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Machine unlearning in
brain-inspired neural network
paradigms

Chaoyi Wang, Zuobin Ying* and Zijie Pan*

Faculty of Data Science, City University of Macau, Macao, Macao SAR, China

Machine unlearning, which is crucial for data privacy and regulatory compliance,

involves the selective removal of specific information from a machine learning

model. This study focuses on implementing machine unlearning in Spiking

Neuron Models (SNMs) that closely mimic biological neural network behaviors,

aiming to enhance both flexibility and ethical compliance of AI models. We

introduce a novel hybrid approach for machine unlearning in SNMs, which

combines selective synaptic retraining, synaptic pruning, and adaptive neuron

thresholding. This methodology is designed to e�ectively eliminate targeted

information while preserving the overall integrity and performance of the neural

network. Extensive experiments were conducted on various computer vision

datasets to assess the impact of machine unlearning on critical performance

metrics such as accuracy, precision, recall, and ROC AUC. Our findings indicate

that the hybrid approach not only maintains but in some cases enhances

the neural network’s performance post-unlearning. The results confirm the

practicality and e�ciency of our approach, underscoring its applicability in

real-world AI systems.

KEYWORDS
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1 Introduction

The advent of Spiking Neuron Models (SNMs) marks a paradigm shift in the

field of artificial intelligence, introducing a neural network class that more accurately

mirrors human brain functions. Diverging from traditional neural networks that process

information continuously, SNMs operate through discrete events or “spikes,” adeptly

managing temporal data. This novel approach has propelled significant advancements

in fields such as speech recognition, time-series analysis, and neuromorphic computing,

thereby solidifying the importance of SNMs in today’s technological domain.

Tracing their origins to the early explorations in computational neuroscience, SNMs

were developed to encapsulate the dynamic and complex nature of biological neuron

activities. These models have progressively evolved from their initial rudimentary forms to

intricate systems that precisely emulate neural firing patterns. Their capability to process

information akin to biological procedures not only boosts performance in specific tasks but

also deepens our comprehension of the neural bases of human cognition and behavior.

Although the learning capabilities of SNMs have been extensively investigated, the

concept of machine unlearning within these models is relatively nascent. Traditional AI

has focused on accumulating and retaining knowledge, but the increasing importance

of data privacy, the right to be forgotten, and adaptability in changing environments

have spotlighted the necessity of machine unlearning. This process, entailing the selective

deletion of specific information from a model, is vital for adapting to new data, adhering

to privacy regulations, and efficiently managing resources.
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Present machine unlearning methodologies are predominantly

designed for traditional neural networks and involve

comprehensive tactics like retraining or data sanitization.

However, these methods may not be suitable or efficient for SNMs,

given their unique temporal dynamics. This gap highlights the

need for research into unlearning strategies that are specifically

tailored for SNMs.

This paper aims to bridge this gap in SNM research by delving

into the underexplored aspect of machine unlearning. As reliance

on SNMs grows in various applications, it becomes crucial to

understand how to implement unlearning processes effectively.

Our research promises to revolutionize SNM usage, enhancing

their adaptability, efficiency, and compliance with evolving data

privacy laws.

We propose a novel methodology for selectively erasing learned

information in SNMs, focusing on adaptive retraining of synaptic

weights and modulation of neuron firing thresholds. Our approach

integrates correlation-based neuron selection for retraining with

synaptic pruning, aiming to effectively reduce specific learned

responses without overhauling the entire neural model. This

is supplemented by an adaptive thresholding mechanism to

recalibrate neuron sensitivity, aiding targeted unlearning. Our

thorough analysis evaluates the impact of these unlearning

strategies on key performance metrics such as accuracy, precision,

recall, and ROC AUC across various computer vision datasets.

The paper provides a detailed evaluation of the trade-offs between

unlearning effectiveness and the retention of overall model

performance, offering insights into the practical challenges of

applying machine unlearning in complex AI architectures.

The contribution in this paper are summarized as follows.

• The research addresses a crucial gap by exploring machine

unlearning specifically within SNMs. To the best of our

knowledge, this is the first work to address the challenges in

implementing machine unlearning in SNMs, and proposes a

practical solution.

