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Hubei, China

Introduction: An accurate inverse dynamics model of manipulators can

be e�ectively learned using neural networks. However, further research is

required to investigate the impact of spatiotemporal variations in manipulator

motion sequences on network learning. In this work, the Velocity Aware

Spatial-Temporal Attention Residual LSTM neural network (VA-STA-ResLSTM)

is proposed to learn a more accurate inverse dynamics model, which uses

a velocity-aware spatial-temporal attention mechanism to extract dynamic

spatiotemporal features selectively from the motion sequence of the serial

manipulator.

Methods: The multi-layer perception (MLP) attention mechanism is adopted

to capture the correlation between joint position and velocity in the motion

sequence, and the state correlation between hidden units in the LSTM network to

reduce the weight of invalid features. A velocity-aware state fusion approach of

LSTM network hidden units’ states is proposed, which utilizes variation in joint

velocity to adapt to the temporal characteristics of the manipulator dynamic

motion, improving the generalization and accuracy of the neural network.

Results: Comparative experiments have been conducted on two open datasets

and a self-built dataset. Specifically, the proposed method achieved an average

accuracy improvement of 61.88% and 43.93% on the two di�erent open datasets

and 71.13% on the self-built dataset compared to the LSTM network. These

results demonstrate a significant advancement in accuracy for the proposed

method.

Discussion: Compared with the state-of-the-art inverse dynamics model

learning methods of manipulators, the modeling accuracy of the proposed

method in this paper is higher by an average of 10%. Finally, by visualizing

attention weights to explain the training procedure, it was found that dynamic

modeling only relies on partial features, which is meaningful for future

optimization of inverse dynamic model learning methods.

KEYWORDS

manipulators dynamics, model learning, long short-term memory network (LSTM),

spatial-temporal attention, velocity aware

1 Introduction

The most important issue of manipulator dynamics is how to build an inverse
dynamics model to provide joint torques/forces in terms of the configuration
(joint positions, velocities, and accelerations) of manipulators (Baressi Šegota
et al., 2020; Liu Z. et al., 2022). With the increasing complexity of tasks
required for high-dimensional manipulators, precise, and stable inverse dynamics
modeling methods are increasingly needed for manipulators motion control.
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The dynamics modeling methods for manipulators can be
divided into the white-box method, black-box method, and gray-
box method (Geist and Trimpe, 2021; Liu et al., 2023). The
white-box method, also known as the analytical modeling method,
obtains the dynamics model of a manipulator based on theoretical
modeling and parameter identification. It has higher transparency
and interpretability. However, due to factors such as friction and
transmission clearance that are difficult to model, it leads to low
accuracy. In general terms, the black-box method refers to machine
learning models. It can learn dynamics characteristics that cannot
be accurately modeled by white-box methods, from data to obtain
higher accuracy models (Williams and Rasmussen, 1995). Gray-
box method, also known as the hybrid modeling method, is a
fusion of the black-boxmethod and white-boxmethod. It combines
the non-linear modeling ability of the black-box method with
the interpretability of the white-box method. At present, gray-
box methods rely more on the modeling accuracy of white-box
methods (Çallar and Böttger, 2022; Reuss et al., 2022), but it has
not yet reached the level where the advantages of both white-box
and black-box methods can be fully utilized. The authors believe
that comparedwith other fields, the problems of black-boxmethods
in inverse dynamics modeling of manipulators have not been fully
discussed. Given this, the research of this work focuses on how to
use black-box methods for learning inverse dynamic models.

Deep neural network learning methods have achieved
great success in fields such as image processing and natural
language processing, but their application research in the field
of manipulators dynamics is slightly lagging behind. Machine
learning methods that have been used for inverse dynamics
model learning of manipulators include GPR (Gaussian process
regression) (Williams and Rasmussen, 1995), LWPR (locally
weighted projection regression) (Vijayakumar et al., 2005), MLP
(Multi-layer Perception) (Yilmaz et al., 2020), GRU (Gated
Recurrent Unit) (Cho et al., 2014), and LSTM (Long Short-Term
Memory) (Greff et al., 2016). GPR is a supervised learning
method used to solve regression and classification problems
(Seeger, 2004; Nguyen-Tuong et al., 2009), which optimizes
hyperparameters by maximizing the likelihood and can adapt to
different datasets more quickly (Rueckert et al., 2017). However,
GPR has high computational complexity and takes too long to
train on large datasets. Compared to GPR’s precise inference with
a computational complexity of O(n3), LWPR’s computational
complexity is O(n), but it requires manual adjustment of a
considerable number of hyperparameters. Yilmaz et al. (2020) use
the MLP network to learn the inverse dynamics model of the da
Vinci surgical robot and estimate the external forces at the end-
effect, this method achieves high accuracy in estimating contact
forces within a local range. If the robot is running in an unknown
space or a higher speed motion mode, using MLP networks to
predict contact forces will result in significant prediction errors.
Due to the lack of modeling of temporal features, this method
is difficult to obtain an accurate and highly generalized inverse
dynamics model. Recurrent neural networks are often used to
handle sequential data for time series prediction tasks. Rueckert
et al. (2017) use LSTM networks to learn the inverse dynamic
model of robot manipulator. Compared to methods such as
GPR, LSTM can achieve higher modeling accuracy with a low

computational complexity of only O(n). Mukhopadhyay et al.
(2019) have conducted experimental comparative analysis on
RNN, LSTM, GRU, and MLP, and the analysis results show that
LSTM and GRU can better extract long and short-term features in
sequences compared to other methods.

