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Introduction: Enhancing the generalization and reliability of speech recognition

models in the field of air tra�c control (ATC) is a challenging task. This is

due to the limited storage, di�culty in acquisition, and high labeling costs of

ATC speech data, which may result in data sample bias and class imbalance,

leading to uncertainty and inaccuracy in speech recognition results. This study

investigates a method for assessing the quality of ATC speech based on

accents. Di�erent combinations of data quality categories are selected according

to the requirements of di�erent model application scenarios to address the

aforementioned issues e�ectively.

Methods: The impact of accents on the performance of speech recognition

models is analyzed, and a fusion feature phoneme recognition model based on

prior text information is constructed to identify phonemes of speech uttered by

speakers. This model includes an audio encoding module, a prior text encoding

module, a feature fusion module, and fully connected layers. The model takes

speech and its corresponding prior text as input and outputs a predicted

phoneme sequence of the speech. The model recognizes accented speech as

phonemes that do not match the transcribed phoneme sequence of the actual

speech text and quantitatively evaluates the accents in ATC communication by

calculating the di�erences between the recognized phoneme sequence and the

transcribed phoneme sequence of the actual speech text. Additionally, di�erent

levels of accents are input into di�erent types of speech recognition models to

analyze and compare the recognition accuracy of the models.

Result: Experimental results show that, under the same experimental conditions,

the highest impact of di�erent levels of accents on speech recognition accuracy

in ATC communication is 26.37%.

Discussion: This further demonstrates that accents a�ect the accuracy of

speech recognition models in ATC communication and can be considered as

one of the metrics for evaluating the quality of ATC speech.

KEYWORDS

air tra�ccontrol speech, data quality, accent disruption, quantitative speech evaluation,

speech evaluation optimization, speech recognition impact

1 Introduction

Due to the scarcity, difficulty in acquisition, and high cost of labeling of air traffic

control (ATC) speech data in various control scenarios, ATC speech recognition models

are prone to data sample bias and class imbalance issues during model training, directly

affecting the recognition accuracy of speech recognitionmodels. This situationmay further
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lead to incorrect aircraft control decisions made by other ATC

systems that rely on recognizing text as input, posing significant

flight safety risks and potential hazards.

To address these issues, this study delves into data quality and

constructs a comprehensive data ecosystem (Downs et al., 2021).

By using a quantitative approach to quantify accents, the quality

of speech data is calibrated. Subsequently, different strategies for

combining data quality categories are selected according to the

requirements of different model application scenarios, ensuring

that the trained speech recognition models achieve optimal

recognition accuracy. This initiative plays a crucial foundational

role in advancing the integration, application, and decision-making

of civil aviation intelligence, and is expected to promote the civil

aviation air traffic management intelligence to a higher level.

As is well-known, deep learning models are inherently sensitive

to data distribution due to their nature of self-supervised learning

(Pan et al., 2023). However, dealing with incomplete instances is

a common phenomenon when processing real-world datasets (Liu

and Letchmunan, 2024). Typically, to ensure the completeness of

data collection, methods such as fuzzy clustering, interpolation,

multisensory information fusion, and similarity measurement are

employed during data preprocessing to fill in missing data and

improve the performance of machine learning (Choudhury and

Pal, 2022; Liu, 2023, 2024). However, in some special fields,

simulating missing data can become exceptionally cumbersome,

or the supplemented missing data may differ significantly from

real data. Therefore, the approach adopted in this paper is to fully

leverage the value of the collected real data and deeply explore

its data worth, avoiding the complexity of simulating missing

data while ensuring the authenticity of the entire dataset and

avoiding the use of synthetic data. Currently, there are two main

methods for speech quality assessment. One is non-intrusive black-

box models, such as Mean Opinion Score (MOS) (International

Telecommunication Union, 1996), which are artificial fuzzy

speech quality evaluation methods. According to the International

Civil Aviation Organization (ICAO) English Language Proficiency

Standard (ICAO Annex 1, Personnel Licensing), the MOS

evaluation specification for ATC speech quality is shown in

Table 1, which classifies the ATC speech quality into levels 1 to

5. Level 5 is the best quality. Although they can assess speech

quality, they cannot deeply understand the internal logic of speech

Abbreviations: ATC, Air Tra�c Control; MOS, Mean Opinion Score; PESQ,

Perceptual Evaluation of Speech Quality; ICAO, International Civil Aviation

Organization; GOP, Goodness of Pronunciation; HMM, Hidden Markov

Model; GMM, Gaussian Mixture Model; MFCC, Mel Frequency Cepstral

Coe�cient; FBANK, Filter Bank Cepstral Coe�cient; ASR, Automatic

Speech Recognition; CAPT, Computer Assisted Pronunciation Training; Bi-

LSTM, Bidirectional Long Short-term Memory; CNN, Convolutional Neural

Network; RNN, Recurrent Neural Network; BERT, Bidirectional Encoder

Representations from Transformers; CAAC, Civil Aviation Administration

of China; MFA, Montreal Forced Aligner; WER_Phoneme_ASR, Phoneme

Recognition Model Error Rate; WER_Accent, The Degree of Accent in ATC

Speech; WER_ATC_ASR, ASR Model Error Rate; Phoneme_Edit_Distance, The

Minimum Edit Distance between Phoneme Sequences, i.e. The Degree

of Accent in ATC Speech; ASR_Edit_Distance, The Minimum Edit Distance

between Texts, i.e. The ASR Model Error Rate.