• This paper introduces innovative strategies for machine

unlearning in SNMs, emphasizing selective retraining,

synaptic pruning, and adaptive thresholding. These methods

enable SNMs to efficiently forget specific information while

maintaining network integrity, a significant advancement in

adapting SNMs to dynamic data environments and enhancing

compliance with data privacy regulations.

• We present experimental validation of the proposed

unlearning methods in SNMs, showcasing their efficiency and

practical applicability. Our experiments demonstrate major

improvements in SNMs’ adaptability and responsiveness to

changing data, underscoring the techniques’ effectiveness in

real-world scenarios and marking a substantial advancement

in the application of SNMs in dynamic learning environments.

2 Related work

2.1 Spiking neuron models

SNMs have garnered significant attention in the fields of

computational neuroscience and artificial intelligence, thanks to

their unique ability to mimic the biological processes of the human

brain (Jose et al., 2014; Fang et al., 2021; Wang et al., 2022;

Lagani et al., 2023). The foundational theories for SNMs originate

from the pioneering work of mathematical descriptions of neural

activity (Hua and Smith, 2004). This work was further advanced

by researchers like Izhikevich, enhancing our understanding of

neural dynamics and spiking behaviors. Studies on neural coding

(Auge et al., 2021), have been crucial in demonstrating how neurons

encode information through temporal patterns, setting the stage for

the development of complex SNM architectures.

The evolution of SNMs has seen a transition from basic

integrate-and-fire models to more sophisticated systems like

the Spike Response Model (SRM) and Spike-Timing-Dependent

Plasticity (STDP) (Ivans et al., 2020; Huyck and Erekpaine,

2022). Researchers like Maass have played a pivotal role in

these developments, improving both the biological realism and

computational power of SNMs (Bohnstingl et al., 2020). Parallel to

these advancements, there has been significant progress in adapting

traditional machine learning algorithms to the temporal dynamics

of SNMs, paving the way for their application in various domains

(Wang et al., 2023; Yan et al., 2023).

SNMs have shown remarkable success in pattern recognition

tasks, as demonstrated by the work of Kasabov and others. Their

efficiency in processing temporal data has led to breakthroughs

in speech and image recognition. The use of SNMs in time-series

analysis and neuromorphic computing, explored by researchers like

Indiveri, highlights their potential in providing energy-efficient and

rapid processing compared to traditional neural networks (Lian

et al., 2023; Lv et al., 2023). However, implementing SNMs at scale

presents challenges, primarily due to their computational demands

(Chen et al., 2023). Recent researches have emphasized the need for

optimization in large-scale SNMnetworks (Lee et al., 2022; Lemaire

et al., 2022). This has prompted the development of specialized

hardware and software platforms, such as IBM’s TrueNorth and

Intel’s Loihi, which are tailored to efficiently simulate the complex

dynamics of SNMs.

2.2 Machine unlearning

Machine unlearning, a relatively new concept in the field

of artificial intelligence, is garnering increasing attention due to

its potential to address data privacy concerns and the need for

adaptable AI systems (Wang et al., 2019; Hu et al., 2022; Chundawat

et al., 2023; Liu et al., 2023; Pan et al., 2023; Qiu et al., 2023; Xu et al.,

2024). This section reviews key research contributions that have

shaped our understanding and approaches to machine unlearning.

The foundational concept of machine unlearning is rooted in

the broader context of data privacy and the right to be forgotten,

as articulated in legislative frameworks like the GDPR. Early

researches in this area introduced the basic principles of machine

unlearning, highlighting its significance in the era of big data and

privacy concerns (Chen et al., 2021; Qu et al., 2023).

One of the pioneering studies in machine unlearning was

conducted by Bourtoule et al. (2021), who introduced the concept

of “machine unlearning” as a process to efficiently remove specific

data from a model’s training set. Their work demonstrated that it is
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possible for machine learning models to forget data in a way that

is verifiable and complies with privacy regulations. Research has

also focused on the technical challenges of implementing machine

unlearning, particularly in complex models (Cao et al., 2018; Zhou

et al., 2022). Ginart et al. (2019) delved into the difficulties of

unlearning in large-scale machine learning models and proposed

methodologies to quantify the effectiveness of unlearning. Their

work laid the groundwork for assessing the impact of unlearning

processes on model performance and integrity. Another significant

contribution is exploring machine unlearning in the context of

deep learning, especially in dynamic neural networks (Ma et al.,

2023). Their research addressed the challenges of unlearning in

neural networks, which are known for their “black box” nature and

complex, layered structures. They proposed methods for selective

data removal that maintains the overall stability and accuracy of

deep learning models (Golatkar et al., 2020; Graves et al., 2021).

