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The transportation of hazardous chemicals on roadways has raised significant

safety concerns. Incidents involving these substances often lead to severe and

devastating consequences. Consequently, there is a pressing need for real-time

detection systems tailored for hazardous material vehicles. However, existing

detection methods face challenges in accurately identifying smaller targets and

achieving high precision. This paper introduces a novel solution, HMV-YOLO, an

enhancement of the YOLOv7-tiny model designed to address these challenges.

Within this model, two innovative modules, CBSG and G-ELAN, are introduced.

The CBSG module’s mathematical model incorporates components such as

Convolution (Conv2d), Batch Normalization (BN), SiLU activation, and Global

Response Normalization (GRN) to mitigate feature collapse issues and enhance

neuron activity. The G-ELAN module, building upon CBSG, further advances

feature fusion. Experimental results showcase the superior performance of the

enhancedmodel compared to the original one across various evaluationmetrics.

This advancement shows great promise for practical applications, particularly in

the context of real-time monitoring systems for hazardous material vehicles.
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1 Introduction

Hazardous material vehicle detection plays a crucial role in ensuring public safety and

minimizing the risks associated with the transportation of dangerous goods. Accurate and

efficient detection systems are essential to prevent accidents, respond to emergencies, and

safeguard the environment (Landucci et al., 2017). Various computer vision techniques and

deep learning models have been employed to enhance the accuracy of hazardous material

vehicle detection, significantly improving the ability to identify and mitigate potential

threats posed by such vehicles (Wang et al., 2018).

In recent years, vehicle detection methods based on deep learning have been gradually

gaining prominence (Maity et al., 2021). These methods possess the ability to automatically

learn features from data, leading to outstanding detection performance in various

scenarios. Deep learning-based vehicle detection methods can be categorized into two

main types: two-stage detection methods and one-stage detection methods. Among the

two-stage detection methods, the R-CNN series of models (Girshick et al., 2014; Girshick,

2015; Ren et al., 2015) stand out as particularly excellent representatives. One-stage object

detection methods like YOLO (Redmon et al., 2016) have been widely used for dense
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predictions at every position in the feature map without the need

for additional region proposal steps. Bochkovskiy et al. (2020)

introduced several new methods to improve the accuracy of CNN,

such asWRC, CSP, CmBN, SAT, andMish activation functions, and

combined them to achieve 43.5% AP and 65 FPS on the MS COCO

dataset. Li et al. (2022) extensively studied the latest advances

in object detection, including network design, training strategies,

test techniques, quantification, and optimization methods, and

integrated them into the built YOLOv6. YOLOv6-N achieved

35.9% AP on the COCO dataset, outperforming other mainstream

target detectors of the same size. Wang et al. (2023) proposed

a trainable bag-of-freebies solution. Combining a flexible and

efficient training tool with the proposed architecture and composite

scaling method, YOLOv7 outperforms all known target detectors

in both speed and accuracy. These methods often employ various

techniques to address different requirements in various detection

scenarios, making one-stage methods simpler and more efficient.

On the other hand, two-stage methods involve explicit region

proposal and classification/localization stages, which can achieve

higher accuracy in some cases but may be slightly slower in terms

of speed. One-stage methods achieve faster detection by directly

predicting object attributes. Therefore, one-stagemethods aremore

widely applied compared to two-stage methods.

Given the prevailing trends favoring the efficiency of one-stage

methods, especially in real-time applications, it becomes evident

that their direct prediction of object attributes aligns seamlessly

with the need for prompt detection. However, in hazmat vehicle

detection, where accuracy is paramount, a nuanced approach is

essential. Our research strategically navigates this landscape by

adapting the one-stage paradigm, as exemplified by the YOLO

architecture, to strike a balance between speed and precision

specifically tailored for hazmat scenarios. The contributions of this

paper are as follows:

• Two innovative modules are proposed and systematically

evaluated: Convolutional Block with SiLU and Global

Response Normalization (CBSG) and G-ELAN. These

modules incorporate global response normalization into

traditional convolutional layers with the aim of mitigating

feature collapse and boosting neuron activity.

• A novel structure called Long-Range Temporal Pyramid

Attention Network (LTPAN) is introduced to enhance feature

interaction between deep and shallow networks, thereby

improving the model’s feature fusion capability.

• The paper provides a detailed description of the stepwise

integration of these modules into the YOLOv7-tiny model

and presents a comprehensive evaluation of their impact on

various performance metrics. This analysis aims to contribute

to improved safety and security in the transportation of

hazardous materials.

2 Related work

2.1 Traditional object detection method

Traditional methods in the early stages heavily relied on

manually designed feature extractors, such as Histogram of

Oriented Gradients (HOG) (Dalal and Triggs, 2005). These features

were capable of capturing information about the shape, edges,

and other relevant characteristics of vehicles. Li and Guo (2013)

introduced a single-camera front vehicle detection method based

on HOG features and SVM, incorporating vehicle shadow features,

which demonstrated accurate vehicle identification under varying

daylight conditions. Han et al. (2006) proposed a two-stage

approach that used stereo vision cues to generate potential object

positions and then employed extended HOG features and SVM

classifiers to verify all hypotheses, enabling the identification of

both people and vehicles with high detection accuracy while

achieving faster processing speeds. Cao et al. (2011) presented

a mobile vehicle detection method based on enhanced HOG

features, overcoming challenges posed by lighting variations

and scene complexity. Compared to traditional methods, this

approach exhibited superior performance in terms of detection

rate, false positive rate, and processing speed. Cheon et al.