quality evaluation within the model. Another method is to use

the Perceptual Evaluation of Speech Quality (PESQ) algorithm

(International Telecommunication Union, 2001), but it requires

standard pronunciation samples as references, making it difficult

to deploy and unsuitable for complex and variable scenarios.

1.1 Background of the proposed ATC
speech accent evaluation metric

The differences between ATC speech and everyday

conversation speech lie in their rapid pace, unique pronunciation

rules, complex noise background, and the phenomenon of

multilingual switching and accents. In the actual air traffic

control communication process, although the ICAO in the

“Manual on the Implementation of ICAO Language Proficiency

Requirements” (International Civil Aviation Organization, 2009)

stipulates that civil aviation frontline workers must have a language

proficiency of at least level four. That is, they must maintain a

standard pronunciation while working, which does not affect the

understanding of semantic content. However, everyone has an

accent, and the reason for the accent is shown in Figure 1, which is

only avoided in the frontline work of civil aviation, so the degree of

accent is slightly weak, called “micro-accent phenomenon”.

As shown in the Table 2, accents may lead to distortion

of speech signals, making it difficult for conventional speech

recognition models to accurately match accent variants, involving

multiple aspects such as acoustic models, language models, and

encoder-decoders, thereby affecting the performance of speech

recognition models. The ATC speech recognition model is required

as an intelligent application to assist in improving efficiency in

intelligent civil aviation. Although it wants to try its best to mimic

the human mind to achieve a specific intelligent task, it is still

essentially a class of machine learningmodels, and their recognition

accuracy in practice may be affected if the various accents and

speech variants are not covered in their previous cognitive learning.

Because of this, the preprocessing of speech data quality assessment

in speech recognition models is very important, making full use

of the existing historical data to evaluate the data quality, so that

the training and testing sets of speech recognition models are

distributed evenly, and the various accents and speech variants

are covered extremely well, so as to improve the recognition

performance of the models.

1.2 Related work

ATC speech accent assessment, essentially accent

pronunciation segment perception, detects the phonemes in

the speaker’s speech, and compares the detected speech phonemes

with the phoneme sequences transcribed from the speech text.

If the comparison results are consistent, the pronunciation is

standard; if they are not, an accent is present. As shown in

Table 3, the methods for evaluating speech quality are evolving

from traditional techniques to deep learning, with continuous

refinement and improvement. In earlier phoneme detection

methods, scholars used an “acoustic + anatomical” mechanism
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TABLE 1 The MOS evaluation specification for ATC speech quality (Levels 1–5, Level 5 is the best quality).

Level Evaluation standards

1 Standard ATC communication have less content coverage; too fast or too slow speech; complex grammatical structures

and sentence patterns; pronunciation, stress, rhythm and intonation influenced by first language or regional variations;

speech containing words that can mislead semantic understanding; Higher interference from electromagnetism, ambient

noise, etc;

2 Standard ATC communication have limited coverage and are spoken too fast or too slow, with a small amount of natural

language and complex grammatical structures and sentence patterns; pronunciation, stress, rhythm, and intonation rarely

interfere with the course of the communication, although they are affected by first-language or regional variations; and

there are isolated instances of speech that mislead semantic comprehension of vocabulary;

3 Standard ATC communication coverage meets general requirements with normal speech rate and regular air traffic

control content; communication system speech signals occasionally stutter;

4 Standard ATC communication cover a wide range of basic grammatical structures and sentence patterns; normal speed of

speech, fluent speech, with isolated misdirected semantic comprehension of vocabulary;

5 Standard ATC communication cover a wide range of topics, with structured speech content, fluent speech, and no speech

that would mislead semantic understanding.

FIGURE 1

Causes of the micro-accent phenomenon.

TABLE 2 The impact of accents on di�erent speech recognition models.

Model classification Model characteristics Models composition Impacts

Traditional speech

recognition models

Training and optimizing the acoustic

model and language model separately

Acoustical model Changes in acoustic features

Language model Lead to changes in vocabulary usage and order, making it

more challenging for language models to understand.