Most sequence modeling methods only emphasize the
dependency relationships between sequence nodes, while ignoring
other correlations, such as spatiotemporal correlations (Kong
and Wu, 2018). Spatiotemporal correlation plays a crucial role
in many applications, such as crime prediction (Xia et al., 2022),
traffic prediction (Karim et al., 2022), behavior prediction (Song
et al., 2018), etc. The spatiotemporal attention mechanism can
more accurately capture the temporal and spatial distribution
characteristic of the target occurrence.

A dynamic temporal attention (DTA) network has been
proposed to achieve early prediction of traffic accidents based
on driving recorders, and the network can learn to select
discriminative temporal segments of a video sequence with the
DTA module (Karim et al., 2022). Song et al. (2018) designed a
spatiotemporal attention mechanism combined with long short-
term memory networks to recognize and detect human 3D
actions from bone data. The temporal attention weights of this
work are calculated by the input features, but it ignores the
correlation between the hidden layer states in the long short-
term memory network. An interpretable spatiotemporal attention
long short-term memory model (STA-LSTM) based on a dynamic
attention mechanism was proposed for flood prediction (Ding
et al., 2020). The spatiotemporal attention weights are calculated
based on input features and the hidden layer state of the long
short-term memory network, which better utilizes the hidden
layer state of LSTM. Du et al. (2018) proposed a spatiotemporal
attention mechanism based on effective interactive perception self-
attention to recognize human actions in RGB images and capture
the interaction characteristics between local features. The above
approaches all apply the spatiotemporal attention mechanism to
sequence modeling, relying on massive data. We also need to
conduct an in-depth analysis of the characteristics of the robot
motion sequence and improve the feature extraction algorithm
to better apply these methods to the inverse dynamics modeling
of manipulators.

The data sequence of manipulators used for inverse dynamics
model is different from videos or other sequences, as it is rich
in noise, misaligned in timing, and has a small amount of
data. It is difficult to achieve ideal results by directly applying
spatiotemporal attention mechanisms. To accurately calculate
the spatiotemporal attention weights, it is possible to consider
using a multi-layer perceptron (MLP) feedforward attention
mechanism for spatiotemporal attention. Zhang et al. (2020)
analyzed the difference between the self-attention mechanism
and the feedforward attention mechanism. Compared to the self-
attention mechanism, the feedforward attention mechanism can
be seen as pure “monotonic left-to-right diagonal attention,” it
restricts attention to the diagonal instead of obtaining contextual
information. For the inverse dynamics model learning network of
a manipulator, (1) the input only includes changes in past motion
sequences, this is one of the reasons for adopting a feedforward
attention mechanism. (2) Moreover, compared to self-attention
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mechanism, using the feedforward attention mechanism can
reduce some parameters and effectively reduce computational
complexity. (3) The single-layer feedforward attention mechanism
lacks modeling ability in complex scenes, while multi-layer
perceptron has stronger modeling ability. (4) Using the multi-
layer perceptron feedforward attention mechanisms at the input
and output ends of LSTM helps to better extract spatial features
of input data and temporal features in the hidden layers
of LSTM.

Usually, the acceleration of a manipulator is not directly
obtained, but rather derived from the differentiation of velocity.
Therefore, velocity is particularly important for predicting joint
forces and torques. In addition to the four suggestions at the
end of the previous paragraph, to better learn the temporal
characteristics of time series from LSTM hidden states, it is also
necessary to design a velocity-aware LSTMhidden layer state fusion
method. The commonly used temporal attention can distinguish
the importance of hidden layer states at different time steps, which
is very effective for learning models of temporal sequences with
obvious regularity. However, for complex and small data temporal
sequences, it is difficult to train a suitable model using this kind
of method. In another approach, the attention weight of the last
layer (usually called hn) of the LSTM hidden layer is calculated,
but this method is prone to problems such as information loss
or information attenuation (Tao and Liu, 2018). The attention
mechanism includes weighted averaging of all hidden states in
the LSTM hidden layer, and Tao and Liu (2018) has achieved
very good results in emotion recognition. In Ostmeyer and Cowell
(2019), in the author’s opinion, this weighted average method
limits the scope of attention mechanism usage. They propose a
cyclic weighted average method, which improves the applicability
of the algorithm but also significantly increases the computational
complexity of the network, which is not conducive to multi-
step time-series forecasting model training. In response to the
characteristics of language emotion recognition, Xie et al. (2019)
uses a self-attention mechanism to fuse the states of all hidden
layer neurons in the LSTM network, fully utilizing the hidden layer
states at each time step of the LSTM network. For the output fusion
of the LSTM network, it is necessary to combine these theories
with the actual characteristics of manipulator motion. In principle,
through the joint velocity we can intuitively obtain some factors
such as the changes in the direction of motion of the manipulator
joint, the frequency of changes, and other factors, which are the
characteristics of joint velocity, these factors are important features
in motion sequence data. Therefore, we propose an LSTM temporal
feature fusion method with a joint velocity aware algorithm, to
better extract temporal features contained in LSTM hidden layer
states, and improve the accuracy of inverse dynamics modeling
of manipulator.

