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Multiagent Reinforcement Learning (MARL) has been well adopted due to

its exceptional ability to solve multiagent decision-making problems. To

further enhance learning e�ciency, knowledge transfer algorithms have been

developed, among which experience-sharing-based and action-advising-based

transfer strategies share the mainstream. However, it is notable that, although

there exist many successful applications of both strategies, they are not flawless.

For the long-developed action-advising-based methods (namely KT-AA, short

for knowledge transfer based on action advising), their data e�ciency and

scalability are not satisfactory. As for the newly proposed experience-sharing-

based knowledge transfer methods (KT-ES), although the shortcomings of KT-

AA have been partially overcome, they are incompetent to correct specific bad

decisions in the later learning stage. To leverage the superiority of both KT-AA

and KT-ES, this study proposes KT-Hybrid, a hybrid knowledge transfer approach.

In the early learning phase, KT-ES methods are employed, expecting better

data e�ciency from KT-ES to enhance the policy to a basic level as soon as

possible. Later, we focus on correcting specific errors made by the basic policy,

trying to use KT-AA methods to further improve the performance. Simulations

demonstrate that the proposed KT-Hybrid outperforms well-received action-

advising- and experience-sharing-based methods.
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1 Introduction

Reinforcement Learning (RL) has been developed for decades, achieving remarkable

advances in chess (Silver et al., 2018), video games (Ye et al., 2020), smart grids (Chen

et al., 2022), robotic control (Ibarz et al., 2021), and even the control of tokamak plasmas

(Degrave et al., 2022). Among these achievements, researchers have also developed

theories and algorithms for Multi-Agent Reinforcement Learning (MARL), an important

branch of RL, playing a notable role in recent years in solving decision-making problems

of Multi-Agent System (MAS). However, in contrast to RL with a single agent, the difficulty

in decision-making for MARL increases significantly due to the growing number of agents.

As a result, it is necessary to study how to accelerate the learning process of MARL (Wang

et al., 2021).

Knowledge Transfer (KT) is one of the effective approaches to enhance the learning

speed of MARL (Ilhan et al., 2021). As a type of Transfer Learning (TL) method, KT

focuses on transferring the knowledge of one agent to others in a MAS. Starting from

Episode Sharing, which intuitively shares successful trajectories in episodic tasks, KT has

been applied in various multi-agent tasks (Tan, 1993). Action-Advising-based Knowledge

Transfer (KT-AA) is one of the most popular KT methods. Instead of transferring whole
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trajectories, agents with KT-AA only share actions in specific

circumstances, evidently reducing the load of communication

channels (Silva et al., 2020). While KT-AA brings benefits in

communication, it also makes it critical to address the when-to-

transfer issue. To this end, Chernova and Veloso (2009) proposed a

confidence-based trigger condition to determine whether an agent

is familiar with a certain state, estimating the quality of decision-

making. Once an agent is predicted to make bad or uncertain

decisions, it acts as an advisee and transfers its current state

observation to the advisor. Then, the advisor will make a decision

for the advisee, selecting and sending back a better action to the

advisee. Although Chernova and Veloso (2009) did pioneering

work and designed the basic action-advising framework, their

study still has space for improvement. To reduce communication,

Torrey and Taylor (2013) proposed to teach on a budget, in which

the advisors send action advice to the advisees with a limited

amount of advice. Benefiting from the delicately designed trigger

conditions to determine when an advisor should teach, this transfer

approach can get satisfactory performance with a significantly

lower communication load. Later, Amir et al. (2016) extended

the teaching-on-a-budget framework, introducing a kind of hybrid

trigger condition by considering both the advisors’ monitoring and

the advisees’ requirements.

Another important branch of KT-AA is to explore its potential

in learning-from-scratch scenarios. Most of the above studies

assume that there is at least onemoderate-level expert in the system,

while for the learning-from-scratch scenarios, all the agents learn

simultaneously from random policies. In these circumstances, one

can not define a fixed advisor before the learning process starts,

making it harder to design trigger conditions. Silva et al. (2017)

modified and applied the teaching-on-a-budget framework to the

learning-from-scratch scenarios. Unlike the above algorithms in

which the advising agents are fixed, this study requires all agents to

perform as both advisors and advisees. The role of an agent will be

determined by two sets of metrics, which take state familiarity and

Q values into consideration. Hou et al. (2021) introduced memetic

computation into the MARL system and proposed an Evolutionary

Transfer Learning (eTL) method. By modeling the learning agents

as memetic automatons, eTL provides two metrics to evaluate

whether an agent has learned a better policy than the others in

the training process, forming a dynamic indicator as the trigger

condition to provide action advice. Moreover, eTL also employed

stochastic mutation, an important operator in memetic computing,

in the KT process, further enhancing the performance.

While KT-AA has primarily shown its ability in learning-

from-scratch scenarios, it faces two main challenges. The first

challenge arises when the number of agents grows, causing an

exponential increase in the computation and communication load,

which indicates that it is hard to scale (Wang et al., 2021). The other

challenge lies in the design of trigger conditions (Omidshafiei et al.,

2019). Without any agent possessing an assured decision-making

ability, we should reconsider the qualification standard of action.

In previous studies with expert-level agents, the goal of KT was to

select actions with better expectations. But for the learning-from-

scratch scenes, there is nothing to rely on to predict the potential

consequences of an action. Thus, the researchers have focused on

the primary goal of KT, which is to boost the learning speed Wang

et al. (2024).