End-to-end speech

recognition models

From acoustic features to integrated text Encoder-decoder The degradation of speech recognition generalization and

adaptability

to map the target phonemes to corresponding phonetic features

in speech. This involves assessing the size/shape of the resonator

and considering whether there are obstacles to articulation,

and ultimately identifying specific phonemes (Tepperman and

Narayanan, 2008). Although this method is relatively high in

accuracy, it is overly dependent on the expertise reserves of

domain experts, and the research base is too high, which limits

its wide application. With the development of machine learning

and deep learning technology, a series of mutually integrated and

optimized Goodness of Pronunciation (GOP) models based on

Hidden Markov Model (HMM) and Gaussian Mixture Model

(GMM) have come into view (Witt, 2000; Kanters et al., 2009;

Sudhakara et al., 2019). These models are usually structured in two

parts, the first phase is acoustic feature extraction as input to the

algorithm, the second phase is the calculation of the probability of

occurrence of each phoneme in each time frame (i.e., a posteriori

probability) on a given sequence of acoustic feature observations,

and the likelihood of comparing the sequence of phonemes from

a real text transcription with the posterior probability as an

assessment of the goodness of pronunciation (Huang et al., 2017).

However, most of the improved models of such methods focus

on the optimization of the a posteriori probability calculation

method in the second stage, which has great limitations and

only focuses on the processing of speech acoustic features, which

cannot cover the comprehensive information of speech well, and

will miss the important speech information such as frequency,
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TABLE 3 Evolution of speech quality evaluate methods: from traditional to deep learning.

Classification of methods Methodological
characteristics

Advantages disadvantages

Traditional non-deep learning methods Adoption of the “Acoustic+
Anatomical” mechanism

Relatively high precision;

Highly interpretable

Over-reliance on expertise and

high research base; Limits wide

range of applications.

Traditional machine learning methods Staged and able to adjust errors in a

timely manner

Staged assessment with low error Inability to fully cover speech

information

Deep Learning

Methods

Based on speech signal

processing

Introduction of more

comprehensive speech information

features

More comprehensive speech

information

Standard pronunciation control

samples are required, which is

limiting

Based on speech recognition

models

Converting speech signals to text

and then to phonemes

Extracting phonemes directly

from speech

Introduce errors into the automatic

speech recognition model and

continue to accumulate

intonation, and rhythm of speech. As the development of deep

learning models becomes more and more mature, people begin

to introduce more comprehensive speech information features,

such as Mel-frequency cepstral coefficient (MFCC) and filter bank

cepstral coefficient (FBANK). The PESQ algorithm is used to

compare the difference between the speech signal and the reference

speech signal to make an objective evaluation of speech quality

(Lee and Glass, 2012; Lee et al., 2013, 2016), but the algorithm

requires standard pronunciation samples as a control, which leads

to limitations in land and air call recognition. It is only suitable

for the evaluation of speech pronunciation quality with fixed text

content, and it is more difficult to be deployed for the complex

and changing control scenarios and the unfixed text content of

control instructions in air traffic control. In addition, there are

researchers who indirectly identify phonemes with the help of

speech recognition models by recognizing speech signals as text,

and text is converted into corresponding phonemes (Chan et al.,

2015; Chorowski et al., 2015; Watanabe et al., 2017), but this

approach may introduce the continuous accumulation of errors in

the automatic speech recognition (ASR) model, which affects the

correctness and reliability.

Therefore, this paper integrates the multiple advantages of

the above methods and establishes a phoneme recognition model

based on the fusion of speech and sentence a priori textual

features by using the mutual integration of deep neural networks

and information theory. The introduction of contextual context

and attention mechanism makes it possible to capture speech

information more comprehensively, thus improving the accuracy

of the phoneme recognition model. The main purpose of this paper

is to propose an objective quantitative metric for analyzing the

quality of ATC speech—accent. The aim is to elucidate whether

ATC speech classified according to this metric has an impact on

the performance of speech recognition models and the relationship

between the interactions.

1.3 Structure of the paper

This paper is divided into five parts: the first chapter describes

the background, reasons, and relevant arguments for using “accent”

as an evaluation metric for ATC speech quality. In this way,

it explains the necessity of accent evaluation and analyses and

summarizes the research methods used and challenges faced by

other experts and scholars. In Chapter 2, the technical methodology

and model used to adopt ’accent’ as an evaluation metric of ATC

speech quality are described. Chapter 3 details the experimental

processes and results. In Chapter 4, the ATC speech data evaluated

based on the above evaluationmethods will be applied to the speech

recognition model, using correlation coefficients and comparison

experiments to verify the validity of the effect of different

ATC speech accent levels on the recognition results. Chapter 5

summarizes the main contents of the whole paper and explains the

application value and significance of the research results.