(2012) introduced a visual detection method that completed

vehicle detection through hypothesis generation and hypothesis

verification steps. This method demonstrated robust performance

in experiments, contributing significantly to vehicle detection,

particularly in scenarios where deep learning methods may not be

readily applicable due to data constraints or resource limitations.

In addition to traditional computer vision-based methods,

there are also sensor-based approaches in vehicle detection.

Petrovskaya and Thrun (2009) proposed a mobile vehicle detection

and tracking module based on a laser rangefinder platform that

used a single Bayesian filter to model and estimate the dynamic and

geometric properties of vehicles. It also introduced the concept of

motion evidence to overcome low signal-to-noise ratio challenges

when detecting moving vehicles in urban environments. This

approach enabled the efficient creation of 2D representations and

detection of hard-to-identify black vehicles. Yang and Lei (2014)

proposed a vehicle detection and classification system based on

magnetoresistive sensors, utilizing a novel fixed threshold state

machine algorithm to detect vehicles and classify them based on

the time they spent entering and exiting the sensor monitoring

area. It addressed the problem of detecting and classifying vehicles

in slow-moving traffic conditions. Leitloff et al. (2010) presented

an automatic vehicle detection method from optical satellite

images that used adaptive feature enhancement to generate single-

vehicle target hypotheses, combined with line extraction to detect

vehicle queues, and achieved vehicle detection tasks through

robust parameter estimation. Ali et al. (2011) introduced a novel

inductive loop sensor suitable for heterogeneous and lane-less

guided traffic scenarios, allowing for the classification and accurate

counting of common vehicles. This approach adapts to various

traffic situations and provides alternative approaches to vehicle

detection, each with its advantages and applicability in specific

scenarios.

2.2 Object detection algorithm based on
deep learning

In recent years, detection methods based on deep learning have

gradually emerged, demonstrating excellent detection performance
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in various scenarios by automatically learning features from

data. Nagarajan and Gopinath (2023) proposed an indoor object

detection method called HAAVO, which utilizes generative

adversarial networks and deep convolutional neural networks for

target detection and recognition. Simultaneously, it optimizes

the training of DCNN classifiers and deep residual networks to

estimate distance. Additionally, HAAVO integrates the Honey

Badger Algorithm, Adam Optimizer, and African Vultures

Optimization. The method exhibits outstanding performance in

terms of test accuracy, precision, and recall. Dewangan and

Sahu (2023) introduced a two-tier lane detection framework

based on deep learning. This framework extracts texture features

based on local binary patterns and employs an optimized deep

convolutional neural network for classification. Weight fine-tuning

is performed using the Flight Straight of Moth Search (FS-MS)

Algorithm. Compared to other improved CNN methods of the

same type, this framework effectively enhances computational

efficiency. Furthermore, Dewangan and Sahu (2022) proposed

a road detection model based on Siamese Fully Convolutional

Network (s-FCN-loc). This model combines semantic contours,

RGB channels, and prior location information, achieving precise

segmentation of road areas. The Distance-guided Sea Lion

Optimization (DSLnO) algorithm is employed to optimize the

selection of convolutional layers in the FCN network, thereby

improving detection accuracy. The method demonstrates accuracy

and performance superior to traditional approaches on the

KITTI road detection dataset. Chen et al. (2022b) proposed a

garbage classification method called GCNet, which enhances the

ShuffleNet v2 architecture by introducing parallel mixed attention

mechanisms, new activation functions, and transfer learning

techniques. Experimental results demonstrate that GCNet achieves

an average accuracy of 97.9% on a self-built dataset, providing

effective support for machine vision technology in the fields of

garbage classification and resource recycling. Additionally, Chen

et al. (2023) introduced a railway track region segmentation

network (ERTNet) based on an encoder-decoder architecture.

This method employs deep convolution and channel shuffling

to construct lightweight feature extraction units, combines a

feature-matching cross-fusion decoder with knowledge distillation

techniques to enhance segmentation accuracy. Simultaneously, a

loss function is proposed to penalize pixels with large offsets,

achieving efficient track region segmentation. Experimental results

indicate that this approach achieves high segmentation accuracy

while ensuring efficient computational performance.

In two-stage object detection methods, Luo et al. (2021)

proposed a vehicle detection model based on Faster R-CNN,

which effectively detects vehicles of multiple scales in traffic scenes

through NAS optimization. This model initially enhances image

quality using the RIAC algorithm, then utilizes NAS to generate

optimal cross-layer connections for efficient feature extraction

across multiple layers. Finally, it employs object feature enrichment

methods in combination with contextual information to enhance

the information about vehicle targets. This approach improves the

robustness of detection, particularly for small-scale and occluded

targets. Beery et al. (2020) proposed Context R-CNN, a method

based on attention mechanisms that leverage temporal context

features from unannotated frames in the camera to improve target

detection performance. Additionally, this method can index a

long-term memory bank and aggregate context features from other

frames to enhance target detection performance in the current

frame. Nguyen (2019) introduced an improved vehicle detection

method based on Faster R-CNN, which incorporates technologies

such as MobileNet, Soft NMS, context-aware RoI pooling layers,

and depthwise separable convolution to enhance the accuracy and

efficiency of vehicle detection. Li et al. (2019) presented the Stereo

R-CNN model for 3D object detection, an extension of Faster R-

CNN that fully exploits feature information from stereo images.

While performing detection, this model can also associate left and

right target information in stereo images, effectively improving

detection accuracy. These deep learning-based methods have made

significant strides in vehicle detection, offering improved accuracy

and robustness in various application scenarios.

