally, we believe

that the guided DDPG reinforcement learning method has the

potential to learn more and better strategies, though knowledge

forgetting and the tendency of reinforcement learning to fall into

local optima make this process slow and challenging.

In the real-world robot task, it is simple to generate some

similar trajectories to the demonstration task through the imitation

learning method. However, it is difficult to truly learn global

task strategies which are more adapted to the environment only

through mathematical imitation. This is the reason why we present

this approach. Moreover, the experiment also proves that, it is

an effective path to achieve task strategy optimization by direct

and efficient guided strategy exploration and updating methods

to obtain optimization strategies more suitable for the current

environment on the basis of basic skills. Finally, the 2D trajectory

rendering task also enables the advantages of the method to

visualize the experimental results more clearly and clearly, which

provides convenience for the verification of the effect of our

method.

6 Conclusion

In this paper, we propose a guided reinforcement learning

method based on the sample density of the demo. Among

them, the main contribution is that we do not rely on neural

networks to directly model reinforcement learning strategies

and action value functions, but through sampling methods to

ensure that the learning of global strategies to the task space,

at the same time to avoid forgetting knowledge. In addition,

task-based knowledge strategies, including constrained random

exploration and micro-local exploration, can enable agents to

effectively improve exploration strategies, enable intelligence to

learn more quickly and more useful task strategies in the current

environment.
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