2 Technical methods and modeling

2.1 Technical route analysis

In this paper, we are inspired by the Computer Assisted

Pronunciation Training (CAPT) research method (Feng

et al., 2020), which adopts the training method of one speech

corresponding to multiple texts, and locates the mispronounced

pronunciation segments by introducing multiple different texts

corresponding to the same speech. While the purpose of this study

is to detect the presence of accents, which also belongs to a kind of

pronunciation error, but unlike the CAPT method it is difficult to

artificially annotate the sequence of ATC speech phonemes, and the

experimental conditions we already have can only be to annotate

the correct text it corresponds to. Therefore, we adopt the training

method of multiple speech corresponding to one text, so that one

text corresponds to multiple different speech, so that the model can

be better generalized to the pronunciation characteristics of ATC

speech, and improve the accuracy of the prediction of the phoneme

recognition model.

Therefore, the technical route designed in this paper is shown

in Figure 2, which uses a publicly available standard acoustic-

phoneme database defaulting to its non-accented dataset, to build a

standard speech phoneme database and use it as a training set, and

secondly, the training set and incorporate a certain amount of ATC

speech data, so as to make the model adapt to the pronunciation

characteristics of ATC. The phoneme recognition model is trained

using the assembled pronunciation data, and different speech

features are mapped to the corresponding phonemes. The speech to
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FIGURE 2

Overall research ideas and technical routes.

be tested is passed through the trained phoneme recognition model

to predict the sequence of phonemes contained in the speech to

be tested, and then this sequence is compared with the sequence

of phonemes corresponding to the correct text transcribed from

the speech to be tested. If an accent is present in the speech to

be tested, the model may recognize the speech segment as other

phoneme variants. Therefore, the recognized phoneme sequences

are compared with the phoneme sequences transcribed from the

speech text, and where there are differences, it is assumed that an

accent fragment is present.

2.2 Model architecture

The overall architecture of the model consists of an audio

coding module, a priori text coding module, a feature fusion

module, and a full connectivity layer, as shown in Figure 3. The

input of the model is the speech and the corresponding a priori text,

and the output is the phoneme sequence of the speech.

The total number of frames of the whole speech is T, the speech

feature vector X = [x1;x2;...;xt;...;xT], where xt represents the

feature vector of the speech at the t-th frame. The audio encoding

module consists of two two-dimensional (2D) convolutional layers

and four bidirectional long short-term memory (Bi-LSTM) layers.

Batch normalization is applied to the input of each bidirectional

LSTM to mitigate the vanishing gradient problem, accelerate

convergence, and enhance the model’s robustness. The specific

formula for batch normalization is shown in Equation (1).

x̂
(t)
k

= x
(t)
k

− E[xk]√
Var[xk]

(1)

x
(t)
k represents the observed value of the k-th dimension of the

t-th frame’s speech feature vector. x̂
(t)
k represents observations after

batch normalization. E[xk] is the mean of the eigenvalues of all

samples in the current batch on that dimension.
√
Var[xk] is the

variance of the eigenvalues of all samples in the current batch on

that dimension.

Speech data possesses strong temporal characteristics and rich

time-frequency information. Introducing Bi-LSTM into the audio

encoding module allows for comprehensive coverage of speech

information. As shown in Figure 4, it illustrates a diagram of an

LSTM structure. Bi-LSTM propagates information in both forward

and backward directions, considering past and future information

simultaneously, resulting in more accurate feature extraction of

audio data. Bi-LSTM utilizes internal gating mechanisms to finely

control the flow of information. The role of the forget gate is

to enable the network to maintain appropriate memory between

different speech segments, facilitating a better understanding

of long-term speech patterns. Meanwhile, the input gate is

responsible for dynamically incorporating new input information

and updating the cell state. These intricate designs enhance Bi-

LSTM’s performance in modeling temporal information. The input

speech features are passed through the audio coding module to

obtain the output feature sequence denoted as Encoder Query,

which is subsequently used for the computation of the attention

vector and the feature fusion operation. The calculation of

Encoder Query is shown in Equation (2).

Encoder Query= CNN − RNN (X) (2)

The a priori text encoder corresponding to speech uses the

Bidirectional Encoder Representations from Transformers (BERT)

model, which is a bidirectional Transformer encoder capable of

efficiently extracting features of the input text from both directions.

The text encoder input is the sequence P = [p
1
,...,pn,...,pN ] of
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FIGURE 3

Structure of the phoneme recognition model.

phonemes corresponding to the a priori text, pn is the phoneme

at the n-th position, and the length of the phoneme sequence is N.

The output sequence features of the phoneme sequence P

after BERT coding are used as sequence K and sequence V,

respectively, where K = V , and are input to Mlti− attention

together with Encoder Query. The purpose of the multi-head

attention mechanism calculation is to assist the training of the

audio coding module to accelerate the alignment and improve the

accuracy, which is shown in Equations (3)–(5).

attention (Q,K,V) = softmax

(

QKT

√
dK

)

V (3)

Multi−Head (Q,K,V) = concat
(

head1,head2,. . .,headh
)

W0

(4)

headi = attention
(

QWQ
i ,KW

K
i ,VW

V
i

)

(5)

The features produced by each attention head are weighted and

summed to form a new feature vector, denoted as context vector.