The manipulator dynamics dataset collected from real world
has phenomena such as uneven data distribution, rich noise, and
small sample size, which can cause problems such as vanishing
or exploding gradients, slow convergence, etc. (Sheng et al.,
2023). Using residual LSTM networks would be a good choice.
Appropriate residual connections can resolve gradient vanishing
or exploding, accelerate network convergence, and enhance the
network’s expressive power.

In summary, the objective of this study is to design a
residual LSTM network architecture that integrates spatiotemporal
attention mechanisms for accurate estimation of manipulator joint
torques. The proposed approach leverages a multi-layer perceptron
feedforward attention mechanism to calculate spatiotemporal
attention weights. Furthermore, a velocity perception method is
devised to effectively combine the hidden units’ states of the
LSTM network. According to the training method in Yilmaz et al.
(2020), a separate network is trained for each manipulator joint to
facilitate comparison and analysis. Due to significant quantization
noise in the acceleration signals in the dataset and difficulties in
physical sampling, the network training in this work does not
use acceleration signals. The main contributions of this work are
as follows:

I. We propose a residual LSTM network structure combined
with a spatiotemporal attention mechanism, which effectively
improves the accuracy of inverse dynamics modeling
for manipulators.

II. Design a multi-layer perceptron feedforward attention
mechanism to calculate spatiotemporal attention weights. The
multi-layer perception function better extracts the interactive
features between each joint motion, forming more effective
attention weights.

III. Design a velocity-aware method to fuse the hidden layer
states of LSTM networks and improve the temporal modeling
ability of the network.

IV. This work visualizes attention weights and proves that
there are differences in the importance of spatiotemporal
features at different joints, providing interpretability for
network training.

The rest of this paper is organized as follows. Section 2
provides a mathematical formulation of the inverse dynamics
model and basic expressions of the model learning. The structure of
Velocity-Aware Spatial-Temporal Attention Residual Long Short-
Term Memory neural network (VA-STA-ResLSTM) is described
in Section 3. Section 4 presents the experimental comparison
results, and explains the training procedure by visualizing attention
weights. The paper concludes in Section 5.

2 Mathematical modeling of
manipulators dynamics and problem
description

A general dynamics model for an n-links serial manipulator can
be given by Rueckert et al. (2017) as shown in Equation (1).

M
(

q
)

q̈+ V
(

q,q̇
)

+ G
(

q
)

+Fr
(

q̇
)

= τ + τe (1)

Where, M(q) ∈ Rn×n denotes the inertial matrix, V(q, q̇) ∈

Rn×n denotes the Coriolis/centripetal matrix, G(q) ∈ Rnrepresents
the gravity vector, Fr(q̇) ∈ Rn accounts for the non-linear force and
unmodeled force (such as friction effects), τ ∈ Rn is the vector of
input torques acting at the joints, τe ∈ Rn represents any bounded
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external forces/torques caused by the environment, q, q̇, q̈ ∈ Rn are
the joint positions and their temporal derivatives.

Traditional dynamics models usually use linear approximation
models to represent complex non-linear friction and unmodeled
forces, which cannot fully describe the physical characteristics of
the manipulator dynamics model and bring significant errors to
joint torque estimation.

Rueckert et al. (2017) defines the problem of learning the
inverse dynamics model of a manipulator as

Y= f (X)+ξ (2)

Where Y is the estimated joint torques, X is the motion state
of the manipulator—configuration, X = [q, q̇, q̈]T , ξ is gaussian
random noise with mean 0 and variance σy, f represents the
function that needs to be modeled.

Construct datasets according to Equation 2, t is the time steps,
datasetD =< XT ,YT >, T = 1, . . . , t,XT ∈ R2×n×t represents the
motion data of n links serial manipulator, Including joint position
and velocity, YT ∈ Rn×t represents joint torque (training a model
separately for each joint). In Rueckert et al. (2017), the mean square
error loss function of the training model can be described as

MSE=
1

t× n

t
∑

i = 1

n
∑

j = 1

(ŷ[
j]
i −ỹ

[j]
i )

2

(3)

where ŷ
[j]
i is the actual torque value of joint j at time i, ỹ

[j]
i for

estimated torque values of joint j at time i.
The inverse dynamics modeling of manipulators can be

described as a multi-time series forecasting problem with multiple
variables. The high dimensionality brought by multivariable and
multi-time steps results in a large number of features in the
dataset with low correlation to the inverse dynamics model,
this will directly affect the modeling accuracy and generalization
performance of the network.

3 Velocity aware spatial-temporal
attention residual LSTM network
design

We propose a Velocity Aware Spatial-Temporal Attention
Residual Long Short-Term Memory neural network (VA-STA-
ResLSTM) to learn Inverse dynamics model of the manipulator.
Figure 1 shows the overall framework of the VA-STA-ResLSTM
neural network, which includes spatial attention mechanism,
temporal attention mechanism, residual LSTM, and joint velocity
aware temporal feature fusion method. Although the proposed
network structure adds multiple layers of perceptrons, the
computational complexity remains O(n).

Next, we will introduce three modules of VA-STA-ResLSTM
in sequence: residual LSTM network, spatial attention mechanism,
and velocity-aware based temporal attention mechanism.

3.1 LSTM network with residual
connections

The network structure of the residual LSTM used in this paper
is shown in Figure 2. Figure 2 depicts an LSTM network with
residual connections, which consists of original LSTM neurons.
The residual connection is composed of a linear layer and a Sigmoid
activation function. The function of the linear layer is to adjust
the matrix dimension of the input features, while the sigmoid
activation function is used to improve the non-linear modeling
ability of the network. LSTM has a mechanism called a “gate” that
selectively remembers or forgets, thereby better capturing long-
term dependencies. The primary gates include the input gate (it),
forget gate (ft), and output gate (Ot), with Xt denoting the input
feature at time step t. Each gate is composed of a sigmoid layer and
an element-wise multiplication operation.