Recently, Experience-Sharing-based Knowledge Transfer (KT-

ES) has been proposed to tackle these problems. Wang et al. (2022)

extended the concept of memetic knowledge transfer, developing

a KT-ES algorithm, namely, MeTL-ES. Inspired by implicit meme

transmission, MeTL-ES proposed to share specific experiences,

i.e., state transition tuples, rather than specific actions, among

the learning agents. This mechanism converts the bi-directional

information flow in each transfer to a one-way manner, which

solves the scalability issue by nature. Moreover, MeTL-ES employs

a new idea in designing the trigger condition. Rather than selecting

experiences with higher rewards or Q values, it shares experiences

with stochastic rules. Specifically, in the early learning stage, agents

using MeTL-ES share most randomly, which matches the need

for exploration in RL. When the performance is enhanced to a

certain level, metrics like Q values get more accurate, and the

exploration is roughly enough; MeTL-ES tends to indicate the

value of an experience via Q values. Only experiences with higher

possible outcomes will get transferred. Using this mechanism, we

can observe a rapid rise in performance in the early stage, which

benefits from the sufficient exploration brought by MeTL-ES.

However, KT-ES methods such as MeTL-ES lack the focus

on the later stage, which may hinder the performance of KT-ES,

indicating that KT-AA and KT-ES have complementary features.

Out of this consideration, this study proposes a Hybrid Knowledge

Transfer method, KT-Hybrid, by binding the advantage of KT-

AA and KT-ES, expecting to promote the learning performance of

the randomly initialized agents in the whole process. Overall, the

contributions of this study are 3-fold:

1. This study discusses the scopes of application of KT-AA and

KT-ES and presents a novel two-phase knowledge transfer

framework to enhance the learning speed of MARL accordingly;

2. Based on the unique features of the framework, a novel

algorithm, KT-Hybrid, is proposed, along with the

corresponding trigger conditions to balance exploration

and exploitation;

3. Building on the well-received Minefield Navigation Tasks,

empirical studies in several typical scenarios are provided in

this study, indicating that the proposed KT-Hybrid outperforms

popular KT-AA and KT-ES algorithms.

2 Preliminaries

This section introduces some basic concepts and knowledge

relevant to this study.

2.1 RL and MDP

RL is an effective way to solve decision-making problems that

can be modeled as Markov Decision Processes (MDP), and the

entity that makes decisions to achieve certain tasks in a given

environment is called an agent (Barto et al., 1989; Sutton and

Barto, 2018). Typically, an MDP can be described by a 5-tuple,

〈S ,A,T ,R, γ 〉, in which S → R
S denotes the S-dimensional state

space of the environment. A = {a1, a2, · · · , aK} → R
K represents

the K-dimensional action space of the agent, i.e., all the K actions
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that an agent can take. T
(

s, a, s′
)

:S × A × S → [0, 1] works

as the state transition function, providing the probability that the

current state s will transfer to s′ when the agent takes action a.

R (s, a) :S ×A → R is the reward function. The discount factor γ

defines how a future reward will be discounted.

Given the definition of an MDP, the experience of an agent

can be defined as
〈

s, a, r, s′
〉

, in which s denotes the state of the

environment, a represents the action that the agent takes, r shows

the reward that the agent can earn from the environment when

implying action a, and s′ informs the resultant environment state

that corresponds to s and a.

Generally, the goal of an RL agent is to learn a policy π :S ×

A → [0, 1] to conduct sequential decision-making processes in

the MDP. Ideally, the policy will gradually converge to an optimal

policy, π∗, that can maximize the state value of the initial state. The

state-value function can be given as follows:

vπ (s) = Eπ

[

∞
∑

k=0

γ krt+k+1|st = s

]

, (1)

in which st and rt imply the state and reward at time t.

Q-learning is one of the most popular RL algorithms (Watkins

and Dayan, 1992), which learns to estimate the Q-value function

given as follows:

Qπ (s, a) = Eπ

[

∞
∑

k=0

γ krt+k+1|st = s, at = a

]

. (2)

Moreover, the update rule can be written as follows:

Qπ (s, a) = Qπ (s, a) + α
(

y−
)

, (3)

in which y = r+ γ maxa′ Q
(

s′, a′
)

denotes the target. Now, the TD

error can be given as follows:

δ = y− Q (s, a) . (4)

Since Deep Neural Networks (DNN) have been developed

greatly in the past decade, Mnih et al. (2013) and Mnih et al. (2015)

proposed Deep Q-Network (DQN), an incorporation of DNN and

Q-learning. Parameterized by vector θ , the loss function of the

neural network in the learning process can be given as follows:

L (θ) = Es,a,r,s′∼D

[

(

y− − Q (s, a; θ)
)2

]

, (5)

where D is the experience buffer, which is designed to break

the correlations of the data. Another part that can do the same

is the introduction of the target network. In short, the target

network is a copy of the policy network whose parameters are

updated intermittently, providing the target value y−. Denoting the

parameters of the target network as θ
−, the target value can be

calculated as follows:

y− = r + γ max
a′

Q
(

s′, a′; θ−
)

. (6)

2.2 MARL and SG

When the number of entities that need to make decisions

extends from one to several, the underlying model will be extended

from MDP to Stochastic Games (SG) (Shapley, 1953). An SG can

be described by the tuple of 〈n,S ,A,T ,R, γ 〉, in which n is the

number of agents and S represents the state of the environment.