The previous acoustic features are used to make acoustic residuals

to reduce the model error. A beam search is performed to predict

the phoneme sequence P
′ = [p

′
1
,...,p

′
n,...,p

′
N ]. The results predicted

for each frame phoneme are shown in Equation (6).

p
′
t = softmax

(

W (contextvector⊕Q)+b
)

(6)

In this equation,⊕ represents the concatenation of two vectors,

and p
′
t represents the predicted phoneme for the t-th frame.

3 Experimental results and validation

3.1 ATC Speech data collection

This experiment focuses on evaluating the degree of accent

in ATC speech, and observing and measuring the effect of ATC
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FIGURE 4

A diagram of an LSTM structure.

speech with different degrees of accent on the recognition accuracy

performance of speech recognitionmodels. According to a research

study (Jahchan et al., 2021), multi-language inter-switching tends

to produce more pronounced accents than geographic switching,

and individual languages have their own pronunciation habits. For

example, civil aviation pilots in various countries are generally

familiar with the English pronunciation of the destination country

in advance before executing international flights, so that they

can quickly make corresponding feedback in the first time after

receiving the speech control instructions to ensure the absolute

safety of aviation operations (Romero-Rivas et al., 2015).

Therefore, the dataset used for model pre-training consists

of the TIMIT database (Garofolo, 1993), which is an acoustic-

phoneme continuous speech corpus created by Texas Instruments

and Massachusetts Institute of Technology. The TIMIT dataset has

a speech sampling frequency of 16 kHz and contains a total of 6,300

sentences, all of which are manually segmented and labeled at the

phone level. This paper focuses on accents caused by multilingual

switching in different national contexts, so the TIMIT dataset, with

its distinctive feature of phone level labeling for each speech sample,

is ideal for setting up a standard pronunciation database.

To ensure the professionalism of the data, our study covers

20,000 pieces of ATC speech data, of which 15,000 are from

the first-line approach control recordings of the East China Air

Traffic Control Bureau of the Civil Aviation Administration of

China (CAAC), and the other 5,000 are from the recordings on

the control simulators, with a total length of about 30 h. The

5,000 on-simulator recordings were collected for the purpose of

model training for the adaptation of pronunciation characteristics

of ATC speech, so we purposely looked for experienced controllers

to avoid accents when collecting this part of the data. Notably,

we use these 5,000 control simulator recordings as the standard

pronunciation to ensure high accuracy of the trained speech model.

Finally, a batch of the first-line approach control recordings was

selected from the dataset for phoneme sequence recognition by

the phoneme recognition model, so as to calculate the degree of

accent of the speech data. In the experiments, the speech data were

classified into different accent levels according to the distribution

of the accent degree of the speech data. In addition, in order

to observe the influence of different ATC speech accent degrees

on the correct rate of speech recognition model recognition, this

paper also adds two speech recognition models for comparative

verification experiments (PPASR ASR model and Wishper ASR

model, respectively), and the two speech recognition models used

still pick the same ATC speech data from them for fine-tuning

training, and then analyze the relationship between the influence

of ATC speech accents on the recognition accuracy of speech

recognition model performance.

The experiments were conducted on a Linux operating system

with the following computer configuration: an Intel Core i5-8400

processor, 56G of running memory, an NVIDIA RTX4090 24G

graphics card, a 250 GB solid-state drive, and a 3.6 TB hard disk

drive Speech feature extraction was performed using the Kaldi

toolkit (Povey et al., 2011) to extract high-quality acoustic features

from the raw speech signal for the flow of information between

modules in the subsequent model.

3.2 Speech data preprocessing

The Montreal Forced Aligner (MFA) phoneme alignment

toolkit (McAuliffe et al., 2017) is used to align the speech

segments in speech data with their corresponding text, generating

“.TextGrid” files. These files contain time markers at the phoneme

level and provide information about their positions within the

speech. Additionally, the aligning results can be visualized using

Praat software (Styler, 2013), as shown in Figure 5, facilitating

subsequent speech processing tasks.

3.3 Phoneme recognition model training
results

The details of the architecture are shown in Table 4. The

phoneme sequence prediction (decoding) performance is evaluated

using the decoder.wer() function, which calculates the word error

rate (WER_Phoneme_ASR) between the output of the phoneme

recognition system and the real text phoneme sequence, as

shown in Equation (7). That is, how many insertion, deletion

and substitution operations need to be performed to convert

the phoneme sequence output by the model to the original text

phoneme sequence. The lower the value of _Phoneme_ASR, the

better it is, indicating the better phoneme sequence recognition

performance of the model.