Further, studies have explored the practical applications of

machine unlearning in various domains. For instance, a number

of researches examined the application of machine unlearning

in healthcare data analytics, considering the sensitive nature of

medical data and the need for compliance with privacy laws

(Ullah et al., 2021). In addition, machine unlearning has also been

studied in the context of federated learning environments (Golatkar

et al., 2023). Researchers have investigated the implementation of

unlearning in decentralized data settings, where data privacy and

the ability to forget information are crucial (Pan et al., 2023; Zhang

et al., 2023).

3 Preliminaries

In this section we briefly introduce how SNMs work on a

high level. SNMs represent a significant advancement in neural

networks, aiming to more closely emulate the behavior of biological

neurons. Unlike traditional artificial neurons, SNMs use discrete

events or “spikes” to communicate, modeling neural systems in a

way that aligns with biological brain processes. These spikes occur

when a neuron’s membrane potential exceeds a certain threshold,

leading to rapid depolarization and repolarization, a process that

SNMs seek to replicate computationally.

Each neuron in an SNM is characterized by its membrane

potential, v(t), which changes over time. The dynamics of the

membrane potential are described by:

dv(t)

dt
= −

1

τm
v(t)+ I(t) (1)

Here, τm is the membrane time constant, and I(t) represents

the synaptic input to the neuron. Spike generation in SNMs occurs

when the membrane potential v(t) exceeds a threshold vthresh:

if v(t) ≥ vthresh, then a spike is generated (2)

After a spike, the neuron’s membrane potential is reset to vreset:

v(t)← vreset (3)

Synaptic transmission in SNMs involves the interaction

between neurons through synapses. The influence of a synaptic

input on a neuron’s membrane potential is:

Isyn(t) =
∑

j

WijSj(t) (4)

where, Wij denotes the synaptic weight from neuron j to neuron i,

and Sj(t) is neuron j’s spike train.

Spike-Timing-Dependent Plasticity (STDP) is a key learning

mechanism in SNMs, adjusting synaptic weights based on spike

timing:

1Wij =

{

Apose
−1t/τpos if 1t > 0

−Anege
1t/τneg if 1t < 0

(5)

where 1Wij represents the change in synaptic weight, 1t is the

time difference between spikes, and Apos, Aneg, τpos, and τneg are

parameters of the STDP rule. In SNMs, the integration of neuronal

dynamics, spike generation, synaptic transmission, and learning

rules like STDP leads to complex network behaviors, which is

similar to biological neural networks.

4 Methodology

In this section we present the unlearning methodology

for SNMs, which contains three phases, namely Selective

Retraining, Synaptic Pruning, and Adaptive Thresholding. In

particular, Selective Retraining targets and adjusts specific neurons

and synapses responsible for learned information that needs

to be forgotten, ensuring minimal disruption to the overall

network. Synaptic Pruning goes a step further by selectively

weakening or eliminating synaptic connections that have been

strengthened by the unwanted data, effectively erasing its

trace. Adaptive Thresholding complements these methods by

dynamically modifying the firing thresholds of neurons based

on their interaction with the unlearned data, fine-tuning the

network’s overall response. Together, these strategies enable SNMs

to efficiently and precisely forget specific information, crucial

for adapting to changing data environments and maintaining

compliance with data privacy standards.

4.1 Selective retraining

Selective retraining in Spiking Neuron Models (SNMs)

represents a nuanced method for machine unlearning, focusing

on retraining specific segments of the network to selectively forget

certain data. This technique is pivotal for ensuring that unlearning

is precisely targeted, efficient, and minimally disruptive to the

overall learned behaviors of the network.