A :A1,A2, · · · ,An denotes the joint action space, where Ai gives

the action space of agent i. In this setting, we can define the action

of agent i as ai ∈ Ai and the joint action a ∈ A as the joint action

of all the agents. Then, we can write the state transition function T

as T
(

s, a, s′
)

:S ×A× S → [0, 1].

Typically, in multi-agent tasks, the agents cannot have access to

the global state of the environment, i.e., s ∈ S . In contrast, they will

have different observation functions, denoting Oi for each agent i.

Now, the tuple of an SG can be extended to 〈n,S ,O,O,A,T ,R, γ 〉,

in which the added O :O1 × O2, · · · ,On describes the joint

observation space of the agents and O :O1 × O2 · · · × On gives

the observation functions. In this study, we only consider the

commonly used homogeneous multi-agent systems in which the

agents share the same observation function O.

In this circumstance, conventional single-agent RL is not

capable of handling such tasks, and the community has its

sights set on Multi-agent Reinforcement Learning (MARL). Tan

(1993) proposed to apply single-agent Q-learning to multi-agent

task scenarios, forming the Independent Q-Learning (IQL). The

learning process of IQL requires each agent to act and collect

experience independently. On this basis, the agents will also learn

independently according to their own rollouts. It is an intuitive

but effective way to solve multi-agent tasks using RL. In the era of

deep learning, Tampuu et al. (2017) integrated DNN and advanced

techniques such as experience replay to IQL and formalized the

Independent DQN (I-DQN), promoting the learning performance

to a higher level. By combining the classic learning algorithm and

newly developed techniques, I-DQN has inevitable advantages in

scalability and flexibility (Foerster et al., 2017). Thus, we adopt

I-DQN as the basic learning algorithm in this study.

2.3 Knowledge transfer for independent
MARL

Knowledge transfer mechanisms aim to leverage insights

gained by one agent to accelerate learning or improve performance

for another agent. This can be particularly beneficial in MARL

since the learning agents are able to share various types of useful

information.

For I-DQN-like independent MARL algorithms, there are

two popular branches of knowledge transfer, which are KT-AA

and KT-ES. In KT-AA, agents share action advice with each

other. Specifically, a learning agent with KT-AA will determine

dynamically whether to ask for advice during the learning process

(Torrey and Taylor, 2013). Once the ask process is triggered,

the agent will send the current state, and it encounters to the

other agents for help, and the agents receiving the query will

provide a potential action. The most distinctive advantage of KT-

AA lies in the direct correction of a specific action, but at the
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same time, it suffers from bad scalability due to its bi-directional

information exchange. KT-ES is a recently developed knowledge

transfer approach. Compared with KT-AA, which was initially

developed for learning systems with experts, KT-ES was proposed

for simultaneously learning scenarios (Wang et al., 2022). Given

this background, KT-ES focuses more on the long-term benefits

by encouraging exploration, the rationality of which has also been

validated recently in KT-AA (Wang et al., 2024). To achieve this,

agents using KT-ES methods share personal experiences in a one-

way manner. Typically, the experiences are defined by the state

transitions together with variables used to calculate the sharing

trigger conditions. The stochastic sharing without consideration of

specific states leads to unfamiliar situations for which exploration

may emerge.

To summarize, it is clear that both KT-AA and KT-ES can

enhance learning performance, but with different motivations. In

the following section, we will introduce a novel knowledge transfer

method that combines the strengths of KT-AA and KT-ES to

enhance the learning performance of independent MARL systems

further.

3 KT-Hybrid

This section introduces the overall architecture of the proposed

KT-Hybrid algorithm, along with the design details answering the

questions of what to transfer, when to transfer, and how to use the

received knowledge.

3.1 Architecture

Recalling the goal that we require the knowledge transfer to

achieve. Primarily, we need the agents in MARL systems to learn

as fast as possible, at which period the agents will form basic-

level policies that can roughly obtain a satisfactory performance.

Meanwhile, to ensure the learning speed, i.e., the speed to form

a basic performance, it is not ideal to put too much extra

computational load on the agents at this early learning stage. In

addition, to avoid possible obstacles to large-scale MARL, it would

be better to adopt knowledge transfer methods with guaranteed

scalability. These discussions make the KT-ES a great solution for

the MARL problems, especially for the early learning stage.

While KT-ES meets the needs in the early learning stages, it

usually has weaker performance in the late learning stage. Themain

reason for this problem is that the KT-ES methods give much more

look to the data efficiency and scalability rather than the decision-

making quality of any specific actions. Thus, agents with KT-ES

tend to have a roughly qualified policy in a very short time, but

the performance may remain fixed or even drop slightly in the

late stage. This phenomenon also matches with both the results

reported in the study by Wang et al. (2022) and our pilot study.

On the contrary, KT-AA focuses on every single decision-

making performance of an agent at the cost of scalability. In

specific, KT-AA needs bidirectional interactive communication

rather than unidirectional broadcast-like communication in KT-

ES. However, this brings about the unique advantage of KT-AA

and KT-AA can help the agents in specific decision-making steps.