WER_Phoneme_ASR= S+D+I
N

(7)

Where S denotes the number of substitutions, D denotes the

number of deletions, I denotes the number of insertions, and

N denotes the number of real text phoneme sequences. After

testing of the model, according to the statistical analysis results

the phoneme recognition error rate (WER_Phoneme_ASR) of the

model is 15.65%. The model training process is shown in Figure 6.

In Figure 6, the vertical axes reflect the strengths and weaknesses

of the model performance. The left and right vertical axes are
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FIGURE 5

Data preprocessing process diagram (Control instructions: push back and start up ap-proved runway one eight left NOVEMBER five eight eight PAPA

XRAY).

TABLE 4 Details of architecture.

Model structure Input size Output size Parameter setup

Conv2D 1 (32, 80) (32, 40) kernel_size= (3, 3), stride= (1, 2), padding= (1, 1)

Conv2D 2 (32, 40) (32, 20) kernel_size= (3, 3), stride= (2, 2), padding= (1, 1)

LSTM (32, 20,1) (32, 768) hidden_size= 384, bidirectional= True

Bert embedding (32, 50) (32, 50, 768) Batch_size= 32, Max_length= 50

Multi-head attention (32, 20, 768), (32, 50, 768) (32, 768) num_heads= 12, in_features= 768, out_features= 768

Concat (32, 768), (32, 768) (32, 1536) dimension=−1

Linear layer (32, 1536) (32, 39) Num_class= 39

mainly different in the unit of measurement, and the Loss value

is a continuous, scalar value that measures the difference between

the model’s predicted value and the true value. A smaller Loss

value indicates better model performance. WER_Phoneme_ASR

is a discrete percentage indicating the percentage of difference

between the predicted and true values of themodel used as ametric.

3.4 ATC speech accent level classification

The overall framework designed in this paper is aimed at

assessing the impact of accent on the performance of a speech

recognition model for ATC speech. When the recognized

phonemes in the test speech differ from the phonemes

corresponding to the real speech text transcription, it indicates an

acoustic difference between the pronunciation of the phoneme

and the standard pronunciation, resulting in a slight accent

phenomenon. We measure the degree of accent in the speech

by evaluating the difference between the phoneme recognition

sequence of the test audio and the real sequence (i.e., the phoneme

recognition error rate). The error rate computed here is for the

recognized and true phoneme sequences of the speech to be tested,

i.e., it is the computed measure of the degree of accent of the

ATC speech as proposed in this paper, denoted by WER_Accent.

The principle of calculating WER_Accent is consistent with

Equation (7), but due to the characteristics of ATC speech itself,

such as fast speech speed and noise interference, there are some

overly distorted results in the experimental results, and the number

of phonemes recognized by the phoneme recognition model is

more than that transcribed from the original text, resulting in

WER_Accent being greater than one. WER_Accent is not limited

to the value range of 0 to 1 as people usually understand, and there

is no upper limit to the value range of WER_Accent. For example,

it cannot be simply said that a WER_Accent value of 0.8 indicates

a large degree of accent, but it should be understood that the larger

the WER_Accent, the larger the degree of accent. However, the

relatively small number of such phenomena is related to noise

interference and distortion in ATC speech, as well as the data

enhancement algorithms of the phoneme recognition model that

need to be improved.
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FIGURE 6

Visual monitoring of the training process.

Another batch of speeches from the first-line approach control

recordings was selected as test data and calculated speech accent

degree distribution. According to the calculated speech accent

degree distribution, the overall results show a trend of skewed

distribution, as shown in Figure 7. Therefore, we artificially divided

the ATC speech data tested in the experiment into three different

levels based on the quartiles of the speech accent degree data

distribution, corresponding to the three accent degree levels of

Strong, Medium and Weak, as shown in Table 5. This division

allows us to understand the differences in ATC speech accents more

clearly and provides a more informative guide for further analyses

and applications.

The ATC speech data tested in this experiment had a

significantly skewed right-normal distribution of the degree of

accent, with a skewness of 0.7529. The horizontal axis denotes the

degree of ATC speech accent, and the vertical axis denotes the

number of speech samples at the corresponding degree.

4 Experimental impact of di�erent
levels of ATC speech accent on speech
recognition model accuracy

4.1 Speech recognition model accuracy
impact evaluation metric

Speech data with different ATC speech accent degree levels were

input into different types of ATC speech recognition models to

observe their effects on the recognition accuracy of the models.

The speech recognition models used in the experiments are

Whisper pre-training model, an automatic speech recognition

model developed by OpenAI (Radford et al., 2023), and PPASR

pre-training model, a speech recognition model developed by

Baidu (Zhang et al., 2022), which are publicly available on the

web. Both pre-training models were fine-tuned using the same

ATC speech dataset in advance before the start of the impact

experiments in order to better adapt them to the pronunciation

characteristics of ATC speech. Both speech recognition models

use the same experimental environment, the same training dataset

and test dataset. Although the pre-trained models were publicly

downloaded from the web, we chose to pre-train based on the same

publicly available dataset. Both pre-trainingmodels were fine-tuned

using the same ATC speech dataset in advance before the start

of the impact experiments in order to better adapt them to the

pronunciation characteristics of ATC speech.