Single-stage detection methods, when compared to two-stage

detection methods, offer faster detection speeds and more accurate

bounding boxes. These methods directly predict the location

and category of objects from input images without the need for

region proposal selection and classification, thereby effectively

reducing inference time. Additionally, single-stage detection

methods, exemplified by the YOLO series (Redmon et al., 2016),

enhance their ability to detect objects of varying sizes and shapes

through end-to-end training and multi-scale feature utilization,

resulting in improved detection performance. Chen et al. (2022a)

proposed an enhanced SSD algorithm for vehicle detection.

The algorithm employs MobileNet v2 as the feature extraction

network and achieves feature weighting and bottom-up feature

fusion through channel attention mechanisms and deconvolution

modules, thereby enhancing detection accuracy. Experimental

results demonstrate that the algorithm improves both inference

speed and prediction accuracy, providing an effective solution to

the vehicle detection problem in autonomous driving systems.

Feng et al. (2023) introduced an improved YOLOv5s algorithm,

replacing the neck of YOLOv5s with a slim-neck and utilizing

Ghost-Shuffle Conv and VoV-GSCSP. This modification aims to

reduce computational and network complexity while maintaining

sufficient accuracy. Furthermore, knowledge distillation is applied

to optimize the enhanced YOLOv5s model, enhancing its

generalization ability and overall performance. Experimental

results show that the algorithm provides real-time, high-precision

detection of small winter jujube fruits for robotic applications.

Dong et al. (2022) presented an improved lightweight YOLOv5

method for vehicle detection, incorporating C3Ghost and Ghost

modules to reduce computational complexity and enhance feature

representation. Additionally, it uses CBAM for selecting essential

information and suppressing unimportant details. Moreover, it

adopts CIoU Loss as the bounding box regression loss function.

This approach enhances detection accuracy while reducing

computational demands and model parameters compared to

existing methods. Zhang et al. (2023) enhanced the YOLOv7

backbone network with a Res3Unit structure to improve the

model’s ability to capture nonlinear features. They introduced

the ACmix mixed attention mechanism to increase the network’s

focus on vehicles and reduce interference from other objects.

Finally, Gaussian receptive fields are employed to enhance the

model’s sensitivity to small objects in images. These enhancements
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collectively lead to improved accuracy and speed in vehicle

detection on urban roads. Qiu et al. (2023) introduced an algorithm

called YOLO-GNS for detecting special vehicles from a drone’s

perspective. This algorithm enhances feature extraction capabilities

by introducing the Single Stage Headless (SSH) structure, making

it suitable for detecting small or ambiguous objects. Additionally, it

draws inspiration from the GhostNet concept, simplifying complex

convolutions into linear transformations to reduce computational

costs, thereby improving the average detection accuracy. Lin and

Jhang (2022) proposed an intelligent traffic monitoring system

based on YOLO and convolutional fuzzy neural networks (CFNN).

Initially, the system employs the YOLO algorithm to detect

vehicles. It then combines vehicle counting methods to calculate

traffic flow. Subsequently, two models, CFNN and Vector-CFNN,

combined with a network mapping fusion method, are introduced

to improve detection accuracy and real-time performance.

In conclusion, the single-stage detection methods discussed

in the preceding text offer faster detection speeds and more

precise bounding box predictions compared to their two-stage

counterparts. Leveraging end-to-end training, multi-scale feature

utilization, and innovative enhancements from the YOLO series

result in superior detection performance.

2.3 Comparison of related methods

In general, methods for vehicle detection can be categorized

into feature extractor methods, sensor-based methods, traditional

deep learning methods, two-stage object detection methods,

and one-stage object detection methods. This paper conducts a

comparative analysis of these methods, as summarized in Table 1.

In methods based on feature extractors, representations

like HOG are commonly encountered. These methods achieve

target detection by extracting local features from images, such

as gradient directions. While they exhibit excellent performance

in handling simple scenes, their effectiveness may be limited in

complex and dynamically changing environments. In contrast,

sensor-based methods integrate various types of sensors,

such as cameras, millimeter-wave radar, and lidar, to acquire

multimodal information and enhance the system’s perception

of the environment. However, this integration brings about

challenges, including higher costs and difficulties in data fusion.

Additionally, there is a growing trend in the adoption of traditional

deep learning methods, with common models such as ResNet and

EfficientNet capable of automatically learning complex features.

Nevertheless, deep learning methods demand a substantial amount

of annotated data, and their black-box nature may complicate the

interpretation of the model’s decision-making process.

In two-stage object detection methods, the R-CNN series

models are renowned for their high accuracy but are relatively

slower in speed. On the other hand, single-stage object detection

methods, exemplified by SSD and the YOLO series, are more

suitable for real-time scenarios, even though their accuracy

may be relatively lower when dealing with small targets and

complex scenes.

While numerous deep learning-based vehicle detection models

exist, those specifically tailored for hazardous material (hazmat)

vehicles are relatively scarce, and existing approaches often suffer

TABLE 1 Comparison of vehicle detection methods.

Method
categories

Common
methods

Major
advantage

Major
limitations

Feature extractor HOG, etc. Strong

generality

Sensitive

Sensors Radar, etc. Adaptable High cost

Traditional CNNs ResNet, etc. Scalable Resource-intensive

Two-stage detectors RCNN, etc. Accurate Complex

One-stage detectors YOLO, etc. Real-time Limited precision

from subpar average precision. To address these challenges, we

introduce a novel hazmat vehicle detection model based on

YOLOv7-tiny. This model offers improved accuracy for detecting

hazmat vehicles and is well-suited for real-world applications.

3 Proposed method

Figure 1 delineates the architecture of the HMV-YOLO model

meticulously tailored for hazardous material vehicle detection.

The incorporation of two innovative modules, CBSG and G-

ELAN, stands as a testament to the model’s advancements. These

modules play a pivotal role in seamlessly integrating global

response normalization into conventional convolutional modules,

strategically addressing the pervasive issue of feature collapse.