The initial step in this process is to pinpoint the neurons

and synapses that were instrumental in learning the specific

data intended for unlearning. This identification is conducted by

analyzing the spike trains and synaptic modifications incurred

during the learning phase. For instance, the correlation of the spike

train of neuron i, denoted as Si(t), with the targeted data d for

unlearning is calculated through the integral:

Corri(d) =

∫

Si(t) · d(t) dt (6)
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Neurons showing a high correlation with the data d are

earmarked for retraining. In parallel, synaptic weights that have

significantly altered due to learning d are identified. Representing

the synaptic weight from neuron i to neuron j asWij, and the weight

change attributed to d as 1Wij(d), synapses are selected based on

the extent of this change:

1Wij(d) =W
post
ij −W

pre
ij (7)

Substantial values of 1Wij(d) signify a noteworthy

contribution to learning d.

Once the key neurons and synapses are identified, retraining

involves adjusting these elements using a modified learning rule.

For SNMs employing Spike-Timing-Dependent Plasticity (STDP),

the standard synaptic weight update rule is:

Wnew
ij =Wij + η · STDP(1tij) (8)

where η symbolizes the learning rate. In selective retraining, this

rule is adapted to:

W′ij =Wij − α ·1Wij(d) · κ{i,j∈Selected} (9)

Here, W′ij represents the revised synaptic weight, α is a

retraining factor, and κ{i,j∈Selected} is an indicator function that

activates (1) when both neurons i and j are within the retraining

selection. The retraining factor α is a pivotal element that dictates

the degree of synaptic adjustment, calibrated according to the

required unlearning level.

Following the retraining phase, the network’s performance

is evaluated to confirm the effective erasure of data d. This

evaluation typically includes assessing the network’s reaction to d

and juxtaposing it with the anticipated outcome after unlearning.

Should the network’s response to d closely mirror its state prior to

unlearning, additional retraining iterations may be necessitated.

4.2 Synaptic pruning

The “Synaptic Pruning” phase in the context of machine

unlearning in SNMs is a critical process that involves selectively

deactivating or removing synaptic connections that were

strengthened during the learning of specific data. This

approach aims to erase the neural traces of the data to be

unlearned, contributing significantly to the overall machine

unlearning process.

The first step in synaptic pruning is to evaluate the contribution

of each synapse to the learning of the specific data. This involves

analyzing how synaptic strengths have changed in response to the

data. If Wij represents the weight of the synapse between neuron i

and neuron j, and 1Wij represents the change in synaptic weight

due to learning, the contribution of each synapse can be quantified.

The change in weight is calculated as:

1Wij =W
post
ij −W

pre
ij (10)

Here,W
post
ij andW

pre
ij are the synaptic weights after and before

the learning of the specific data, respectively. A high value of |1Wij|

indicates a significant contribution to the learning process.

Synaptic pruning is performed based on certain criteria,

typically involving the magnitude of synaptic change and its

relevance to the unlearning process. Synapses are selected for

pruning if their change exceeds a predefined threshold, θ , which

is determined based on the unlearning requirements. The pruning

condition can be mathematically defined as:

Pruneij =

{

1 if |1Wij| > θ

0 otherwise
(11)

In this formulation, Pruneij is a binary variable that indicates

whether the synapse between neurons i and j should be pruned.

Once the synapses to be pruned are identified, the synaptic

weights are adjusted accordingly. The pruning process can be

mathematically represented as:

W′ij =Wij · (1− Pruneij) (12)

Here,W′ij is the new synaptic weight after pruning. If a synapse

is selected for pruning (Pruneij = 1), its weight is set to zero,

effectively removing its influence on the network.

The impact of synaptic pruning on the overall functionality

of the SNM is carefully evaluated. This involves assessing the

network’s performance and behavior post-pruning to ensure

that only the targeted data has been unlearned and that the

network’s ability to process other data remains intact. The network’s

response to various inputs is tested, and if necessary, minor

adjustments are made to the pruned synapses to fine-tune the

network’s performance.

Synaptic pruning in the context of SNMs is a nuanced and

critical process that plays a pivotal role in the machine unlearning

mechanism. By selectively weakening or removing synapses that

contribute to the learning of specific data, synaptic pruning

effectively erases the neural representation of that data, aiding in the

overall goal of machine unlearning while preserving the integrity

and functionality of the network.