The recognition accuracy of each speech recognition model is

also calculated using the same principle as in Equation (7), i.e., how

many insertion, deletion, and substitution operations need to be

performed in order to convert the recognized text output from the

model to the original text. The error rate (WER_ATC_ASR) of the

ATC speech recognition model calculated here is for the degree

of difference between the recognized text and the real text, and

the value of (1-WER_ATC_ASR) is used as the accuracy rate of

the speech recognition model. After fine-tuning the training, the

recognition accuracy of theWhisper-based ATC speech recognition

model is 95.07%, and the recognition accuracy of the PPASR-based

ATC speech recognition model is 77.21%.

In the process of calculating the correlation between the degree

of ATC speech accent and the recognition accuracy of each speech

recognition model, since the degree of ATC speech accent is

calculated for the degree of difference between the recognized

phoneme sequences of the speech to be tested and the real phoneme

sequences, the recognition accuracy of the speech recognition

model is aimed at the degree of difference between the recognized

text and the real text, and also calculates the degree of difference

between the two sequences.

Therefore, in order to unify the quantitative metrics, we

adopt the minimum edit distance to analyze ATC speech accents

and the recognition accuracy of each speech recognition model,

which are denoted by the symbols Phoneme_Edit_Distance and

ASR_Edit_Distance, respectively. The minimum edit distance is

calculated by finding the minimum number of edits required to

convert one sequence to another; these edit operations include

inserting, deleting, and replacing characters. Minimum edit
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FIGURE 7

Distribution of degree of ATC speech accent.

TABLE 5 ATC speech accent level classification and description.

Level Range

Weak [0.576, 0.828)

Medium [0.828, 0.872)

Strong [0.872, 1.25)

distance is usually unitless, as it indicates the number of edit

operations without involving actual physical or time units. Lower

values indicate that the two sequences are more similar; higher

values indicate that the two sequences are less similar. Therefore,

the larger the edit distance (Phoneme_Edit_Distance ) between the

recognized phoneme sequence and the real phoneme sequence of

the audio to be tested, the greater the degree of ATC speech accent;

the larger the edit distance (ASR_Edit_Distance ) between the

text recognized by the speech recognition model and the real text,

the worse the recognition accuracy. The edit distance calculation

formula is shown in Equation (8).

D
(

i,j
)

=min











D
(

i− 1,j
)

+1
(

Deletion
)

D
(

i,j− 1
)

+1 (Insertion)

D
(

i− 1,j− 1
)

+Cost
(

Si,Tj

) (

Substitution
)

(8)

Where D(i,j) denotes the minimum distance required to

convert the recognized phoneme sequence S(1:i) to the real

phoneme sequence T(1:j) and Cost(Si,Tj) is the cost of the

substitution, which is 0 if Si = Tj and 1 otherwise.

4.2 Minimum edit distance per speech in
di�erent speech recognition models

For experimental validation, we individually selected 1,000

ATC speech from the collected ATC speech corpus as a test set. As

shown in Figure 8, the horizontal axis represents the identifier for

each speech, such as Speech 1, Speech 2, and so on. The vertical

axis corresponds to the minimum edit distance of each speech in

the speech recognition model. When confronted with speech data

with accents, the minimum edit distance of the Whisper model

under each speech is significantly smaller than the performance

of the PPASR model. As shown in Figure 9, the minimum edit

distance of theWhisper model is also significantly smaller than that

of the PPASR model as the degree of accent of the speech on the

horizontal axis changes.

In summary, the Whisper-based ATC speech recognition

model exhibits higher recognition accuracy than the PPASR-based

ATC speech recognition model when faced with ATC speech

data of the same accent degree. Similar to the performance of

the experimental results in the paper (Radford et al., 2023): the

generalization of Whisper as a speech pre-trained large model is

better than some company models.

4.3 Correlation analysis between ATC
speech accents and speech recognition
model accuracy

As shown in Table 6, the correlation between ATC speech

accents and the recognition accuracy of two distinct speech

recognition model is represented by calculating the Pearson

correlation coefficients of Phoneme_Edit_Distance and

ASR_Edit_Distance.
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FIGURE 8

Minimum edit distance for various ATC speech recognition models.

TABLE 6 The correlation coe�cients between di�erent degree of accent in ATC speech and the edit distance of various speech recognition models.