In Figure 2, the red dashed lines represent the residual
connections. The motion of the robot manipulator may have
randomness and non-uniformity in its trajectory, which can lead
to gradient vanishing or exploding during LSTM network training,
using residual connections can solve such problems. The residual
connections in Figure 2 employ linear layers to match the matrix
size. A sigmoid activation function is applied to the LSTM output
to enhance its non-linear modeling capability. Additionally, batch
normalization is utilized on the output to preventmodel overfitting.

3.2 Spatial attention mechanism based on
multilayer perceptron

The motion sequence of the manipulator includes joint
position, velocity, and acceleration. Due to the structure of the
manipulator, motion, and force are transmitted joint-by-joint,
and there is a correlation between the motion characteristics
of the front and rear joints. Obtaining the motion correlation
between different joints is the key to constructing the spatial
attention mechanism. We propose a spatial attention mechanism
based on a multi-layer perceptron, which is divided into the
input layer, hidden layer, and output layer, as shown in Figure 3.
This attention mechanism only relies on the input features to
calculate the attention weight vector, and each motion feature
is assigned a spatial attention weight, allowing the network to
focus on the more important motion feature. Compared to
the self-attention mechanism, the attention calculation method
of MLP has lower computational complexity, stronger anti-
interference ability, and is more suitable for processing serial
manipulator motion sequences (Zhang et al., 2020; Liu Y. et al.,
2022).

In Figure 3, after batch processing, the input feature matrix
is X ∈RK×d, where K represents the number of features and
d is usually smaller than t and is a fixed constant, the output
feature matrix is X

′

∈ RK×d. If the degree of freedom of
the manipulator is n, the number of input features K can be
expressed as 2 × n (position, velocity) or 3 × n (position,
velocity, acceleration). The calculation of spatial attention weights
is described in Algorithm 1, whereWinput represents the weights of
the input layer of MLP, and binput represents the bias of the input
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FIGURE 1

Residual spatial-temporal attention LSTM network structure.

FIGURE 2

Illustration example of LSTM cells with residual connection.

layer of MLP, Whidden_i represents the weights of the ith hidden
layer of MLP, and bhidden_i represents the bias of the ith hidden

layer of MLP, Woutput represents the weights of the output layer of
MLP, and boutput represents the bias of the output layer of MLP.

Input the motion sequence, output spatial attention weights. The
dimensions of the output weight matrix and input feature matrix
are the same.

Where HiddenLayerNumber is the number of hidden layers
for multi-layer perceptron. For the k-th input feature, the softmax

function used in the normalization method (softmax) (Song et al.,
2018) is described as:

αd,k=
eSAd,k

∑K
i=1 e

SAd,i
(4)

Where αd,k is a normalization of spatial attention scores, d
is the total time step, K represents the total number of features,
and k is the k-th feature. The larger the calculated weight, the
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FIGURE 3

MLP network for spatial attention mechanism.

Input: X ∈RK×d(Joint Position, Joint

Velocity)

Output: SA ∈ RK×d (Spatial Attention Weights)

SA = Winput + binput

SA = sigmoid(SA)

for i in HiddenLayerNumber do

SA = Whidden_iSA+ bhidden_i

SA = sigmoid(SA)

SA = WoutputSA+ boutput

SA = softmax(SA)

Algorithm 1. Spatial attention weights calculation.

higher the correlation between the feature and the current moment.
The smaller the weight, the lower the correlation. By element-
wise multiplication, the weighted feature matrix X′ is obtained and
input into the residual LSTM network. The calculation of X′ is
described as

X
′=X⊙α (5)

Where⊙ represents element-wise multiplication.

3.3 Temporal attention mechanism with
velocity aware module

The temporal attention mechanism proposed in this paper
mainly consists of two parts. Firstly, it employs a multi-layer
perceptron attention mechanism to assign weights to all hidden
layer states of the LSTM. Secondly, it incorporates a velocity-aware
module to fuse the hidden layer states of the LSTM.

The hidden state of LSTM hidden layer neurons preserves the
long-term and short-term temporal characteristics of the model.
Generally, temporal attention mechanisms are designed in the
temporal direction, which means analyzing which time steps are
highly correlated with the output. This approach has achieved very
good modeling results, as shown in Song et al. (2018). To design an
attention mechanism along the temporal direction, transforming
the hidden layer neuron state matrix into a single dimensional
vector with the same time step size as the input sequence, Rh×d →

R1×d, then perform weighted calculations, where h is the hidden
size of LSTM network. However, for a continuous system, the
importance of distinguishing different time step features has not
yet been fully utilized by LSTM networks in learning long-term and
short-term features, if we only set attention mechanism along the
temporal direction, especially on datasets with insufficient changes
or irregular changes, which can easily lead to overfitting and poor
training effectiveness.