Simultaneously, they actively amplify neuron activity within

the network, enhancing the effectiveness of extracting features

related to dangerous chemical vehicles and improving the overall

performance of the model.

Furthermore, the model introduces a groundbreaking

structural component known as LTPAN, strategically designed to

elevate the interaction of features between deeper and shallower

layers of the network. This deliberate enhancement significantly

amplifies the model’s capability to fuse and synergize features

crucial for the precise detection of hazardous material vehicles. The

intricate combination of modules and structural advancements

positions the HMV-YOLO model as a superior solution in the

realm of detecting dangerous chemicals within vehicles.

3.1 CBSG and G-ELAN

To address redundancy in feature maps, the approach did not

directly remove them from the network. Instead, they were utilized

to learn more effective features. The ConvNext V2 approach (Woo

et al., 2023) was adopted for this purpose, introducing the concept

of Global Response Normalization (GRN). The primary objective

of GRN is to elevate channel contrast and selectivity, achieved

through three distinct steps: global feature aggregation, feature

normalization, and feature calibration.

A set of aggregated values G(X) = gx =
{||X1||, ||X2||, ...||XC||} ∈ RC is obtained through the global

function. For the input feature X ∈ RH×W×C GRN first aggregates

the spatial feature maps Xi into the vector using the global function

G(·) as Equation 1:
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FIGURE 1

Architecture of the HMV-YOLO model.

G(X) :X ∈ RH×W×C → gx ∈ RC (1)

Where G(X)i = ||Xi|| represents scalar statistics information

aggregated for the i-th channel.

Next, the aggregated values are processed using the response

normalization function N(·), as Equation 2:

N(‖ Xi ‖) : ‖ Xi ‖∈ R → ‖ Xi ‖
∑

j=1,...C ‖ Xj ‖
∈ R (2)

Where ||Xi|| is the L2 norm of the i-th channel. Finally, the

computed feature normalization scores are used to calibrate the

original input response, as Equation 3:

Xi = Xi ∗ N(G(X)i) ∈ RH×W (3)

Furthermore, two learnable parameters, α and β initialized

to zero, are introduced in the Global Response Normalization

to simplify optimization. The final equation can be expressed as

Equation 4:

Xi = γ ∗ Xi ∗ N(G(X)i)+ β + Xi (4)

In the model, GRN is applied after the activation function

within the CBS module, giving rise to a new convolutional module

named CBSG. Simultaneously, the YOLOv7-tiny architecture

undergoes the replacement of the CBS module with the

CBSG module, forming what is now referred to as the

new G-ELAN.

3.2 LTPAN

In the network’s neck, YOLOv7-tiny utilizes a Path Aggregation

Network (PAN) (Liu et al., 2018) to facilitate information exchange

and feature fusion between feature maps at different levels.

However, PAN’s fusion approach, involving only bottom-up and

top-down paths, proves simplistic and falls short in capturing

features of hazardous material vehicles across varying-sized feature

maps. This limitation results in an insufficient representation of

features with rich semantic and multi-scale information.

To address this issue, we propose a novel LTPAN structure,

illustrated in Figure 2. In the figure, (a) shows the FPN structure,

(b) shows the PAN structure, (c) shows the LTPAN structure, red

dashed lines with varying styles represent different magnitudes

of upsampling operations. To enhance the model’s ability to

represent diverse features, we introduce a 1× 1 convolutional layer

before each upsampling operation to linearly combine features

from different channels. Considering that hazardous material

vehicles in images are typically larger objects, and feature maps

of different sizes in the backbone network often contain richer

semantic information, the LTPAN structure incorporates a novel

low-dimensional feature mapping structure. This structure maps

feature maps of different sizes from the backbone network to the

feature maps at the network’s neck through upsampling.

3.3 Loss function

The loss function of HMV-YOLO consists of confidence loss

lobj, classification loss lcls, and bounding box position loss lbox. The

network partitions the featuremap intomultiple cells, with each cell
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A B C

FIGURE 2

Di�erent neck structures. (A) FPN structure. (B) PAN structure. (C) LTPAN structure.

corresponding to a vector y = (tx, ty, tw, th, po, c1, c2, c3, c4), where

tx and ty represent the offsets between the predicted box and its

corresponding anchor box, while tw and th represent the width and

height of the predicted box. po represents the probability that the

cell contains an object, and c1, c2, c3, c4 are the predicted values for

the four categories in the dataset. The loss function is calculated as

Equation 5:

L(tp, tgt) =
K

∑

k=0

[αbalance
k αbox

S2
∑

i=0

B
∑

j=0

5
obj

kij
LCIoU+

αobj

S2
∑

i=0

B
∑

j=0

5
obj

kij
Lobj + αcls

S2
∑

i=0

B
∑

j=0

5
obj

kij
Lcls]

(5)

The confidence loss lobj is determined based on positive sample

matching, which includes the object confidence score powithin

the predicted box and the intersection over union between the

predicted box and the Ground Truth. Both of these terms are

computed using binary cross entropy to obtain the final object

confidence loss. The confidence loss lobj is defined as Equation 6:

lobj =
S2

∑

i=0

B
∑

j=0

l
obj
ij

(

Ĉilog(Ci)+ (1− Ĉi)log(1− Ci)
)

−

λnobj

S2
∑

i=0

B
∑

j=0

l
nobj
ij

(

Ĉilog(Ci)+ (1− Ĉi)log(1− Ci)
)

(6)