By incorporating KT-AA, every possible action of each agent has

some possibility of getting double-checked by other agents, helping

to prevent bad decisions in specific states. This feature of KT-AA

indicates that although it may be inefficient in the early learning

stage, it has the potential to further enhance the policies that are

roughly trained. In summary, KT-ES and KT-AA exhibit distinct

advantages across different learning stages, suggesting the potential

for improved learning performance through their combination.

Building on the above discussions, the goal of this study is

to design hybridization of KT-ES and KT-AA, KT-Hybrid, trying

to make full use of their complementary features. Overall, the

KT-Hybrid follows a two-phase structure, as shown in Figure 1.

In the MARL process, the first phase is called the Igniting

Phase, which aims to rapidly learn a moderate-level policy in the

early stage. Thus, we design experience-sharing-based knowledge

transfer mechanisms in the Igniting Phase, leveraging the benefits

of KT-ES in terms of fast learning speed and high data efficiency to

provide the users with workable policies as soon as possible.

While for the learning process in the late stage, the Boosting

Phase takes over to further boost the policy to a higher level

with more communication effort. At this stage, the requirement

of the user is converted from getting workable policies to tuning

the policies for better performance. Therefore, we need to follow

the principles of the action-advising-based knowledge transfer

approaches in the Boosting Phase, expecting to obtain better

performance even with a higher load.

Since the primary goal of knowledge transfer is to promote

learning speed, it is unacceptable for the KT-Hybrid if the transfer

scheme is of high complexity order, which may lead to significant

computational costs.

Now, it is obvious that due to the complex mechanism, the

performance of KT-Hybrid is promising, yet the design will be

challenging. Given this framework, we will detail the format of

knowledge in the two phases in Section 3.2, introduce a novel

trigger condition to balance the two phases in Section 3.3, and

design the learning scheme accordingly in Section 3.4.

3.2 What to transfer

This subsection will introduce what type of knowledge is

transferred in KT-Hybrid. To meet the two-phase architecture of

KT-Hybrid, we need to design the form of knowledge separately.

For the Igniting Phase, agents are required to share implicit

knowledge that works as ingredients in the learning process, i.e.,

experiences (Wang et al., 2022), rather than explicit actions, for fast

promotion of the policies. Formally, for any agent i at time t, this

agent will observe the state of the environment and obtain its own

observation at this time oit . Then, agent i makes a decision to take

action ait according to o
i
t and its current policy π i

t . Then, the state of

the environment s will transit to a new state s′, and agent i will get

an updated state observation, denoting as oit+1. Meanwhile, agent i

will also get the reward signal rit from the environment. Now, after

a complete state (observation) transition, the experience of agent i

at time t can be formulated as follows:

E i
t =

〈

oit , a
i
t , r

i
t , o

i
t+1

〉

. (7)
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FIGURE 1

Overall architecture of KT-Hybrid. Robots in di�erent backgrounds represent di�erent learning agents, purple waves show the shared experience in

the Igniting Phase, black arrows depict the self-learning process of the agents, and the blue and orange arrows are the transferred state and action in

the Boosting Phase, respectively. In the central subfigure, the green background shows the early learning stage, and the orange shows the later

learning stage. These two stages are divided with a blurred line, indicating that the shift timing should be selected by balancing the exploration and

exploitation of these two stages.

Then, agent i will assess the quality of E i
t ; once E

i
t is suitable for

sharing, it will be broadcast as a knowledge package Ki
t by agent i

to the other agents for further learning. Formally, the knowledge at

time t in the Igniting Phase, i.e.,KI
t , can be expressed ad follows:

KI
t =

{

Ki
t|i = 1, · · · , n

}

=
{

pIitE
i
t |i = 1, · · · , n

}

. (8)

In the knowledge shown in Equation 8, pIit denotes the

probability for agent i to share the current experience in the Igniting

Phase. Detailed description and definition of pIit will be provided in

Section 3.3. In addition, the way how KT-Hybrid uses the shared

knowledgeKI
t for learning will be described in Section 3.4.

The benefits of defining the state (observation) transition as the

carrier of knowledge are threefold. First, sharing transitions that an

agent has just experienced does not need any extra computation or

memory storage, which means that the agents can learn faster with

no extra loads. Second, since the broadcasting of experiences is a

one-way communication, when the number of agents grows, the

overall communication load will only increase linearly. This results

in a good scalability. Finally, the state transition is commonly used

as experience in RL, which makes KT-Hybrid a general knowledge

transfer method for a wide range of MARL algorithms.

As learning proceeds, KT-Hybrid will turn to the Boosting

Phase. At this phase, the agents will have moderate-level policies to

handle the task in the environment. Thus, it is time for the agents

to transfer explicit knowledge, i.e., the actions, to each other. For

any agent i, to get action advice for observation oit at time t, it

will query the other agents with the observation oit . Once receiving

the query, other agents will provide actions according to their own

policies. Take agent j as an example. At time t, it generates actions a
ij
t

according to π
j
t and oit , in which a

ij
t represents the action generated

by agent j to solve the observation of agent i at time t. Then, for

agent i, it will receive a collection containing advice from all the

others, i.e., a−i =
{

a
ij
t |j = 1, · · · , n, j 6= i

}

. At time t in the Boosting

Phase, defining the probability of triggering the action advising

from agent j for agent i as pB
ij
t , all the advice for agent i at time t

can be defined as follows:

Ki
t =

{

pB
ij
t a

ij
t |j = 1, · · · , n, j 6= i

}

, (9)

Moreover, the knowledge at time t in the Boosting Phase,

denoted byKB
t , can be written as follows:

KB
t =

{

Ki
t|i = 1, · · · , n

}

=
{

a
−i|i = 1, · · · , n

}

. (10)

With the action advice from the other agents, the focal agent

can avoid some inappropriate decisions made by the moderate-

level policy. At the same time, transferring action-based explicit

knowledge can further improve the policy in the boosting phase.