4.3 Adaptive thresholding

Adaptive thresholding in the context of machine unlearning

in SNMs is a sophisticated mechanism for adjusting neurons’

firing thresholds. This adjustment is based on their activity in

relation to the data targeted for unlearning, ensuring specificity and

effectiveness in the unlearning process.

The principle of adaptive thresholding involves modifying the

firing threshold of a neuron to reduce its response to stimuli linked

with the data to be unlearned. The threshold adjustment for neuron

i is determined by its response to the unlearning stimulus. The

change in the firing threshold, 12i, is formulated as:

12i = −γ
∑

t

(Si(t)− Ŝi(t)) (13)

In this equation, Si(t) represents the actual spike response at

time t, Ŝi(t) is the desired response (often reduced or null in

response to the unlearned data), and γ is a scaling factor for the

threshold adjustment.
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The iterative update of the neuron’s threshold is defined as:

2new
i = 2i +12i (14)

Here, 2new
i becomes the updated threshold after each iteration,

adjusted until the neuron’s response aligns with the desired

unlearning effect.

To enhance the precision of adaptive thresholding, the spike-

timing of the neuron can be incorporated into the threshold

adjustment. This involves considering the temporal pattern of

spikes in relation to the unlearning data. The revised threshold

adjustment can include a term for spike-timing, defined as:

12
timing
i = β

∑

t

(

dSi(t)

dt
−

dŜi(t)

dt

)

, (15)

where β is an additional scaling factor and dSi(t)
dt

represents the rate

of change of the neuron’s spike response.

After updating the firing thresholds, a comprehensive

evaluation of the neuron’s response to various inputs is conducted.

This is to ensure the unlearning process is confined to the targeted

data and does not impair the neuron’s functionality in processing

other data. In addition to individual neuron adjustments, the

collective impact on the network is assessed. Network-wide

simulations are essential to ensure that the adaptive thresholding

of individual neurons does not lead to unintended global changes

in network behavior.

4.4 Unlearning process

Algorithm 1 describes the whole unlearning process of our

proposal. In the first step, neurons and synapses are evaluated

for retraining based on the magnitude of their correlation and

weight changes, respectively, against set thresholds. Weights are

then adjusted according to the learning rate. The second step

involves pruning synapses with non-positive contributions to the

model. Finally, the third step adapts the firing thresholds of neurons

by considering the variance from average spike functions, ensuring

the unlearning process is tailored to the dynamics of the SNM.

5 Experiment

In this section we present our empirical evaluation results of

our proposal.

5.1 Experiment setup

5.1.1 Dataset
We use UCI Human Activity Recognition Dataset (UCI

HAR) and MNIST in our experiments. The UCI Human

Activity Recognition Dataset comprised sensor data collected from

wearable devices, capturing various human activities like walking,

sitting, standing, and running. The data included readings from

accelerometers and gyroscopes, providing multidimensional time-

series data. Each data point in the dataset represented sensor

1: procedure MACHINEUNLEARNING(SNM, dataToUnlearn)

2: Step 1: Selective Retraining

3: for each neuron i in SNM do

4: Calculate correlation: Corri =
∫

Si(t) · d(t) dt

5: if Corri > threshold then

6: Mark neuron i for retraining

7: for each synapse Wij in SNM do

8: Calculate weight change: 1Wij =W
post
ij −W

pre
ij

9: if |1Wij| > threshold then

10: Mark synapse Wij for retraining

11: Update weights: W′ij =Wij − α ·1Wij

12: Step 2: Synaptic Pruning

13: for each synapse Wij in SNM do

14: Calculate contribution: Contributionij

15: if Contributionij > θ then

16: Prune synapse: W′ij = 0

17: Step 3: Adaptive Thresholding

18: for each neuron i in SNM do

19: Calculate threshold change: 12i = −γ
∑

t(Si(t) −

Ŝi(t))

20: Update threshold: 2new
i = 2i +12i

Algorithm 1. Machine unlearning in spiking neuron models.

readings at a particular time instance, making it ideal for evaluating

the SNMs’ capability to process and unlearn temporal patterns.

The MNIST consists of grayscale images of handwritten digits (0

to 9). Each image in the dataset is 28 × 28 pixels, and the task

involves classifying these images into the correct digit category. The

simplicity yet variability of the data make it suitable for testing the

SNMs’ unlearning ability in a visual pattern recognition context.