The classification loss lcls is similar to the confidence loss lobj
and is calculated based on the class score of the predicted box and

the one-hot encoded class of the Ground Truth box. It is defined as

Equation 7:

lcls =
S2

∑

i=0

l
obj
ij

∑

c∈classes
(P̂i(c)log(Pi(c))+(1− P̂i(c))log(1−Pi(c))) (7)

The bounding box position loss is used to measure the

difference between the predicted box and the true box, taking

into account overlap area, centroid distance, and aspect ratio. It is

calculated using the CIoU Loss, as Equations 8 and 9:

lbαx = lCloU = 1− CIoU = 1− (IoU − d2o
d2c

− ν2

1− IoU + ν
) (8)

ν = 4

π2
(arctan

wgt

hgt
− arctan

w

h
)2 (9)

Where do is the Euclidean distance between the bounding box

and the Ground Truth box centroids, dc is the diagonal distance

between the bounding boxes, v is a parameter that measures aspect

ratio consistency, wgt and hgt are the width and height of the

Ground Truth box, and w and h are the width and height of the

predicted box.

4 Result and discussion

4.1 Simulation environment and
parameters

In this experiment, we utilized a custom dataset, annotating

collected images with the Labelimg tool. The targets were

categorized into four types: car, bus, truck, and hazardous material

vehicle, based on vehicle types in the images. Ultimately, we

obtained a total of 3,490 annotated images, with those containing

hazardous material vehicles representing over 70% of the dataset.

To ensure the reliability of our experimental data, all

experiments were conducted under consistent hardware settings

and parameter configurations. Model training, parameter

optimization, and updates were performed using two Tesla V100

16GB GPUs with the stochastic gradient descent (SGD) algorithm.

The input image size was set to 640 × 640 × 3, batch size to 64,
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TABLE 2 Experimental results of combinations of GRN with di�erent activation functions.

ReLU SiLU LeakyReLU SELU GELU ELU Tanh

map@.5 0.846 0.856 0.838 0.833 0.841 0.849 0.8

Bold values represents the best metrics.

A B C

FIGURE 3

Output feature maps of di�erent modules. (A) Input image. (B) Output feature map from CBS. (C) Output feature map from CBSG.

A B C

FIGURE 4

Output feature maps of di�erent structures. (A) Input image. (B) Output feature map of original model. (C) Output feature map after incorporating the

LTPAN structure.

initial learning rate to 0.01, and the total number of training epochs

to 200.

4.2 Model validation

To determine the most effective pairing of GRN and activation

function, combination experiments were conducted using various

activation functions. The outcomes are presented in Table 2,

demonstrating that optimal results are achieved when GRN is

combined with the SiLU activation function.

During the visual analysis of the trained YOLOv7-tiny

model (the input image is Figure 3A), instances of feature

collapse within specific feature maps were identified (Figure 3B).

These feature maps were characterized by redundant and

uninformative feature mappings, contributing minimally to the

model’s performance and resulting in an accumulation of surplus

redundant information.

The visualization of the feature maps associated with the

enhanced CBSGmodule at the same location is shown in Figure 3C.

In contrast to the original CBS module, the CBSG module

effectively mitigated feature collapse, presenting improved feature

maps. This enhancement facilitated the network in capturing

more valuable and informative features, contributing to an overall

improvement in performance.

The CBSG module offers notable advantages across multiple

dimensions. By alleviating feature collapse, it refines feature

information, making the content in the feature maps more

representative. Additionally, it enhances performance by

diminishing the impact of redundant information, improving

the accuracy and efficiency of target detection. The introduction

of the CBSG module also bolsters the model’s robustness during

training, rendering it more adaptable to various complex scenarios.

To investigate the impact of LTPAN on the network’s feature

extraction capability, we generated feature maps preceding the

prediction head by integrating the LTPAN structure, as illustrated
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in Figure 4 [(a) is the input image, (b) is the output feature map of

original model, (c) is the Output feature map after incorporating

the LTPAN structure]. Evidently, the feature maps associated

with the LTPAN structure exhibit a significantly broader range

of feature information compared to the original model. This

observation confirms the effectiveness of incorporating the LTPAN

architectural addition.

The enhanced feature extraction provided by LTPAN is

instrumental in capturing nuanced details and diverse contextual

information. The augmented feature maps contribute to a more

comprehensive representation of the input data, empowering

the network with richer and more discriminative features. This

enhancement is particularly valuable in scenarios where objects

exhibit intricate patterns or are situated in complex backgrounds.

Furthermore, the broader feature coverage achieved by LTPAN

is advantageous for handling scale variations and addressing

instances where objects may appear at different sizes within the

input images. This adaptability is crucial for robust object detection

across diverse datasets and real-world scenarios.

To confirm the efficacy of the model enhancements, a

comparative analysis was conducted against prevalent two-stage

and one-stage models currently in use. The detailed results of these

experiments are presented in Table 3 for thorough examination.

From the table, it is apparent that the model outperforms

its counterparts across most metrics, with a notably substantial

improvement in the map@.5 metric. It surpasses the top-

performing model by 1.1% and even outperforms the latest

YOLOv8 by 2%. Although the Precision metric does not achieve

the best result, the model’s Recall stands as the highest among all

models, signifying that the approach detects a greater number of

objects, highlighting its effectiveness.

In comparison to the original model, this approach manifests

comprehensive improvements across various metrics. Notably,

there’s a 4.9% increase in Precision, a 1.2% increase in Recall, a 3.0%

improvement in map@.5, and a 2.4% improvement in map@.5.95.

These improvements across diverse metrics underscore how the

amalgamation of enhanced modules can significantly boost the

model’s efficiency.

The CBSG module plays a pivotal role in suppressing feature

collapse, allowing the network to acquire more informative feature

details. Simultaneously, the LTPAN structure facilitates the fusion

of richer features from the deep and shallow networks, with a

particular emphasis on features associated with larger objects.