3.3 When to transfer

Since the primary goal of KT-Hybrid for learning-from-scratch

settings is to promote learning performance in the whole process, it

is important to assess whether the knowledge should be transferred,

i.e., when to transfer.

Mostly, the trigger conditions that enable knowledge transfer

in the literature have the goal of transferring knowledge that can

result in better task performance. However, we have to distinguish

the different purposes between knowledge transfer in the multi-

agent learning process and action demonstration in the process

of task execution. When in the learning process, the goal of

knowledge transfer should be to promote the learning performance

rather than to enhance the correctness of some specific actions,

which is especially true for the scenarios when all the agents learn

simultaneously. Thus, it is necessary to re-consider what kind
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of knowledge is more beneficial to different learning phases in

KT-Hybrid.

The Q value is a widely adopted metric to design trigger

conditions (Silva and Costa, 2019). For the Igniting Phase, all of the

agents are in the early learning stage. At this stage, conventional

metrics such as Q values are not reliable since the networks

have not been fully trained. At the same time, according to the

explore–exploit balance, RL agents at this stage need to sufficiently

explore the environment. With learning proceeds, the Q values

calculated by the networks will be more accurate and reliable.

Out of this consideration, in the Igniting Phase of KT-Hybrid,

the probability of triggering knowledge transfer, i.e., sharing the

current experience, for any agent i at time t is defined as pit , which

is calculated as follows:

pIit

(

Qi
t , Q̄

−i
t , τ

)

=

{

0, f
(

Qi
t , τ

)

≤ Q̄−i
t

1, f
(

Qi
t , τ

)

> Q̄−i
t

(11)

In Equation 11, Q̄−i
t represents the mean value of the latest

Q values received from the other agents, which can be written as

follows:

Q̄−i
t =

1

(n− 1)

∑

j

Q
j
t , j ∈ N−1 (12)

in which N−1 denotes the agents in the MARL system without

agent i. Meanwhile, f
(

Qi
t , τ

)

in Equation 12 defines a scaling

function inspired by the Sigmoid function, in which τ represents

the learning steps that agent i has experienced. Formally, the scaling

function can be calculated as follows:

f
(

Qi
t , τ

)

=
Qi
t

1+ exp
(

a− bτ
) , τ ∈ N

+ (13)

where a and b are tuning hyper-parameters. Substituting

Equations 12, 13 into Equation 11, we can find that when τ is small,

i.e., when agent i has experienced little training, the sharing of

experiences will be triggered as much as possible. When the value

of τ increases, the agents will tend to share experiences with higher

Q values. This matches our expectations for the balance between

exploration and exploitation.

However, we should note that due to the trigger condition in

the Igniting Phase (Equation 11) does not consider any specific

observations, the agents can only get moderate-level policies from

the overall perspective. Meanwhile, the agents will have different

learning trajectories after the independent learning in the Igniting

Phase, indicating they will be proficient in different states. Thus,

building on the policies learned in the Igniting Phase, the agents

need to further learn from the others’ expertise in the Boosting

Phase.

Inspired by Hou et al. (2021), we consider two metrics to

evaluate the necessity of taking advice. The first one is success

counts li, the value of which counts the number of successful

episodes that agent i has experienced. The other is the self-

significance hi = Qi
t/max

(

Qi
1, · · · ,Q

i
t

)

, which evaluates the

significance of an action advice to the advisor. Given the above

definitions, we define the advice from agent j, i.e., aij, will only

be qualified for agent i to choose when satisfying the following

condition:

{

li < lj

hi < hj
(14)

By the condition shown in Equation 14, only advice provided

by agents with better overall performance that may have higher

potential returns will be considered.

However, since an agent is allowed to take only one action at

a time, we need to further design a merging module to resolve the

conflicts among the qualified actions from different peers. Inspired

by the multi-objective evolutionary algorithms, a ranking score Rj

for each qualified action aij can be given as follows:

Rj = l̂j · hj, (15)

in which l̂j = lj/max
(

l1, · · · , ln
)

is the regulated success counts.

Given Equation 15, we can finally choose the action with the

highest Rj as the final advice among the qualified candidates in the

Boosting Phase.

As for the extra computational load in calculating the trigger

conditions, this part of computation mainly involves three parts,

which are the calculation of li, hi, and Rj, respectively. For the

calculation of li, it only needs to maintain a counting number of

successful tasks. For hi and Rj, they need to find the maximum

of a list and do multiplication once. All of these calculations

only need simple algebraic operators. Note that although the

computations are continually conducted, they have the same

computing frequency of the policy network, i.e., for each agent,

the trigger-condition-related calculations will only be conducted

once after this agent makes a decision using the corresponding

neural network. Compared with the computational load brought by

the forward propagation, which consists of thousands of algebraic

calculations such as multiplication, the extra computational load

brought by the trigger conditions can be omitted. In addition, the

computation cost of the trigger conditions in our proposed KT-

Hybrid is comparable to many previous studies such as AdHocTD

and AdHocVisit by Silva et al. (2017), eTL by Hou et al. (2017), and

MeTL-ES byWang et al. (2022). Thus, the extra computational load

brought by the trigger conditions of KT-Hybrid is tolerable.