5.1.2 Network architecture
The network included two hidden layers, each consisting of

200 neurons. These layers were crucial for capturing the non-

linear relationships in the data. The neurons in these layers were

connected in a sparse manner, with a connectivity probability

of around 0.1, to emulate the sparse connectivity observed in

biological neural networks. The output layer’s neuron count was

determined by the specific requirements of the task, such as the

number of classes in a classification task. In our setup, this typically

ranged from 10 to 20 neurons. We employed the Izhikevich neuron

model across all layers. This model is known for its ability to

produce rich firing patterns similar to those observed in real

neurons. The STDP rule was employed to adjust synaptic weights

based on the relative timing of pre- and post-synaptic spikes.

5.1.3 Training methodology
In our experimental setup, the SNMs were initially trained

using a meticulous methodology to ensure robust learning.

Synaptic weights were initialized following a Gaussian distribution

with a mean of 0 and a standard deviation of 0.05, setting the

stage for diverse learning pathways. Training was conducted in

batches, each containing 100 data points, utilizing the STDP rule
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TABLE 1 Sample unlearning performance for UCI HAR.

Metric Baseline Post-
unlearning

Post-
retraining

Accuracy 0.855 0.789 0.807

Precision 0.872 0.796 0.809

Recall 0.860 0.738 0.802

F1-score 0.854 0.779 0.883

Sensitivity 0.842 0.753 0.878

Specificity 0.865 0.757 0.887

ROC AUC 0.844 0.793 0.898

TABLE 2 Sample unlearning performance for MNIST.

Metric Baseline Post-
unlearning

Post-
retraining

Accuracy 0.949 0.939 0.906

Precision 0.964 0.946 0.908

Recall 0.954 0.888 0.902

F1-score 0.949 0.929 0.975

Sensitivity 0.938 0.903 0.970

Specificity 0.958 0.907 0.978

ROC AUC 0.939 0.943 0.988

with a learning rate of 0.01 for synaptic adjustments. Homeostatic

mechanisms were applied to maintain network stability, including

synaptic normalization where weights were scaled to a norm

of 1.0 after each training epoch. Dropout with a rate of 20%

was employed to prevent overfitting. Cross-validation, using a

split of 70% training, 15% validation, and 15% test data, allowed

for effective hyperparameter tuning and performance assessment.

This approach, integrating biologically inspired learning rules

and modern training techniques, was pivotal in achieving a high

degree of learning efficiency in the SNMs before applying the

unlearning strategies.

5.2 Results

In this subsection, we unlearn a special portion of samples in

the dataset. We first introduce the evaluation metrics we used to

evaluate the unlearned model.

• Accuracy: Measures the proportion of correctly classified

instances out of the total instances. It’s a fundamental metric

for assessing the overall effectiveness of the model.

• Precision: Indicates the proportion of correctly identified

positive instances out of all instances that were predicted as

positive.

• Recall: Also known as sensitivity, recall measures the

proportion of actual positive instances that were correctly

identified.

TABLE 3 Class unlearning performance for MNIST.

Metric Baseline Post-
unlearning

Post-
retraining

Accuracy 0.852 0.827 0.776

Precision 0.887 0.796 0.769

Recall 0.827 0.722 0.773

F1-score 0.886 0.797 0.850

Sensitivity 0.871 0.750 0.907

Specificity 0.856 0.720 0.928

ROC AUC 0.863 0.807 0.856

TABLE 4 Class unlearning performance for UCI HAR.

Metric Baseline Post-
unlearning

Post-
retraining

Accuracy 0.691 0.748 0.649

Precision 0.719 0.720 0.643

Recall 0.671 0.653 0.646

F1-score 0.719 0.721 0.711

Sensitivity 0.706 0.678 0.759

Specificity 0.694 0.651 0.776

ROC AUC 0.700 0.730 0.716

• F1-Score: Represents the harmonic mean of precision and

recall. It provides a balance between these twometrics, offering

a single measure of the model’s performance in scenarios

where both false positives and false negatives are crucial.

• Sensitivity: Similar to recall, it measures the true positive rate.

It indicates the model’s ability to correctly predict positive

instances.

• Specificity: Contrary to sensitivity, specificity measures the

true negative rate.