Map curve analysis provides insights into the performance

evolution of object detection models during the training process.

In Figure 5 (left), the changing trends of mAP for each model are

presented as the number of training epochs increases. The x-axis

represents the growth of training epochs, the y-axis represents the

growth of mAP, and the curves depict the changing trends of mAP

for each model during training. By observing the curves, we can

distinguish the evolving trends of mAP for each model during the

training process.

YOLOv6n and YOLOv8n exhibit higher mAP values in the

early stages of training, suggesting a quicker adaptation and

learning ability to the task. YOLOv3 reaches a bottleneck in

mAP growth around 70 epochs, showing a stable trend afterward,

while other models gradually reach their peaks in subsequent

epochs. The mAP curve of HMV-YOLO demonstrates a unique

trend, surpassing all other models around 130 epochs, showcasing

TABLE 3 Experimental results from di�erent models.

Methods P R map@.5 map@.5.95

Faster R-CNN 0.834 0.769 0.717 0.451

YOLOv3 0.726 0.689 0.705 0.416

YOLOv4 0.857 0.756 0.837 0.654

YOLOv5s 0.919 0.761 0.847 0.639

YOLOv6n 0.919 0.761 0.853 0.69

YOLOv7-tiny 0.816 0.789 0.833 0.639

YOLOv8n 0.941 0.752 0.843 0.696

HMV-YOLO 0.865 0.801 0.863 0.663

Bold values represents the best metrics.

a stronger continuous learning ability and reflecting its special

advantages in hazardous material vehicle detection tasks.

The loss curves in Figure 5 (right) provide insights into

the learning processes of different object detection models. By

observing the curves, YOLOv4 and YOLOv5s exhibit significant

loss fluctuations in the early stages of training, while YOLOv6n and

YOLOv8n show a relatively stable learning process. YOLOv3 and

YOLOv7-tiny demonstrate a comparatively slower learning speed

in the initial phases, whereas the loss curve of HMV-YOLO follows

a unique trend, achieving the lowest loss among all models in a

stable manner after∼50 training epochs.

In many cases, the enhancement of various model metrics often

accompanies a significant increase in parameters. However, trading

a substantial parameter increase for slightmetric improvementmay

not be a prudent choice. To assess this trade-off, we compared

the Parameters, Floating Point Operations (FLOPs), and Volume of

several mainstreammodels with our proposed model, as detailed in

Table 4.

The results indicate that our proposed model, in comparison

to YOLOv7-tiny, experiences only a 0.4G increase in FLOPs,

a mere 0.3 M increase in Parameters, and a minimal 0.28MB

increase in Volume. While our model may not achieve the fastest

processing speed in terms of inference time, it still demonstrates

a 1.2 ms improvement compared to YOLOv7-tiny. Considering

information from other models, our proposed model in this paper

remains highly competitive.

To vividly illustrate the enhanced performance of the model,

a comprehensive breakdown of Precision, Recall, map@.5, and

map@.5.95 for each category within the dataset is provided. This

comparison against the original model is thoughtfully presented in

Table 5 for thorough examination.

Moreover, a meticulous examination is conducted on a curated

set of images encompassing both daytime and nighttime scenarios.

This analysis involves extracting feature maps with dimensions

of 80 × 80 from both the original and improved models. The

comparative evaluation of these feature maps is visually depicted

in Figure 6, enabling a direct side-by-side assessment.

The visual representation unmistakably highlights the

considerable superiority of the enhanced approach over the

original model. The feature maps derived from the improved

model exhibit enhanced clarity, richer details, and a more

pronounced ability to capture relevant features across diverse

lighting conditions. This superiority is particularly evident in
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FIGURE 5

Map curve (left) and loss curve (right).

TABLE 4 Comparison of model characteristics: parameters, FLOPs, volume, and Inf time.

Methods Image size Parameters Flops Volume Inf time

YOLOv3-tiny 640× 640 12.1 M 19.0G 23.23 MB 22.3 ms

YOLOv4-tiny 640× 640 6.0 M 16.5G 46.30 MB 35.7 ms

YOLOv5s 640× 640 7.0 M 16.0G 13.81 MB 20.2 ms

YOLOv6n 640× 640 4.7 M 11.4G 9.96 MB 17.3 ms

YOLOv7-tiny 640× 640 6.0 M 13.2G 11.75 MB 20.8 ms

YOLOv8s 640× 640 11.1 M 28.6G 85.44 MB 29.2 ms

HMV-YOLO 640× 640 6.3 M 13.6G 12.04 MB 19.6 ms

nighttime scenarios, where the enhanced model demonstrates

superior adaptability and feature representation.

These experimental findings reinforce the efficacy of the

proposed enhancements, showcasing consistent performance

improvements across varying environmental conditions. The

visually compelling evidence from Figure 6 underscores the

robustness and versatility of the improvedmodel, positioning it as a

formidable solution for object detection tasks in both daytime and

nighttime scenarios.

An examination of various initial learning rates on the

enhanced model’s performance was conducted. The results, as

presented in Table 6, reveal an interesting trend: an increase in

the initial learning rate correlates with slight improvements across

most metrics. Notably, within the range of initial learning rates

between 0.02 and 0.04, the model consistently achieves superior

results across all metrics, demonstrating the model’s responsiveness

to this specific parameter adjustment.