Another critical issue is how to determine the timing to shift the

learning phase from the Igniting Phase to the Boosting Phase, which

means we need a metric to determine whether the learning process

is in the early or later stage. There are several potential principles

in designing this shift scheme, including making the agents keep

transferring knowledge in the whole learning process, preserving

a longer Igniting Phase for less communicational cost, or letting

the Boosting Phase intervene as early as possible for more efficient

transfer. In this study, we take a straightforward shifting scheme

by setting a fixed learning episode threshold E to divide the early

and later learning stages. The learning process will be taken as

the early learning stage before E episodes have been experienced,

in which period the Igniting Phase will be triggered. Then, in the

later learning stage, the Boost Phase will be used for the following

learning process. The sensitivity of E will be tested later in Section

4. In addition, while the design of shifting schemes holds promise
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FIGURE 2

Snapshot of MNT environment.

for exploring the potential of KT-Hybrid, delving into this aspect is

currently beyond the scope of this study.

Now, we can provide the time complexity of the proposed

KT-Hybrid. In deep RL, the main computational load lies

in the decision-making (forward propagation) and learning

(backpropagation) processes, both of which are related to the size

of the network. In the following analysis, all the agents are assumed

to use the same neural networks. Since the computational load of

calculating the trigger conditions is much smaller than the neural

network-related calculations, according to Equations 11–15; here,

we omit this part and take the corresponding computational load

as a constant Ct .

Assuming there are n agents in theMARL system, each of which

conducts one round of both decision-making and training at each

time step on average, the total amount of computation of the system

can be formulated as follows:

ctotal = β · cI + (1− β) · cB + Ct , (16)

in which cI and cB are the total computational load of the Igniting

Phase and the Boosting Phase, respectively. β is a binary indicator

showcasing the current phase. When the number of experienced

episodes is less than E, we have β = 1, indicating the Igniting Phase

is triggered; on the contrary, we have β = 0 in the Boosting Phase.

Denoting the computational load of one decision-making

process of each agent as cf and one backpropagation as cb, in the

Igniting Phase, the total computational load of the system in a step

can be written as

cI = n · cf + n · cb = C · n, (17)

where C is a constant.

For the Boosting Phase in which KT-Hybrid performs action

advising, assuming the probability for each agent to ask for advice

is pask and a probability pans for agents received the inquiries

to provide advice to the advisees, and for each step, the total

computational load of n learning agents can be given as follows:

cB = n · cf + n · cb + pask · n · pans · (n− 1) · cf

= C1 · n
2 + C2 · n,

(18)

where C1 and C2 are constants.

Substituting Equations 17, 18 into Equation 16, the full

computational load of the n-agent system in one step can be given

as follows:

ctotal = β · (C · n)+ (1− β) · (C1 · n
2 + C2 · n)+ Ct

= (1− β) · C1 · n
2 + (C2 − β · C2 + β · C) · n+ Ct .

(19)

Therefore, the time complexity of the proposed KT-Hybrid is

O(n2). It is also noted that although the proposed KT-Hybrid shares
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the same time complexity with KT-AAmethods, the computational

cost of KT-Hybrid is less due to the Igniting Phase.

3.4 How to use the received knowledge

Having detailed the format and transfer timing of the

knowledge, this subsection will introduce how to integrate the

transferred knowledge into the learning process.

Non-stationarity is one of the most important issues to handle

in the independent MARL processes. To prevent the learning

performance from being affected by the non-stationarity brought

by the simultaneous learning of multiple agents, a common

solution is to disable the experience replay buffer (Palmer et al.,

2018). Except for this, techniques such as synchronized learning

have also been developed, which, however, also work at the cost

of data efficiency. Meanwhile, these approaches can only reduce

the influence of non-stationarity to some extent rather than fully

remove it.

Therefore, in the Igniting Phase, we ignore the non-stationarity

issue and learn with both the shared experiences, i.e., KI
t , and

the self-experienced ones, both of which are stored in a replay

buffer D. The primary reason for neglecting the non-stationarity

in this phase is to ensure data efficiency for better exploration of

the environment, which helps to promote the policies as expected

for the Igniting Phase. In addition, since the policies of the agents

vary widely from random ones in the Igniting Phase, it should be

difficult to significantly reduce the effect of non-stationarity. Out of

consideration of data efficiency, the loss function for learning in the

Igniting Phase can be written as follows:

LI
t (θ t) = Eo,a,r,o′∼D

[

(

y− Q (o, a; θ t)
)2

]

. (20)

In the Boosting Phase, the policies grow to a relatively stable

level, which differs a lot from previous policies. Thus, it is important

to avoid the non-stationarity brought by outdated experiences.

Therefore, to further boost the performance, we only train the

agents with the latest transitions in the Boosting Phase, i.e.,

LB
t (θ t) = Eot ,at ,rt ,ot+1

[

(

y− Q (ot , at; θ t)
)2

]

. (21)

4 Empirical studies

This section provides simulation results to validate the

effectiveness of the proposed KT-Hybrid.