The number of hidden layer units in each time step of the
LSTM network is actually the width of the LSTM network, which
represents the capacity of the LSTM network. In this work, we
can define it as the feature direction. Calculating along the feature
direction transforms the hidden layer neuron state matrix into
a single dimensional vector with the same number of hidden
layer units at each time step. Unlike the time direction, attention
weights calculation can be directly performed along the feature
direction by selecting the last hidden layer state (Du et al., 2018),
as shown in Figure 4A. In Figure 4A, the hn represents the last
hidden layer state of LSTM. A ∈R1×h represents the time attention
weight matrix, calculate attention weights: A×hn ∈ R1×h. Due to
hn contains information about the entire input sequence and can
be applied to various tasks, but it is easy to ignore the temporal
characteristics of each time step. Another way is to achieve
attention weights by weighting and averaging all hidden layer
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FIGURE 4

(A) TA-hn, (B) TA-WA, and (C) velocity aware temporal attention (VA-TA).

states (Tao and Liu, 2018), as shown in Figure 4B. In Figure 4B,
the output represents all hidden layer states of LSTM. Calculate
attention weights: mean (A×O) ∈ R1×h, where O ∈Rd×h stands
for all hidden layer states, A ∈Rd×h represents the time attention
weight matrix. This method adopts a weighted average approach
for attention weight calculation, and the network is more sensitive
to sudden changes in the temporal characteristics of each time
step, but it is also prone to prediction bias. For the convenience
of description, this paper names the first method as TA-hn

(Temporal Attention with hn) and the second method as TA-WA

(Temporal Attention with Average), as shown in Figure 4. A multi-
layer perceptron attention mechanism is used to assign weights

to the hidden layer states of all LSTM neurons. Subsequently,
TA-WA and TA-hn are calculated separately. These values, TA-

WA and TA-hn, will serve as inputs for the velocity-aware
fusion module.

We have designed a fusion method for velocity-aware temporal

features, taking into account the advantages of bothTA-hn andTA-
WA, as shown in Figure 4C. In Figure 4C, Our method is called as
VA-TA (Velocity Aware Temporal Attention), the VA represents
the normalized score calculated from joint velocities. The [TA-

hn] represents weighted TA-hn, and the [TA-WA] represents
weighted TA-WA. Firstly, extract the velocity feature vector of
the joint from the feature matrix input into the network. Then,

the fusion weights are calculated using the fully connected layer
and softmax function. The weights calculated using TA-hn and
TA-WA methods have complementarity therefore, the calculation
of attention weights is designed in a complementary form. In

Input: hn ∈ Rbatchsize×h and output ∈ Rbatchsize×s×h(LSTM

hidden cell states)

Output: TF ∈ Rbatchsize×2×h(Combined vector)

VA = Wva + bva

VA = softmax(VA)

h
′

n = VA
⊙

hn h
′

n = VA
⊙

hn

output
′

= (1− VA)
⊙

output

TF = concat(h′n, output
′)

Algorithm 2. Velocity aware based temporal feature fusion.

the VA-TA algorithm, the value of VA is dynamically adjusted
based on joint velocity. A higher VA value corresponds to a
greater proportion of TA-hn in the fusion, while a lower VA
value corresponds to a greater proportion of TA-WA in the
fusion. The specific process is as shown in Algorithm 2, where
output represents all hidden states of the LSTM network’s hidden
layer, h represents the number of neurons in the LSTM hidden
layer, s represents the sequence length of input features, Wva

represents the weights of the network, and bva represents the bias of
the network.

Prior to employing velocity-aware fusion, we developed a
multi-layer perceptron temporal attention mechanism to filter the
LSTM hidden layer states, as shown in Figure 1. The temporal
attention mechanism designed in this paper is a multi-layer
perceptron, as shown in Figure 5, and the calculation process is
shown in Algorithm 3, where Winput represents the weights of the
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FIGURE 5

Temporal attention mechanism MLP structure.

Input: output ∈ Rbatchsize×s×h(LSTM hidden cell

states)

Output: TA ∈ Rbatchsize×s×h (Temporal attention

weights)

TA = WinputX + binput

TA = relu(TA)

for i in HiddenLayerNumber do

TA = Whidden_iTA+ bhidden_i

TA = relu(TA)

TA = WoutputTA+ boutput

TA = softmax(TA)

Algorithm 3. Temporal attention.

input layer of MLP, and binput represents the bias of the input
layer of MLP, Whidden_i represents the weights of the ith hidden
layer of MLP, and bhidden_i represents the bias of the ith hidden
layer of MLP, Woutput represents the weights of the output layer
of MLP, and boutput represents the bias of the output layer of
MLP. Among them, two output weighting methods are described,
include the state of the last hidden layer and all hidden layer
states. HiddenLayerNumber is the number of hidden layers for
multi-layer perceptron.

Finally, calculate the weighted hidden layer weight vector as
shown in Equation (6).

H
′=TA

⊙

H (6)

Where H is the set of the original LSTM hidden units’ states,
TA is the calculated weighted score of the temporal attention, H ∈

Rs×k,H′ is the weighted hidden units’ states.

4 Experiments and results

Experimental verification is conducted on three datasets.
The open dataset in Polydoros et al. (2015) is named KUKA-
I, the open dataset in Meier et al. (2014) is named KUKA-
II, and the self-built dataset UR5-data. These datasets are
collected on real-world manipulators, with training and testing
sets set to (16,000, 4,000), (13,000, 4,560), and (15,000, 5,000),
respectively, and the data is processed using a Butterworth low-
pass filter. The data normalization technique employed makes
use of the StandardScaler function from the sklearn library. This
normalization technique targets the mean and variance of each
individual dimension rather than the entire datasets. In addition,
methods such as fuzzy similarity calculation (Versaci et al.,
2022) can be used during preprocessing to reduce computational
complexity, but this issue is not discussed in this article.