4.3 Detection performance analysis

To explore the model’s ability to generalize, a set of images with

various dimensions from external sources was gathered. Detection

experiments were conducted in two distinct scenarios: multi-object

and multi-class situations. The primary objective was to evaluate

the detection performance of the enhanced model under different

conditions. The experiment employed distinct bounding box colors

for visual representation to facilitate class differentiation, with

hazardous material vehicles indicated by orange bounding boxes,

trucks by pink, cars by yellow, and buses by red.

In the multi-object scenario, the LTPAN structure played a

crucial role in improving the model’s performance by optimizing

the fusion of pertinent feature information for larger targets,

particularly hazardous material vehicles. This optimization

involved categorizing different target features into distinct

feature layers for more effective processing. The results, depicted

in Figure 7, exemplify the model’s exceptional accuracy, even

successfully identifying a vehicle towing two separate hazardous

material tanks.

Real-world applications frequently present diverse challenges,

including targets belonging to multiple classes, variations

in size, and varying degrees of occlusion. These challenges

rigorously test the model’s ability to generalize. To address this,

Global Response Normalization was introduced to enhance

neuron activation. This enhancement empowers the model to

attentively process all regions of the feature maps, detect smaller

and partially occluded targets, and extract more precise class

information. Consequently, this enriches the model’s ability

to generalize, as evident in the detection results showcased in

Figure 8.
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TABLE 5 Experimental results for various categories in the dataset.

YOLOv7-tiny HMV-YOLO

Classes P R map@.5 map@.5.95 P R map@.5 map@.5.95

HMV 0.936 0.918 0.96 0.824 0.944 0.919 0.967 0.843

Truck 0.733 0.717 0.734 0.522 0.829 0.685 0.757 0.574

Bus 0.886 0.77 0.853 0.664 0.902 0.838 0.912 0.719

Car 0.709 0.751 0.787 0.546 0.785 0.762 0.817 0.542

Bold values represents the best metrics.

A B C

FIGURE 6

Output feature maps of di�erent models. (A) Input image. (B) Output feature map of YOLOv7-tiny. (C) Output feature map of HMV-YOLO.

TABLE 6 Impact of di�erent initial learning rates.

Init LR P R map@.5 map@.5.95

0.01 0.865 0.801 0.863 0.663

0.02 0.923 0.766 0.865 0.678

0.03 0.871 0.809 0.876 0.686

0.04 0.9 0.785 0.873 0.687

0.05 0.882 0.79 0.86 0.678

0.06 0.882 0.79 0.858 0.676

Bold values represents the best metrics.

In the experiment analyzing detection performance, this

paper extends the evaluation of the object detection model’s

performance, examining scenarios from the perspectives of road

surveillance and drone aerial views, as shown in Figure 9.

The first image displays a congested highway where the

model performs remarkably well, with clear and accurate

boundaries of detected objects. The model can precisely identify

and locate moving vehicles, even when a large truck in

the lower-left corner is partially obscured by vehicles in

the front.

The second image illustrates a typical road scene, presenting

a challenge with a hazardous material vehicle in the upper-left

corner where feature loss occurs due to camera field of view issues.

Despite this challenge, the model accurately detects the hazardous

material vehicle.

The third image presents an aerial view from a drone, requiring

the model to handle the deformation of vehicles and changes in

other objects on the road. The model continues to perform well in

this scenario, successfully detecting various objects and providing

accurate localization.

The last image demonstrates the detection results of low-

resolution drone aerial images, where some objects may lack clarity

due to image quality loss and obstacles. The model maintains

a certain level of detection accuracy under these conditions,

but additional optimization may be needed, especially in the

context of low-resolution aerial views, to ensure precise capture of

small targets.
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FIGURE 7

Detection results in multi-object scenarios.

FIGURE 8

Detection results in multi-class scenarios.

FIGURE 9

Detection results in monitoring perspective.

In addition to considering different shooting angles, we

further explored the model’s performance under various

environmental conditions to comprehensively assess its robustness

and adaptability in different meteorological environments.

As shown in Figure 10, the first and second images depict

rainy weather conditions, demonstrating the model’s strong

robustness in the presence of raindrop obstructions and wet

road surfaces. Even in conditions with blurred visibility,

the model accurately detects hazardous material vehicles

on the road and can even detect vehicles obscured by

water splashes, showcasing its adaptability in wet weather

conditions.

The third image represents snowy weather conditions

accompanied by some fog. The model successfully handles the

image noise caused by snowflakes and fog, providing satisfactory

detection results under limited visibility. Finally, the model

performs well under nighttime conditions. Despite decreased

illumination and the obstruction of road signs, the model

can still detect objects on the road, ensuring practicality in

nighttime scenarios.
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FIGURE 10

Detection results in di�erent environmental.

Following a thorough evaluation of the enhanced model’s

detection capabilities, a decision was made to further assess its

performance. For this purpose, additional images were selected,

and a comparative experiment was carried out to juxtapose

the enhanced model against other models. It’s essential to note

that all models were subjected to identical parameter settings,

featuring a confidence threshold set at 0.25 and an Non-Maximum

Suppression (NMS) threshold set at 0.45.

The comparative results, as shown in Figure 11, visually

represent the differences in detection performance among the

four models.

In the first image, a scenario with densely parked hazardous

material vehicles led to a significant loss of distinguishing

features. YOLOv5s and YOLOv7-tiny faced challenges in

accurately detecting these vehicles, while HMV-YOLO excelled,

demonstrating its capability to effectively detect these vehicles

and overcome feature loss challenges. YOLOv6n also exhibited

some performance in this scene but was slightly inferior to the

HMV-YOLO model.

In the second image, a complex highway scene involving

multiple object categories was observed. YOLOv5s and YOLOv6n

exhibited similar detection performance, both demonstrating

limitations in detecting small targets. YOLOv7-tiny encountered

issues, misclassifying a signboard and missing vehicle targets on

the bridge. In contrast, the HMV-YOLO model excelled, avoiding

misclassification and identifying more small target vehicles.