• ROC AUC (Receiver Operating Characteristic Area Under

Curve): This metric provides an aggregate measure of

performance across all possible classification thresholds. It

evaluates the trade-offs between true positive rate (sensitivity)

and false positive rate (1-specificity) across different

thresholds. A higher ROC AUC indicates a better model

performance.

We conduct two types of unlearning, namely Class-wise

Unlearning and Sample-wise Unlearning. For Class-wise

Unlearning, we unlearn a radom class of sample in the whole

training set. For Sample-wise Unlearning, we unlearning 10%

of samples that uniformly distributed to the original dataset.

Tables 1–4 reports the sample-wise unlearning and class-wise

unlearning for UCI HAR and MNIST, respectively.

Drawing upon the observed data from the four tables presented,

we can conclude that machine unlearning has a tangible impact on

model performance across different datasets, with each exhibiting

a unique pattern of performance degradation and recovery

through retraining.
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FIGURE 1

Trade-o� between accuracy loss and percentage of samples unlearned.

For the UCI HAR dataset, the unlearning process led to a

substantial drop in all performance metrics, demonstrating the

effectiveness of the unlearning protocol in diminishing the model’s

accuracy, precision, and other key metrics. Despite this, the

retraining process was able to recuperate a considerable portion of

the performance, although not entirely to baseline levels.

In contrast, the MNIST dataset displayed a more robust

retention of performance post-unlearning, with a less dramatic

reduction in metrics. This indicates a potential dataset-specific

resilience to the unlearning process. Upon retraining, the MNIST

dataset showed a remarkable recovery, with metrics such as the

ROC AUC nearly returning to baseline, highlighting the model’s

ability to relearn effectively after unlearning. Additionally, the class

unlearning performance for MNIST reveals a similar trend where

unlearning affects the metrics significantly, yet retraining assists in

regaining much of the lost performance, albeit with some loss still

evident when compared to the original baseline.

Next, we report the trade-off between accuracy loss and

percentage of samples unlearned in Figure 1. The accuracy loss

increases with the percentage of samples removed, which is an

expected outcome in machine unlearning scenarios. The UCI

HAR dataset, both for sample and class unlearning, shows

a slightly lower rate of accuracy decline compared to the

MNIST dataset, indicating that it may be more resilient to data

removal or that the unlearning process is more effective for

this dataset.

We also report the Membership Inference Attack (MIA)

accuracy of the unlearned SNM model. Specifically, we

infer the unlearned data, to examine if the model still

remember the unlearned dataset. The results is reported in

Tables 5, 6.

The result show imply that, both the MNIST and

UCI HAR datasets have a consistent decline in accuracy,

precision, and recall post-unlearning. The MNIST dataset

exhibits a slight performance drop, whereas the UCI HAR

dataset, despite starting with higher initial performance

metrics, follows a similar downward trend. This underscores

TABLE 5 MIA performance for MNIST dataset.

Setting Accuracy Precision Recall

Initial sample

performance

90% 89% 88%

Post-unlearning

sample

performance

88% 87% 86%

Initial class

performance

87% 86% 85%

Post-unlearning

class performance

85% 84% 83%

TABLE 6 MIA performance for UCI HAR dataset.

Setting Accuracy Precision Recall

Initial sample

performance

95% 94% 93%

Post-unlearning

sample

performance

92% 91% 90%

Initial class

performance

93% 92% 91%

Post-unlearning

class performance

89% 88% 87%

a universal trade-off between data privacy and model

performance across different datasets when applying

unlearning techniques.

6 Conclusion

This paper represents a significant progression in the field of

machine unlearning within biologically inspired neural networks.

Our work demonstrates the practicality of implementing machine
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unlearning in Spiking Neuron Models (SNMs) using a novel

approach that combines selective synaptic retraining, pruning,

and adaptive thresholding. Through extensive experimentation

on diverse datasets, we’ve shown that while unlearning affects

performance metrics like accuracy, precision, and recall, these

impacts can be substantially mitigated through strategic retraining

and threshold adjustments. This research not only deepens

the theoretical understanding of unlearning in complex neural

architectures but also offers a practical framework for real-world

applications, particularly in addressing data privacy and regulatory

compliance, setting the stage for future advancements in neural

network maintenance and adaptability.
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