4.1 Settings

To evaluate the effectiveness of the proposed KT-Hybrid, we

compare the performance of KT-Hybrid in two scenarios. The

first one is the Minefield Navigation Tasks (MNT) environment,

and the results of KT-Hybrid are compared with MeTL-ES (Wang

et al., 2022), eTL (Hou et al., 2021), and I-DQN (an independent

MARL algorithm without knowledge transfer) (Tampuu et al.,

2017), which represent state-of-the-art experience-sharing-based

FIGURE 3

Snapshot of HFO environment.

method, classical action advising method, and independent MARL

without knowledge transfer, respectively. These knowledge transfer

algorithms were also tested on MNT in their studies, so it is

fair to compare these algorithms on MNT. Typically, the MNT

environment includes moving agents, static “mines,” and a target

in a grid world. The goal of the agents is to learn policies that can

navigate them to the target position without collisions with each

other or the mines. A typical snapshot of MNT environment is

shown in Figure 2. Please refer to the Reference (Hou et al., 2021)

and (Wang et al., 2022) for details of MNT.

In this section, we set the map of MNT as 16× 16. The network

of each learning agent is a fully connected two-layer multi-layer

perceptron with 36 neurons in each layer. The learning rate is set

to be 0.5. ǫ-greedy is utilized in the training process, the value of

which anneals linearly from 0.5 to 0.005. Hyper-parameters a and

b in Equation 13 are set to 5 and 0.001, respectively. The agents

will be trained for 100,000 episodes, and the maximum length of

each episode in MNT is set to 30 steps. For KT-Hybrid, the switch

between the Igniting Phase and the Boosting Phase occurs after

10,000 episodes.

The second testing environment is the Half Field Offense

(HFO) environment (Hausknecht et al., 2016), which was used

as the testbed for AdHocVisit and AdHocTD (Silva et al., 2017).

Moreover, we compare the performance of KT-Hybrid with

AdHocVisit and AdHocTD for fairness.

Figure 3 depicts a snapshot of the HFO environment, including

three agents learning from scratch, trying to score goals. Moreover,

there is a goalkeeper with the Helios policy, which is from the

2012 RoboCup 2D champion team. To achieve fair comparison,

we use the same environmental setting, learning parameters

of AdHocTD and AdHocVisit, and the Helios policy with the

study by Silva et al. (2017). For KT-Hybrid, the learning process

shifts from the Igniting Phase to the Boosting Phase after

500 episodes.

4.2 Performance comparison

In this subsection, we first provide a comparison of the results

in the MNT environment with 3 agents and 5 mines to validate the
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FIGURE 4

Comparision of success rate on MNT.

FIGURE 5

Comparision of the number of communication on MNT.

advantage of the proposed KT-Hybrid. All the results are generated

by 30 independent runs.

Figure 4 shows the learning performance of the proposed KT-

Hybrid and the other baseline methods. The lines plot how the

average success rate changes in the learning process, while the

shadows depict one standard deviation. It is obvious that the

proposed KT-Hybrid outperforms the other methods in the success

rate of the task.

If we compare the results of KT-Hybrid with those of MeTL-

ES, which is based on experience sharing, we will notice that

although they both share a fast promotion in the learning process

(Igniting Phase for KT-Hybrid), they behave differently later. With

the learning proceeds, the line of MeTL-ES drops slightly from

the best performance. While for the KT-Hybrid, the success rate

keeps going up in the Boosting Phase. This difference matches our

expectations when designing KT-Hybrid in Section 3, indicating

that the proposed KT-Hybrid can achieve better performance

FIGURE 6

Comparision of the goal rate on HFO.

by integrating experience-sharing-based and action-advising-based

knowledge transfer approaches in the two-phase structure.

Figure 5 describes how the average times of communication

vary in the learning process. In the Igniting Phase, the

communication fluctuates similarly with the KT-ESmethodMeTL-

ES, dropping rapidly to a very low level. This matches the trigger

condition in this phase (Equations 11–13). To be specific, the

threshold of the trigger condition in the Igniting Phase is calculated

by Equation 12, which averages the latest received Q values from

the other agents. As learning proceeds, the averaged Q value, i.e.,

Q̄−i
t , will converge to the mean value of the (sub)optimal Q values

of each agent, which means that it will be harder for the agents to

find a better Q value to trigger the experience sharing, according

to Equation 11. When the learning process shifts to the Boosting

Phase, the communication will be triggered by the Equations 14,

15, focusing on specific decision-making processes of all the agents.

This enhances communication around the KT-AA level, which

shows a sudden rise.

Combining the results in Figures 4, 5, we can find that the

proposed KT-Hybrid can get significant and rapid performance

enhancement with a moderate-level communication in the Igniting

Phase. While for the Boosting Phase, although the algorithm

needs more sufficient communication like all the action advising

methods, it is still less than eTL. This phenomenon benefits

from the two-phase architecture of KT-Hybrid. After the short

Igniting Phase, the overall decision-making ability of the policies

with KT-Hybrid is notably higher than that with eTL, as

shown in Figure 4. This results in a higher starting point for

the Boosting Phase than agents with eTL at the same stage.

Consequently, agents with KT-Hybrid will need less advice

than eTL to accomplish the task. This negative correlation

between the number of communications and the success rate

also indicates the rationality of the trigger conditions provided in

Section 3.3.