In the third image, the coexistence of a hazardous material

vehicle and a truck posed a classification challenge. YOLOv5s,

YOLOv6n, and YOLOv7-tiny encountered classification errors.

In contrast, the HMV-YOLO model effectively distinguished

between these two target categories, showcasing its advanced

classification performance.

The last image depicts a highway scene with multiple object

categories. YOLOv5s and YOLOv6n accurately classified detected

targets but failed to detect more small vehicle targets. YOLOv7-

tiny made dual detections on the cargo truck target. In contrast, the

HMV-YOLO model accurately classified objects and additionally

detected more cars, attributed to the enhanced feature aggregation

capability of the LTPAN structure within the HMV-YOLO model.

4.4 Ablation experiment

To evaluate the effectiveness of the proposed method, a

stepwise integration of the new modules introduced in this paper

into the original YOLOv7-tiny model was performed. The impact

of each newmodule on the model’s performance was systematically

evaluated, and the results are presented in Table 7. In the table, the

“
√
” symbol denotes the incorporation of the respective module

from the header row. YOLOv7-tiny uses the LeakyReLU activation

function, while the CBSG module utilizes the SiLU activation

function. Therefore, experiments were conducted separately with

the SiLU activation function. In the third series of experiments, the

combination of SiLU and GRN corresponds to the CBSG module.

In the fourth set of experiments, SPPFC splices SE modules (Hu

et al., 2018) based on SPPF in a residual way to filter useless channel

features. The table reveals that the introduction of each proposed

method yielded varying degrees of improvement across almost

all metrics.

Notably, the introduction of the LTPAN structure led to

an impressive Precision metric of 91.1%, marking a substantial

9.5% increase compared to the original model. This underscores

the LTPAN structure’s superior feature fusion capability when

contrasted with the PAN structure.

While the introduction of individual improvement methods

may have caused a reduction in the model’s Recall metric, it was

pleasantly surprising to observe that, when all the methods were

combined, the Recall metric increased to 80.1%, surpassing the

original model by 1.2%. Although the combined Precision metric

did not reach the same remarkable level as when the LTPAN

structure was added in isolation, it still outperformed the original

model by 4.9%. The improvements in the map@.5 and map@.5.95

metrics were relatively similar, with both exhibiting increases of 3

and 2.4%, respectively, over the original model. These experimental

results illustrate the exceptional performance of the proposed

methods and their combined application in practical scenarios.

4.5 Discussion

The method primarily focuses on integrating new modules

to enhance performance, potentially leading to an increase in

the model’s parameter count. Addressing the challenge of model

lightweighting is crucial to ensure the practical deployment of

the hazardous material vehicle detection model. Future research

should delve into lightweighting techniques, such as quantization

and pruning, to reduce the model’s size and resource requirements

without compromising performance.

Despite achieving effective performance improvements, the

enhancement of the model’s inference time has not been

significantly optimized. Real-time applications require time

optimization, and future research should concentrate on model
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A

B

C

D

FIGURE 11

Comparison of detection results. (A) Detection results of YOLOv5s. (B) Detection results of YOLOv6n. (C) Detection results of YOLOv7 = tiny. (D)

Detection results of HMV-YOLO.

TABLE 7 Ablation experiment results.

Group SiLU GRN SPPFC LTPAN P R map@.5 map@.5.95

1 0.816 0.789 0.833 0.639

2
√

0.88 0.778 0.848 0.651

3
√ √

0.894 0.775 0.856 0.661

4
√

0.853 0.787 0.846 0.651

5
√

0.911 0.744 0.853 0.653

6
√ √ √ √

0.865 0.801 0.863 0.663

Bold values represents the best metrics.

optimization techniques, including hardware acceleration, parallel

processing, and model compression, to achieve faster and

more efficient hazardous material vehicle detection during the

inference process.
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Furthermore, although our research has achieved some

improvement in accuracy, there is still room for further

enhancement. Achieving higher accuracy is crucial in applications

where false positives can have serious consequences. Future

research should explore advanced training strategies, data

augmentation techniques, and fine-tuning methods to further

improve the accuracy of the hazardous material vehicle

detection model.

Addressing these limitations and conducting future work will

not only contribute to refining the hazardous material vehicle

detection model but also enhance its practicality and adaptability

to widely deployed scenarios.

5 Conclusions

This study introduces and systematically evaluates novel

modules in the HMV-YOLO hazmat vehicle detection model. The

progressive integration of these modules into the original YOLOv7-

tiny model results in significant improvements across various

performance metrics. Notably, the introduction of the LTPAN

structure demonstrates outstanding feature fusion capability,

leading to a remarkable 9.5% increase in Precision compared to the

original model.

While the introduction of individual modules occasionally

results in decreases in the model’s Recall metric, it is encouraging

to find that the combined application of all methods results in an

overall increase in Recall to 80.1%, surpassing the original model

by 1.2%. Although the combined Precision metric does not reach

the same exceptional level as the LTPAN structure in isolation,

it still outperforms the original model by 4.9%. Additionally, the

map@.5 and map@.5.95 metrics show consistent improvements,

both surpassing the original model by 3 and 2.4%, respectively.

These findings underscore the effectiveness of the proposed

methods in enhancing the performance of the hazmat vehicle

detection model. The LTPAN structure, in particular, demonstrates

its ability to significantly improve feature fusion, making it

a valuable addition to the model’s architecture. Overall, the

combination of these innovations showcases their practical

relevance and excellent performance in real-world applications,

furthering the field of hazardous material vehicle detection.
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