Level Range Correlation coe�cient

Phoneme_Edit_Distance:
Wishper_Edit_Distance

Phoneme_Edit_Distance:
PPASR_Edit_Distance

Weak [0.576, 0.828) 0.02 0.104

Medium [0.828, 0.872) 0.1498 0.2637

Strong [0.872, 1.25) 0.0989 0.2573

According to Table 6, it can be seen that for the Whisper-

based ATC speech recognition model, the recognition accuracy

of the speech recognition model shows a decreasing trend with

the deepening of the degree of accent of the speech data,

but the correlation is not large; for the PPASR-based ATC

speech recognition model, the recognition accuracy of the speech

recognition model shows a significant decreasing trend with the

deepening of the degree of accent of the speech data, which is

slightly larger than the correlation of the Whisper-based ATC

speech recognition model.

Therefore, in summary, the accent degree of the ATC speech

data used in this experiment can be classified into three levels:

strong, medium and weak. Various levels of ATC speech data is

input into the ATC speech recognition model based on Wishper

and PPASR for speech recognition, and it is found that the

recognition accuracy of the speech recognition model decreases

with the increase of the accent degree of the speech data. The

Wishper-based ATC speech recognition model has a certain

correlation with the trend of ATC speech accent level, but the

correlation is not as strong as that of the PPASR-based ATC speech

recognition model.

Because the two speech recognition models used in this

paper are pre-trained models based on the same pre-training set

downloaded directly from the web publicly, they are only fine-

tuned with the ATC speech data. Therefore, based on the results

of this experiment, it can be concluded that the Wishper-based

ATC speech recognition model is more robust than the PPASR-

based ATC speech recognition model, and is better able to face the

challenge of speech containing accent interference. This work also

in turn shows in depth that datasets with different accent degree can

test the recognition performance of different speech recognition

systems or models under accent interference.

Therefore, the experiment designed in this chapter on the

effect of different accent degree levels on speech recognition

accuracy verifies that different ATC speech accent degree affects

the recognition accuracy of ATC speech recognition models, and

suggests that accent should be used as one of the metrics for

evaluating the quality of ATC speech.
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FIGURE 9

Comparison of various speech recognition model accuracy performance by ATC speech accent levels. (A) Comparison of model accuracy

performance for weak ATC speech accent level. (B) Comparison of model accuracy performance for medium ATC speech accent level. (C)

Com-parison of model accuracy performance for strong ATC speech accent level.
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5 Conclusion

The traditional speech recognition model development is to

distribute all the datasets directly according to a certain ratio

without distinguishing the quality of the datasets, which is more

random. In future scenarios for the development and testing of

ATC speech recognition models, it is essential to introduce data

quality assessment methods and adjust dataset allocation in order

to effectively address challenges such as the insufficient amount

of speech data and difficulties in data acquisition. This approach

aims to solve the problem of inadequate model performance caused

by uneven data distribution. Specifically, the overall dataset is

first divided into levels according to the degree of data quality,

and then the appropriate amount of data is selected from various

ATC quality to be combined according to the actual application

requirements. This approach can manage the data set in a more

refined way to ensure the quality and applicability of the data. At

the same time, it can provide the required data in a timely manner

according to the application requirements, providing strong data

support for application performance assurance and testing.

In this study, we have used the mutual integration of deep

neural networks and information theory to analyze the effect of

accent on the performance of speech recognition models, and

constructed an accent phenomenon detection method based on air

traffic control speech through deep neural networks. Specifically:

(1) A phoneme recognition model that collocates speech features

and sentence a priori text features is built. When the speech

to be tested contains an accent, the phoneme recognition

model may identify it as a phoneme that does not match

the actual phoneme. Therefore, we can assess the degree

of speech accent by comparing the differences between the

recognized phonemes and the phonemes in the a priori textual

transcription of the speech, which enables the quantification of

the degree of accent;

(2) In addition to the existing open-source TIMIT data, the data

used in this paper are the first-line approach control recordings

from the East China Air Traffic Control Bureau of CAAC,

which are used as the ATC data set for the experiments, so as

to ensure the professionalism of the data;

(3) Using correlation coefficients and comparative experiments,

we analyze and compare the accuracy of speech recognition by

putting the speech data of various accent degrees into different

speech recognition models to analyze the influence of ATC

speech accents on the correct recognition rate of the speech

recognition models. The speech recognition models used in

the experiments areWhisper pre-training model, an automatic

speech recognition model developed by OpenAI, and PPASR

pre-training model, a speech recognition model developed by

Baidu, which are publicly available on the web. Both pre-

training models were fine-tuned using the same ATC speech

dataset in advance before the start of the impact experiments in

order to better adapt them to the pronunciation characteristics

of ATC speech.

Therefore, it is shown that, in order to evaluate the quality of

ATC speech data more scientifically and finely, the accent can be

used as one of the metrics for evaluating the quality of ATC speech.

The proposed accent-based speech quality evaluation method, in

contrast to the existing manual fuzzy speech quality assessment

method, not only reduces human and material resources, but also

avoids being susceptible to the influence of subjective factors and

individual differences of the evaluator. This greatly improves the

objectivity of the evaluation results and the logic of the illustrated

speech quality evaluation.
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