The joint trajectories of the three datasets are shown in
Figure 6. The trajectories of the three datasets exhibit different
characteristics. The KUKA-I dataset exhibits periodicity, the
KUKA-II dataset exhibits non-periodic and gentle motion, and the
UR5-data dataset exhibits rapid and irregular motion.

The computer used in the experiment is a GPU, RTX3060Ti,
with a software architecture of PyTorch and an optimizer of Adam.
The batch size is set to 128. The learning rate is set to dynamic
adjustment mode, with an initial value of 0.01. The learning
rate is gradually reduced based on training loss to achieve stable
convergence. All model training and testing use the mean square
error given in Equation 3, which can intuitively and accurately
represent the difference in model accuracy.

We conduct three sets of experiments: (a) For the network
structure proposed in this paper (Figure 1), different combinations
of hidden layer layers, activation function, residual connections,
and different temporal attention mechanisms are set, and ablation
experiments are conducted on three datasets to obtain the optimal
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FIGURE 6

Joint trajectories of the three datasets. (A) KUKA-I. (B) KUKA-II. (C) UR5-data.

combination of network structures. (b) The best combination
network proposed in this article is compared with SOTA’s inverse
dynamics model learning method of serial manipulator, to prove
the progressiveness of the method proposed in this article. (c)
We visualize attention weights in the neural network, analyze the
characteristics of the network model learning process, and explain
the training process.

4.1 Ablation

To verify the effectiveness of the proposed method, different
network structures are compared. To analyze the impact of
different numbers of spatiotemporal attention hidden layers, the
combination of activation functions, the presence or absence of
residual connections, and the presence or absence of velocity aware
modules on model accuracy.

We first adopted a network (VA-STA-ResLSTM) structure
described in Section 3 and compared different numbers of hidden
layers of spatial attention and temporal attention on three datasets.
To ensure a fair comparison, the number of hidden layers is
kept consistent for both spatial attention and temporal attention.
The experimental results are shown in Figure 7. As the number
of hidden layers increases, the torque estimation accuracy of the
model does not necessarily decrease. After setting the number of
hidden layers to 3, the model accuracy will show an oscillating
trend, but it has already met the acceptable accuracy requirement
(Stathakis, 2009). Therefore, subsequent experiments will be
conducted under the condition of three hidden layers.

Although there has been thorough research on the impact
of different activation functions on network performance, we
still conduct different combination tests of spatial attention and
temporal attention activation functions. This paper conducts
a Combination test of activation functions on three datasets
on VA-STA-ResLSTM network. We tested two main types of
activation functions: Sigmoid functions, ReLU and its improved

versions. Sigmoid function Classes include the Sigmoid function
and Tanh function, while ReLU and its improvements include ReLU
function, ELU function, and SELU function. The comparison of
the average mean square error of joint torque estimation obtained
from different combinations of activation functions is shown in
Figure 8. The a+b Form represents the combination of activation
functions, where “a” is the activation function used by the spatial
attention mechanism and “b” is the activation function used by the
temporal attention mechanism. In Figure 8, the Sigmoid function
is denoted as S, the Tanh function is denoted as T, the ReLU

function is denoted as R, the ELU function is denoted as E,
and the SELU function is denoted as SR. According to the test
results, S+SR is the optimal combination among them, and high-
precision torque estimation models can be obtained in all three
datasets. Subsequent experiments will use the S+SR activation
function combination.

After determining the number of hidden layers of attention
mechanism and the combination of activation functions, we
conduct comparative tests on three datasets based on the network
structure and different attention weight calculation methods
described earlier in this article.

The experimental results are shown in Tables 1–3. LSTM+SA

represents an LSTM network with a basic spatial attention
mechanism described in Section 3.2, ResLSTM represents the
LSTM network with residual connections, TA-hn and TA-WA

are the weights calculation methods for the temporal attention
mechanism introduced in Section 3.3, VA-TA is a velocity aware
time feature fusion method proposed in this article. It can be seen
that the combination proposed in this article (ResLSTM+SA+VA-

TA) can achieve the optimal modeling accuracy. The time feature
fusion of velocity perception better utilizes the LSTM hidden
layer state and compensates for the problem of modeling accuracy
changes in different datasets using one single method. Residual
connections can not only further improve the learning accuracy
of the model, but also can solve the problems of vanishing or
exploding gradients.
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FIGURE 7

The impact of di�erent numbers of hidden layers of spatial attention and temporal attention on average estimation accuracy. (A) KUKA-I dataset, (B)

KUKA-II dataset, and (C) UR5-data dataset.

FIGURE 8

The comparison of the average mean square error of joint torque estimation obtained from VA-STA-ResLSTM network with di�erent combinations of

spatial attention and temporal attention activation functions tested on three datasets. (A) KUKA-I. (B) KUKA-II. (C) UR5-data.

TABLE 1 Normalized mean square error of joint torque estimation obtained from testing on the KUKA-I dataset.