Moreover, these results also indicate the superiority of using

KT-Hybrid in real-world applications. With the help of KT-Hybrid,

the users can get moderate-level policies in a very short time with
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FIGURE 7

Performance comparison in di�erent scenarios. (A) Success rate in 3a5m. (B) Number of communications in 3a5m. (C) Success rate in 5a10m. (D)

Number of communications in 5a10m. (E) Success rate in 10a5m. (F) Number of communications in 10a5m. (G) Success rate in 15a3m. (H) Number

of communications in 15a3m.

limited communication in the Igniting Phase, which means that

the agents can form a basic ability to solve certain tasks. Then, the

users can decide howmuch extra training is needed in the Boosting

Phase via systematical consideration of the performance and the

training cost.

To further validate the superiority of KT-Hybrid, we also

provide the comparison results of KT-Hybrid with AdHocTD and

AdHocVisit on the HFO platform.

Figure 6 demonstrates the learning performance of the

proposed KT-Hybrid with the other three baselines, which are IQL,
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AdHocTD, and AdHocVisit. The lines show the average rate of goal

with learning proceeds. We can find that in HFO, our proposed

KT-Hybrid still outperforms the baselines.

4.3 Validations in di�erent scenarios

To make the results more convincing, in this subsection, we

further compare the learning results with the aforementioned

knowledge transfer algorithms in different experimental scenarios.

Due to the limitation of space, from now on, we will only show the

results on MNT.

Figure 7 compares the success rates and the number of

communications in different scenarios. In specific, the results

are generated in MNT tasks with (a) & (b): 3 agents and 5

mines (3a5m), (c) & (d): 5 agents and 10 mines (5a10m), (e)

& (f) 10 agents and 5 mines (10a5m), and (g) & (h): 15 agents

and 3 mines (15a3m). It is noted that as the number of agents

grows, the overall success rate decreases, and the number of

communication increases. These trends are reasonable because as

the scale grows, the tasks tend to become more complex, leading

to an obvious performance decay. At the same time, the number of

communications is enlarged since there aremore agents involved in

the knowledge transfer. Nevertheless, the superiority of KT-Hybrid

remains in these scenarios, and the curve trends of KT-Hybrid are

aligned with the results and discussions in Section 4.2.

Table 1 compares the average success rate of the different

algorithms in different scenarios, which also indicates the

advantage of KT-Hybrid. The bold values mark the best

performance.

4.4 Sensitivity analysis to the phase shifting
time

To further validate the proposed KT-Hybrid, we have also

added experiments on different settings of the phase shifting time.

Specifically, we provide the KT-Hybrid with E = 5,000, 10,000,

20,000, and 50,000.

The success rates are shown in Figure 8. Note that the KT-

Hybrid, with E = 10,000 is the setting we use in Section 4.2,

denoted as KT-Hybrid in Figure 8 for consistency. It is clear that

all the settings we provide can effectively enhance the learning

speed, compared with MeTL-ES, eTL, and IQL. At the same time,

we should note that the earlier we shift the phase, the better the

performance we have, although the difference is only approximately

5%. Given the results presented in Figure 8, we can find that the KT-

Hybrid is not very sensitive to the phase-shifting time E, but we still

need to conduct more research on how to choose the phase-shifting

time in the future.

5 Conclusion

This study proposed a novel knowledge transfer method

for independent MARL, namely, KT-Hybrid. The proposed KT-

Hybrid integrates the widely adopted KT-AA and the recently

proposed KT-ES into a two-phase architecture. For the early

TABLE 1 Average success rate of the di�erent knowledge transfer

approaches in di�erent scenarios.

Scenario KT-Hybrid MeTL-ES eTL I-DQN

3a5m 81.03 % 77.09 % 73.45 % 57.39 %

5a10m 69.41 % 65.45 % 63.60 % 55.29 %

10a5m 49.46 % 48.58 % 44.94 % 39.87 %

15a3m 37.70 % 36.62 % 34.45 % 30.31 %

FIGURE 8

Performance comparison of di�erent phase shifting time.

learning stage, agents with KT-Hybrid conduct the Igniting Phase,

trying to leverage the high data efficiency of KT-ES to achieve fast

promotion of the decision-making ability via experience sharing.

Then, based on the moderate-level policies obtained by the Igniting

Phase, the following Boosting Phase tries to further enhance the

performance via transferring actions. Empirical studies on several

MNT scenarios show that the performance of the proposed KT-

Hybrid matches our expectations in design and outperforms the

baselines.

However, KT-Hybrid exhibits certain limitations. A primary

concern lies in the manually adjusted shift timing between the

Igniting Phase and the Boosting Phase, which necessitates reliance

on the user’s domain expertise. To address this challenge, several

paths for future research emerge. First, a more comprehensive

investigation on the influence of hyperparameters through

theoretical analysis is desired. Such an approach can offer insights

into the underlying mechanisms governing the performance of KT-

Hybrid. Second, the exploration of automated tuning methods,

leveraging cutting-edge intelligent decision-making techniques

such as evolutionary algorithms, holds promise for enhancing the

efficacy of KT-Hybrid. Furthermore, the development of a data-

driven metric for evaluating the optimal phase selection within the

algorithm is also promising. This metric, hopefully, could further

enhance the adaptability and robustness of KT-Hybrid.
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