Network Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 MSE

ResLSTM+SA+TA_hn 0.1257 0.0027 0.0237 0.0294 0.0981 0.1857 0.0181 0.069057143

ResLSTM+SA+TA_WA 0.1331 0.0028 0.0178 0.017 0.0855 0.1196 0.0193 0.056442857

LSTM+ SA+ VA-TA 0.0737 0.0077 0.0105 0.0368 0.09 0.1979 0.0254 0.06314

ResLSTM+SA+ VA-TA 0.0655 0.006 0.0123 0.0449 0.0405 0.1491 0.0244 0.048957143

Bold value represents the optimal result.

TABLE 2 Normalized mean square error of joint torque estimation obtained from testing on the KUKA-II dataset.

Network Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 MSE

ResLSTM+SA+TA_hn 0.6599 0.858 0.3201 0.4694 0.575 0.1506 0.2833 0.4737

ResLSTM+SA+TA_WA 0.5018 0.5115 0.6525 0.5054 0.6728 0.1618 0.4054 0.4873

LSTM+ SA+ VA-TA 0.2935 0.6032 0.3968 0.5822 0.5159 0.1863 0.1655 0.3919

ResLSTM+SA+ VA-TA 0.2937 0.7959 0.3482 0.5021 0.5885 0.1337 0.2642 0.4180

Bold value represents the optimal result.

4.2 Comparison experiment of joint torque
estimation accuracy with other types of
neural networks

To further illustrate the progressiveness of the proposed
method, the optimal combination network obtained above is
compared with LSTM (Greff et al., 2016), GRU (Cho et al.,

2014), RNN (Mukhopadhyay et al., 2019), MLP (Yilmaz et al.,
2020), and Transformer (Çallar and Böttger, 2022) on three
different data sets, as shown in Tables 4–6. Compared with
the LSTM network, the training results on three datasets
show that the proposed network has improved the average
estimation accuracy of joint torque by 61.88%, 43.93%, and
71.13%, respectively. Compared to other methods, the average
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TABLE 3 Normalized mean square error of joint torque estimation obtained from testing on the UR5-data dataset.

Network Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 MSE

ResLSTM+SA+TA_hn 0.0368 0.0375 0.0631 0.1513 0.1762 0.0433 0.0847

ResLSTM+SA+TA_WA 0.0391 0.0589 0.0775 0.1075 0.1662 0.034 0.0805

LSTM+ SA+TA_VEL 0.0745 – 0.0226 0.0954 0.2826 0.0482 –

ResLSTM+SA+TA_VEL 0.0398 0.0169 0.0143 0.0878 0.1554 0.0351 0.058217

Bold value represents the optimal result.

TABLE 4 Compared with SOTA methods on the KUKA-I dataset.

Method Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 MSE

LSTM 0.3692 0.0037 0.0511 0.0629 0.0581 0.2891 0.0642 0.1283

GRU 0.0553 0.0014 0.0288 0.0340 0.1237 0.1615 0.0250 0.0613

RNN 0.5203 0.0036 0.0096 0.0270 0.1585 0.5209 0.0272 0.1810

MLP 0.5609 0.0038 0.0152 0.0384 0.0893 0.1510 0.0381 0.1281

Transformer 0.1355 0.0071 0.0741 0.0907 0.1943 0.1799 0.0430 0.1035

Proposed 0.0655 0.006 0.0123 0.0449 0.0405 0.1491 0.0244 0.0489

Bold value represents the optimal result.

TABLE 5 Compared with SOTA methods on the KUKA-II dataset.

Method Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 MSE

LSTM 0.5653 0.9119 0.5055 1.5769 0.5360 0.2399 0.8842 0.7456

GRU 0.9200 0.9881 0.4689 0.9454 0.7693 0.2588 0.4943 0.6921

RNN 0.5151 0.9832 0.2465 0.5556 0.6730 0.1922 0.3628 0.5040

MLP 1.2482 1.4420 1.5206 1.1959 1.3976 1.0958 1.1811 1.2973

Transformer 0.5987 0.7193 0.4102 0.7878 0.5468 0.2516 0.5661 0.5543

Proposed 0.2937 0.7959 0.3482 0.5021 0.5885 0.1337 0.2642 0.4180

Bold value represents the optimal result.

TABLE 6 Compared with SOTA methods on UR5-data dataset.

Method Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 MSE

LSTM 0.0531 0.2202 0.1705 0.3826 0.2938 0.0896 0.2016

GRU 0.0465 0.2363 0.0396 0.1765 0.2603 0.0799 0.1398

RNN 0.0277 0.0125 0.0352 0.1168 0.1489 0.0548 0.0659

MLP 0.0779 0.0666 0.204 2.091 0.5167 0.507 0.5772

Transformer 0.0711 0.0654 0.1069 0.1429 0.2348 0.0819 0.1171

Proposed 0.0398 0.0169 0.0143 0.0878 0.1554 0.0351 0.0582

Bold value represents the optimal result.

estimation accuracy of joint torque with the proposed method is
always optimal.

4.3 Visual explanation of e�ect of spatial
attention weights on learning of inverse
dynamics models of robot manipulator

According to the analytical modeling method (Gautier and
Venture, 2013), it is known that due to the linear correlation
between themass inertia matrix parameters of the inverse dynamics
model, singular value decomposition is required for the regression

matrix, and basic dynamic parameters are calculated to characterize
the dynamics of the serial manipulator. This indicates that not all
motion features are equally important to dynamics.

Firstly, visualize and analyze the spatial attention weight
heatmap described in Section 3.2. The first four joints of the
manipulator used in the three datasets are extracted for analysis
without acceleration input. As shown in Figure 9, the spatial
attention mechanism clearly distinguishes the importance of input
features, and for joints with a wider range of motion, joint torque
estimation relies on more input features. Comparing the effects
of joint position and velocity on attention weights, joint torque
estimation output is more dependent on changes in joint position,

Frontiers inNeurorobotics 11 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1353879
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Huang et al. 10.3389/fnbot.2024.1353879

FIGURE 9

Heat map of spatial attention weights for the first four joints without acceleration feature input (horizontal axis represents input features, q1-q7

represents positions of each joint, v1-v7 represents velocities of each joint, vertical axis represents time steps, color changes from blue to yellow, and

weights gradually increase). (A–D) Represents joints 1 to 4 in the KUKA-I dataset, (E–H) represents joints 1 to 4 in the KUKA-II dataset, and (I–L)

represents joints 1 to 4 in the UR5-data dataset.

FIGURE 10

Heat map of temporal attention weights for the first four joints without acceleration feature input (horizontal axis represents hidden layers number,

vertical axis represents time steps, color changes from blue to yellow, and weights gradually increase). (A–D) Represents joints 1 to 4 in the KUKA-I

dataset, (E–H) represents joints 1 to 4 in the KUKA-II dataset, and (I–L) represents joints 1 to 4 in the UR5-data dataset.
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FIGURE 11

The temporal attention weights calculated by the velocity aware module. (A–D) Represents joints 1 to 4 in the KUKA-I dataset, (E–H) represents

joints 1 to 4 in the KUKA-II dataset, and (I–L) represents joints 1 to 4 in the UR5-data dataset.

while the weight heatmap mainly focuses on joint position. This
indicates that focusing on changes in the configuration is more
conducive to improving the accuracy of inverse dynamics modeling
for manipulators.

Figure 10 shows the heatmaps of temporal attention weights
for different hidden units (h1, h2, h3, h4, h5) of LSTM network.
The first four joints in three datasets were analyzed without
considering acceleration input. The trajectory characteristics of the
three different datasets are different. The trajectory characteristics
of the KUKA-I dataset are periodic, and the temporal attention
weights in Figure 10A are mainly concentrated in the deep
hidden layer states. In contrast, the trajectory characteristics of
the KUKA-II dataset are non-periodic, and the distribution of
temporal attention weights in Figure 10B is irregular. For the UR5
dataset, the trajectory characteristics are non-periodic and the
velocity curve is smooth, and the temporal attention weights in
Figure 10C are mainly concentrated in the shallow hidden layer
states. The distribution of temporal attention weights indicates that
the trajectory characteristics and joint velocities directly affect the
temporal characteristics of manipulator dynamics.

Figure 11 shows a visualization of the weights calculated using
the velocity-aware temporal attention module proposed in this
article. The weights are fused using the TA-hn and TA-WA

described in Section 3.3. The weights are fused using the TA-hn

and TA-WA described in Section 3.3. The vertical axis represents
the weight value of VA calculated by the Velocity aware module,
as shown in Figure 4C, and the horizontal axis represents the
number of hidden layers. The VA weights in Figure 11 are attention
weights calculated by VA-TAmethod. Combining Figures 10, 11 for
observation, the more dispersed the weight of the time heatmap,
the more dependent the weight calculated by the velocity-aware
module on the modeling ability of TA-hn. The more concentrated
the weight of the heatmap, the more dependent the weight
calculated by the velocity-aware module on the modeling ability of
TA-WA. This indicates that our velocity-aware method proposed
in this article can better integrate the advantages of the two modes
(TA-hn and TA-WA).

5 Conclusion

This article combines the spatiotemporal attention mechanism
with the residual long short-term memory neural network to
design an inverse dynamics model learning network for serial
manipulators. A multi-layer perceptron spatiotemporal attention
mechanism has been designed to reduce the impact of invalid
input features on the model. We propose a velocity-aware LSTM
hidden layer state fusion method, which weights and averages all
hidden layer states of the LSTM, and then fuses them with the last
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hidden layer state. Two algorithms (TA-hn and TA-WA) are used
complementary to concatenate the weighted average output and
the final hidden layer output into a vector. The proposed fusion
method fully utilizes the hidden layer states of LSTM networks,
which is also a novel approach for time series modeling. The use
of residual LSTM networks not only improves the convergence
of the entire network but also solves problems such as vanishing
gradients and exploding gradients. Finally, this article conducted
ablation experiments with different configurations and obtained
some patterns: Increasing the number of hidden layers of attention
does not necessarily improve inverse dynamics model accuracy.
Using the Sigmoid function for spatial attention and the SELU
activation function for temporal attention can lead to better inverse
dynamics models in different datasets. Residual connections help
the network converge faster and improve the accuracy of the
inverse dynamics model. Experimental comparisons are conducted
on three datasets with other methods, and compared to the LSTM
network, the proposed method improved model accuracy by at
least 40% under the condition of no acceleration. Compared to
other methods of state of art, the proposed method has the best
modeling accuracy.

Through visualizing attention weights, it has revealed some
patterns: when using spatial attention mechanisms to preprocess
the input of the LSTM network, the positional information of
the manipulator’s joints is crucial to training a more accurate
inverse dynamics model. Additionally, incorporating joint velocity
information at the output of the LSTM network can effectively
extract temporal features learned by the LSTM, preventing feature
information loss and significantly improving model accuracy.
These findings can predictably have a positive impact on future
research of the manipulator inverse dynamics model.
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